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We propose a model that provides a unified description of the nuclear equation of state and
fragmentations. The equation of state is evaluated in the Bragg-Williams as well as in the Bethe-
Peierls approximations and compared with that in the mean field theory with Skyrme interactions.
The model shows a liquid-gas type phase transition. The nuclear fragment distributions are studied
for diferent densities at finite temperatures. Power law behavior for fragments is observed at the
critical point. The study of the fragment distribution and the second moment S2 shows that the
thermal critical point coincides with the percolation point at the critical density. High temperature
behavior of the model shows characteristics of chemical equilibrium.

PACS number(s): 25.70.—z, 24.60.—k, 05.50.+q, 05.70.—a

I. INTRODUCTION

The phenomenon of nuclear matter &agmenting into
various pieces can be studied in heavy-ion collisions. This
has been an area of much activity, both in experiments
and in theory. Curtin, Toki, and Scott [1] pointed out
that at some incident energies excited matter that is
formed in heavy-ion collisions will pass through a liquid-
gas phase transition stage, and if &agments are formed at
this stage, it may show characteristics of this transition.
A study of nuclear matter with a Skyrme interaction was
made in [2] where it was shown that in mean field theory
there is a phase transition as in the van der Waals gas.
In nuclear physics, a phase transition, if it indeed hap-
pens, is a transient phenomenon and it is not clear what
the mean field theory predicts for observables that can
actually be measured. In experiments the most readily
accessible observable is the cross section of nuclear &ag-
ments or yield Y(A) vs A, where A is the mass number
or charge of a &agment. Of course mean Geld theories
cannot make a prediction about the &agment distribu-
tion and thus they fall short of directly providing results
with which one could confront the data.

Bauer et al. [3] and Campi and Debois [4] used the
percolation model [5] to calculate the fragment distribu-
tion [6,7]. There are two varieties of percolation models:
the bond and the site percolation models. In a bond
percolation model each site of the lattice is occupied by
a nucleon. That is, the number of nucleons equals the
number of lattice sites, N. The bonds between nearest
neighbors are broken with a probability of 1 —p where
p is the probability that the bond is unbroken. Nucle-
ons which are connected through unbroken bonds form a
cluster. In a site percolation model, each site is occupied
randomly with probability p & 1. The number of nu-
cleons, n, is usually less than or equal to the number of
the lattice sites, N. Nucleons occupying nearest neighbor
sites are considered to be the part of one cluster. In both
bond and site percolation models there is a critical value
p of p at which an infinite cluster starts to emerge. For a

very large lattice p is independent of N. The probability
that a given site belongs to this infinite cluster is zero for
p ( p, and grows &om 0 to 1 for p & p . In general,
the cluster distributions in percolation models are very
similar to the mass distribution observed in heavy-ion
collisions [6,7].

The percolation model is quite diferent from the mean
field theories that we Grst alluded to. There is just one
parameter in a percolation model. In a bond percolation
model the number of sites equals the number of nucleons.
One might regard that the probability p is a function of
temperature. In that case there is no parameter corre-
sponding to the volume or the pressure of the system. If
instead one takes the site percolation model, the number
of lattice sites, N, is usually larger than n. One may
now associate the parameter p with the volume. There
is, then, no reference to temperature or pressure. Thus
the simple percolation model cannot describe the ther-
modynamic aspect of nuclear fragmentation.

Our present work started with the desire to have
a model that can describe both the equation of state
and the &agmentation of Gnite nuclear systems. The
quintessence of this model is the lattice gas model [8].
The model leads to a (P, V, T) diagram, and it is also
linked with the percolation model in an obvious way. An
interesting feature is that it not only leads to a liquid-
gas type of phase transition, but also encompasses the
percolation transition.

Much work has been published on the subject of the
liquid-gas phase transition in nuclei. See Refs. [9—11] for
a description of some early works and [12] for a review.
There are microscopic models which are proposed to cal-
culate multifragmentation [13—17]. Other phenomenolog-
ical models can be found in [18]. The pioneering work by
the Purdue group [19] was a big impetus for this subject.

II. MODEL

We consider the participant zone in collisions of
two heavy-ions and conjecture that because of nucleon-
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nucleon collisions the system reaches thermal equilib-
rium. We assume that the system is adequately described
by classical statistical mechanics. In that case the canoni-
cal partition function of an n-particle system can be writ-
ten in a separable form: Z, „(x Z„(can)Z (can) where
Z„(can) is given by

Zj, (can) = f exp —P) p;/2nc d pc . d p„,
1

where P is the inverse temperature. The other part of
the partition function is

The results are, however, transparent and. analytically
demonstrate van der Waals type behavior. In this ap-
proximation the number of nn bonds, N, is taken to
be given and fixed, when N and n are specified. If one
site is definitely occupied, the number of its p neigh-
bors that are occupied is on the average pn/N. In our
three-dimensional sixnple cube lattice p is 6 except at the
boundary. Since there are n nucleons in the system, the
number of nn bonds is then pn /2N where we have en-

sured that each bond is only counted once and assumed
that both n and N are large so that boundary efFects can
be neglected. In the Bragg-Williams approximation the
canonical partition function is then

Z„(can) cc f exp —d) e(r;, ) d rc . d r
i(j

(2.2) N!
Z„(can) = ' e2~'~ pd .

(N —n)!n! (3 I)

Here v(r;~) is the potential between particles i and j. We
approximate the configuration part of the partition func-
tion by the partition function of the lattice gas model.
In this model (as in a site percolation model) each lat-
tice site can be occupied by at most one nucleon. The
number of lattice sites, N, gives a measure of the volume
of the system and is usually larger than n. When the
nucleus is in the ground state we have n = N. Thus our
model is limited to a normal nuclear volume or higher.
Because cluster formation presumably takes place at a
volume much larger than the normal volume, this restric-
tion may not be a debilitating factor. In contrast with
the percolation. model, the lattice gas model includes in-
teractions. If two nearest neighboring sites are Riled by
nucleons, they will interact and the energy of interac-
tion is denoted by —e. The nearest neighbor interaction
simulates the short range nature of the nucleon-nucleon
interaction.

We can now write down the canonical partition func-
tion for our model for a fixed n and N. The Z„(can) is
simple and does not depend on the volume, and we just
need to calculate the Z„(can). Let N be the number
of nn bonds in a specific lattice configuration; the energy
carried by these bonds is then eN . Then —Z (can. ) is
given by

kT
lnas N —n 2as i N (3.2)

Using n/N = Vo/V = p/po we finally get

( v ) I /v&'
P = kTpo ln ——epos

(V —V() 2 ( V)
(3.3)

This equation of' state has the same qualitative behavior
as the van der Waals gas. For 1 mol of gas, the van der
Waals equation of state is

The equation of state can be calculated by utilizing
P = kT[0 ln Z(can)/Ov]T = kT[o) ln Z, (can)/Bv]z since
Z„(can) does not have any V depen. dence. Here P is the
pressure and V is the volume given by V = a N. A rep-
resentative value of a would be as = I/po ——6.25 fm
where pp is the normal nuclear density. The normal nu-
clear volume is Vp ——a n. Using Stirling's approximation
for N!, n!, and (N —n)! one can show that

Z„(can) = ) g(N, n, N„„)e~'
N

(2.3)
P= (3 4)

where g(N, n, N ) is a degeneracy factor satisfying

¹) g(N, n, N„„) =
N

(2.4)

An exact evaluation of Z„(can) given in (2.3) is difficult.
Thus we will use approximate means.

III. EQUATION OF STATE

A. Bragg-Williams approximation

The Bragg-Williams approximation is an easy and
quick calculation but is not expected to be accurate.

The lattice gas pressure goes to infinity as V approaches
Vp. The van der Waals gas pressure goes to infinity as V
is squeezed to the value b. For large V both equations of
state approach the perfect gas limit. The critical point
can be readily determined analytically &om (3.3). By
setting OP/Bp = 0 P/Bp = 0 at the critical point we
obtain pc = 0.5po and kT~ = pe/4, respectively. It is
also straightforward to show that in the Bragg-Williams
approximation P~V~/RT~ = 21n 2 —I = 0.386 for the
lattice gas. The corresponding number for the van der
Waals gas is 0.375.

The Bragg-Williams approximation is considered to be
crude and one may wonder if the lattice gas model would
indeed lead to a liquid-gas type phase transition when a
better mean field calculation is done. In the next subsec-
tion we try an improved approximation.
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B. Bethe-Peierls approximation

We now try to do a better mean field calculation and
use what is called the Bethe-Peierls approximation in the
Ising model. For the Ising model, the order parameter
can be computed without having to calculate the parti-
tion function but for the equation of state that we wish
to calculate we will need to obtain the partition function.
Here we consider a grand canonical ensemble. To explain
the methodology we refer to Fig. 1 where, for simplicity,
a two-dimensional square lattice is shown. We break up
the lattices into N/(p+ 1) blocks, each of which contains
p+ 1 sites. The interactions within each block are treated
exactly while the interactions between diferent blocks
are taken into account approximately. The local correla-
tions are taken into account in this approximation, and it
is an improvement over the Bragg-Williams approxima-
tion. The grand partition function can be written as the
product of the grand partition functions of the N/(p+ 1)
blocks:

eA (1 + eA+pe+pe) p
a(5) =

Zgp
N' (3.8)

(1 + A+P )p + A(1 + A+P +P )p (3.9)

is obtained from (3.7) by summing over k. The average
number of particles in all the sites neighboring site 5 is

5 is unoccupied and its neighboring sites 1 . .p are k-
fold occupied where A: goes &om 0 to p. The second part
is proportional to the probability that site 5 is occupied
where an extra amount of energy —ke is included when k
of the nearest neighbors is also occupied. The extra fac-
tor exp[PkK] takes into account the interaction between
diferent blocks. If we left this factor out, the nucleon at
site 1 (Fig. 1) would only interact with the one at site 5.

Because of the self-consistency condition, the average
occupation probability at every site must be the same.
The average occupation at site 5 is

(
Zs, ——zs, (block l)zs, (block 2) zs, block ~+

(3.5)

p (W) keAk+pke + eA g (V) I eAk+pke+pk~).&() =
i=i Zg'p

(3.iO)
The grand partition function of the block labeled by
1, 2, 3, p, and 5 can be written as

7+1
A'k —PZ (k)

A:=0 a
{3.6)

Here A' plays the role of a chemical potential. The en-
ergy E (k) consists of two parts: the kinetic energy

(P, i p, /2m) and the potential energy for the nearest
neighbor interaction. Integration over the kinetic en-
ergy part can be immediately done to give a factor of
[(2~m/P) ~ ]" = e'i". We now define A = A'+ q and also
divide the the right hand side of the above equation into
two parts:

The self-consistency condition then implies

A(1 + A+Pe+Pi)P A+Pe(1 + A+PE)'Y —1

2A+P(e+e) (1 + A+P(~+a) )P
—1

(3.1i)

1= e~' 1+e+ '
1 + ~A+Pe+Pe (3.i2)

and (3.8) can be rewritten as

The two unknowns e and K can be solved Rom (3.8),
(3.9), and (3.11). Dividing both sides of (3.11) by e"(1+
e"+P('+') )~ i we obtain.

The first part is proportional to the probability that site

N (1+AeP')~—= 1+—
e A (1 + eA+ p~+p&) w

'

Using (3.12), (3.13) becomes

(3.13)

13 15

12 1 6 10 8

16 & 5 2 9

N 1—=1+
~A+p~~/{~ —i)

We can now write e in terms of e,

C
—~~~/{~—i)

(3.14)

(3.i5)

19 20 17 3 21

24 25 22

Combining (3.8), (3.9), and (3.15) we obtain

23

FIG. 1. A square lattice is divided into blocks to illustrate
the Bethe-Peierls approximations. See text for details.

i ' N —2n (N —2n'Ix= +
2 N —n % —n

I

(+ 4
I

e~'

(3.16)
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~ —~&&/(w —&) (3.17)

The valualues of e and e can now be found &om (3.15)—
~z. ~Ve note here that the results depend on the ratios(3 ]7) %AT

of n/N and e/kT only.
Let us now go back to the partition function for the lat-

tice given in (3.5) where it is written as a product of the
partition functions of the N/(p+ 1) blocks. If we simply
use the partition function for each block given in (3.9),
we count twice the binding energies between neighboring
sites in difFerent blocks. For exam l th b' dmp e, e in ing en-
ergy between 1 and 6 (Fig. 1) is included in zs, (block 1)
through e, and it is included again in zs, (block 2). We
note that on the average there are n/N particles at each
site, and each block has p peripheral sites. Thus, when
we evaluate the partition function for the lattice, the par-
tition function for each block given in (3.9) should be
corrected with the following factor:

r rtr l I I I r r r r r r I''''!»rr!ilrl! Ilr

rox.

p! ox.

T(MeV)

20
'l5
10
5

correction = e (3.18)
2 3 4 6 7 8 9 10

/v,

1P= ppkT l g (3.19)

We can now use PV/kT = lnZ V = N/, d

gpss

/ ppy aild
in Zs, ——N/(p + 1) lnzs, to obtain

FIG. 2.. The P-V diagrams in lattice gas model at temper-
atures T = 5 10 15
th

, and 20 MeV. The solid curves are fs are or
he Bethe-Peierls approximation, and the dashed curves are

for the Bragg-Williams approximation. In the calcula '

used e = 9 MeV.

Here zz, is now understood as the product of a block
partition function given in (3.9) and the correction factor
given in (3.18).

The equations of state calculated in the Bragg-
Williams approximation and the Bethe-Peierls approxi-
mation are compared in Fig. 2 in P-V diagrams at differ-
ent temperature. It is seen that in the high temperature
limit both give the same results, and they begin to differ
at low temperatures.

Similar to Fig. 2 one can draw P against VIVp
at various ~rious T. A comparison of the equation of state in
the mean field theory with a Skyrme interaction and in
the lattice gas is shown in Fig. 3. In both cases we see
characteristics of a liquid-gas phase transition. In the
calculation we used a=9 MeV and pp

——0.16 fm

C. Mean Beld theory with Skyrme interaction
OX.

We take a Skyrme interaction with potential energy
density given by [2]

V(p) = —po — + prr
f pit' B

+' (3.20)

where A = —356 MeV, B = 303 MeV, and rT=7/6. This
interaction produces a saturation density of 0.16 fm and
binding energy of 16 MeV per particle.

The pressure consists of two parts: one originating
&om the interaction and the other &om the kinetic en-
ergy. The pressure produced by the interaction is given

1

CL T(MeV)

20
l5
10
5

/pl
2 po rT+ 1 (po)

(3.21) 1 2 5 4 5 6 7 8 9 10

/v,
The k'kinetic pressure is calculated numerically &om a
Fermi gas model at finite temperature.

FIG. 3. The same as Fig. 2, but the dashed curves are for
the mean 6eld theory with Skyrme interactions.
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IV. FKAC MENT DISTHIBU TIDNS

Nuclear &agmentations are described by the formation
of clusters in our model. To generate fragements we need
to simulate the lattice configuration and momenta of par-
ticles, and to determine if neighboring particles belong to
the same cluster. The lattice confi.guration is generated
according to (2.2), while the momenta are generated from
the Maxwell-Boltzmann factor given in (2.l). These two
processes are independent of each other since the parti-
tion function can be factorized. To generate the config-
uration we start from an empty lattice and put the first
nucleon at random. Once this has been put in, the p
boxes that are immediate neighbors are assigned a prob-
ability oc exp[Pe] whereas all other boxes have probability
proportional to unity. The next nucleon is then put in
according to this probability distribution. If at an in-
termediate state there are m empty boxes, we assign to
each of these boxes a probability proportional to exp[qPe]
where q is the number of nearest neighbors that are al-
ready flied up. The next fi.lling is then done according to
this distribution. The difFerence from the computer sim-
ulation that would be done in a site percolation model
is the Boltzmann factor. Having done the configuration
space sampling we then assign each nucleon a momentum
according to the Maxwell-Boltzmann distribution.

In a site percolation model two neighboring particles
always form a cluster. The formation of a cluster in our
model depends on the interactions of neighboring parti-
cles and their relative kinetic energy. We adopt the fol-
lowing physical criterion for determining the formation of
a cluster. Two neighboring nucleons belong to the same
cluster if the following condition is satisfi. ed:

1 2 I I I I

]
I I I I

[

I I

]
1

—Present Model

0.8

0.6

0.4

0.2

Q
I I I I I I I I I I I I I I I I I I I I I I I t

0 0.5 1 1.5 2 2.5

T/T,
FIG. 4. The bond probability p& is plotted as a function

of temperature. The solid curve is obtained from our model
given in Eq. (4.2), and the dashed curve is the Coniglio-Klein
model shown in Eq. (4.3).

p = 1 —exp[ —Pe/2]. (4.3)

This was mathematically devised so that the thermal
critical point would also be a percolation point, a feature,
as we shall see, that is also present in our parametriza-
tion. A comparison of the two formulas is presented in
Fig. 4. An example of the &agment distribution obtained
in our simulation is shown in Fig. 5. One could decipher
from this figure that at T = 0.5T~ the system percolates,
at T = 1.5T~ and T = 2.0T~ there is no percolation, and
that percolation sets in around T = T~.

p„'/2p —e ( 0. (4.1) Q
2

I & I I I I I

Here p„ is the relative momentum between the two nu-
cleons and p is the reduced mass. Except at very low
temperatures, the &equency with which two nucleons ap-
pear at neighboring sites depends mostly on the density.
The probability of p„/2p, exceeding the value e increases
with temperature since the momentum of each nucleon
is obtained from Monte Carlo sampling of the Maxwell-
Boltzmann distribution. Hence the probability that two
nucleons are bonded decreases with increasing tempera-
ture and the system becomes less compact at higher tem-
perature as it should. A diferent parametrization used
in [20] leads to similar efFects.

We note that when each particle obeys the Maxwell-
Boltzmann distribution, the distribution of relative mo-
mentum between two particles is also Maxwell-Boltz-
mann, i.e. , P(p, ) = [1/(2npkT)s~2] exp[ —p„/2pkT].
We can then write down a formula for the bonding prob-
ability which is temperature dependent:

10

1

10

—2
10

—3
10

W ~

X ~

10

~ ~
J

N=5', n=64

'l

l

I

1

l

I

I

1

l

10

4'
I =1-

(27r pkT) s~2
—g„/2@kT 2d (4.2)

Coniglio and Klein [22] used a difFerent parametriza-
tion for the bonding probability. They used

FIG. 5. The mass yield distribution, Y'(A) vs A, for lattice
N = 5 and n = 64, at temperatures T/To =0.5, 1.0, 1.5, and
2.0. Here T~ ——1.1275' is the thermal critical temperature.
This value of To taken from [24] is more accurate than the
Bragg-Williams approximation.
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V. THERMAL CRITICAL POINT
AND PERCOLATION POINT

Let p be the value of p at the percolation point, i.e. ,
the point when an infinite cluster just appears. The clus-
ter size distribution for a general p can be parametrized
as [5]

n=64
p/p, = 0.3
e/a. =0 &

-- p/p, =1.0

I ~ &

l
I ~ f I

l

I I

Y(A, p) = A f [(p —p, )A ]. (5.1)

The scaling function f(x) can be deterinined by computer
simulations or experiments. In many cases, such as the
Fisher model [23], f(x) is an exponential function. At
the percolation point, the &agment distribution obeys a
simple power law 0

0 0.5 1 1.5
I I I I I I I I I I I I

2 25 3

Y(A, p, ) oc A (5.2)

At the percolation point the Huctuation is the maximum.
This means that if in the neighborhood of the percola-
tion point the yield Y(A, p) is fitted by a power law, the
exponent 7. will be a minimum at the percolation point.
Experimental data are often fitted by a power law and a
minimum in 7 is searched for to ascertain the percolation
point [21].

The second moment is defined as S2 ——PA n(A)/n
where n(A) is the number of clusters with A nucleons and
the sum excludes the largest cluster (defined henceforth
as A „).In the thermodynamic limit S2 diverges at the
percolation point and obeys a power law distribution

S. ~ lp
—p. l

'. (5.3)

A „/n oc lp
—p, l~. (5.4)

There are two independent critical exponents in most sta-
tistical models and percolation models. One can readily
show that the following relations exist:

As mentioned, the order parameter given by
lim ~ A „/n is zero for p ( p, and increases with

p for p & p, . Above the percolation point the order pa-
rameter is given by

FIG. 6. The value of w is plotted as a function of temper-
ature at different densities.

is higher than a minimum value (= 0.3pe) a percola-
tion point will be reached at a certain temperature. The
higher the density, the higher the temperature at which
percolation sets in. If we identify the point at which a
maximum in S2 or a minimum in w is achieved as the
percolation point, then we see from Figs. 6 and 7 that
at higher density the percolation point is reached at a
higher temperature. One can now ask the question: If a
minimum in w is seen in experiments as in Ref. [19], one
could interpret that as an indication that the percolation
point is reached. but does it have any relevance with the
thermal critical point? As Fig. 7 shows if the &eeze-out
density is 0.5po, then the percolation point is reached
at the thermal critical point. It also follows that if the
&eeze-out density is close to 0.5po, then a minimum in
w is obtained when the temperature of the dissociating
system is close to the critical temperature.

We therefore have this remarkable result which was not
a priori imposed. In our model the thermal critical point
is also a percolation point. Numerically this result can be

and

7- —2

(5.5)

(5.6)

S,

3
l

~ ~ I &

l

~ I I ~

l

& I

n=64
p/pp= 1 .0

~/~. =0 ~

p/p =o.03

v =2+
/3+ ~

(5.7)

For a finite system the second moment S2 goes through
a maximum (instead of infinity), and w goes through a
minimum at the percolation point. Thus 7. and S2 can be
used to identify the percolation point in a finite system.

In our model there is, erst of all, a thermal critical
point which is obtained at p~ ——0.5po and T~ ——1.12756
[24]. This more exact value of T~ = 1.1275m is smaller
than the value of 1.5e that we obtained from the Bragg-
Williams approximation. But, in addition, there is a con-
tinuous range of percolation points. Provided the density

I i
I ~, r i

I I
I I

I I

I J

I I

I I

l I
I f

I I

I I

I
~

g

I I

I I
l
i

1
I i I I I I I

0 0.5 1.5 2.5

FIG. 7. The value of S2 is plotted as a function of temper-
ature at different densities.
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explained by noting that at the critical temperature the
value of p in our model difFers little &om the Coniglio-
Klein parametrization. At a density p/po ——1, the system
begins to percolate at T = 1.47T~ in our model and at
T = 1.55T~ in the Coniglio-Klein model.

VI. MULTIPLICITY AS A VARIABLE

50
O
E

&C

40

The implicit thinking in much of what is presented
above is that in nuclear collisions matter is compressed,
heated up, and we can talk of a freeze-out density and
temperature at the time of dissociation. Both the tem-
perature and the density are, however, not directly mea-
surable. In the past values of 4po and lower have been
used for the &eeze-out density. It is not known accu-
rately. Given that the most easily measurable quantities
are the multiplicity (number of charged particles), S2,
and A, we ask: Can we determine the &eeze-out den-
sity from the multiplicity dependence of S2 and A ?
In Figs. 8 and 9 we plot S2 and A as functions of the
multiplicity at difFerent densities. In the calculations, at
a given density we took a suKciently large range of tem-
peratures such that we cover the full range of multiplicity.
For a given multiplicity both S2 and A can vary &om
one event to another. What is plotted is the average for a
given multiplicity. From Figs. 8 and 9 we can easily see
the changes of S2 and A „when the density is changed
&om 0.3po to 0.5pp. The difFerences are, however, rather
small between density 0.5po and 1.0po. Remembering
that there will always be uncertainties in experimental
data due to contamination &om pre-equilibrium parti-
cles, spectators, etc. , we conclude that it is difIicult &om
these observations alone to determine the &eeze-out den-
sity accurately. Some other variables might better difFer-
entiate between difFerent &eeze-out densities.

VII. BEAM ENERGY AS A VARIABLE

Figure 6 shows that it may be possible that the &eeze-
out density can be determined &om the temperature de-

30

20

0
0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1

multiplicity

FIG. 9. A „ is plotted as a function of multiplicity of
fragments at di8'erent densities.

pendence of w. The temperature is not a direct observ-
able in experiments although it has often been deduced
indirectly &om other data, notably &om slopes of inclu-
sive cross sections. Here we will first try to deduce the
temperature &om a simple theory so that the tempera-
ture is given once the beam energy is given. We consider
the experimental setup of [20]. One has nearly central
collisions of two nearly equal ions. The experiment is
carried out at various beam energies in the laboratory.
We take the number of paticles to be 85 (correspond-
ing to central Ar+ Sc collisions). In a purely classical
model the ground state has no kinetic energy at zero tem-
perature so that the ground state energy per nucleon is

"/n where N " is the maximum number of nn
bonds possible for particle number n = 85. Since N
is determined by geometry, we can use the experimental
binding energy ( 8.5 MeV/nucleon) to fix the value of

At temperature T the average energy per particle is
1.5kT —eN /n where N, the average value of N, is
obtained from computer simulations. We can then write

2
kT+ e(N "——N ) = e*.

S,
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FIG. 8. The value of S2 is plotted as a function of multi-
plicity of fragments at di8'erent densities.

For equal mass nonrelativistic nuclear collisions we have
e* = Eb, /4 where Eb, is the beam energy per nu-
cleon in the laboratory. There is an implicit assumption
here that all available energy is converted to thermal en-
ergy. Thus the temperature is related to the beam en-
ergy. We can now fix the &eeze-out density at difFerent
values, obtain an efFective v at each beam energy, and
obtain points as in experiments [20]. This is shown in
Fig. 10. However, the fit with data is not good for any
of the densities employed.

This type of mapping between beam energy and tem-
perature is not accurate. One of the sources of errors is
collective fiow which is known to account for some &ac-
tion of the available energy. Better mapping could be
expected where the temperature is deduced &om other
experimental data [25,26]. In this approach, the tail of
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FIG. 10. The theoretical exponent w is compared with ex-
perimental data at diferent beam energies. The curves are
obtained by using the temperature calculated from Eqs. (7.1).
The solid circles are the corrected data taken from [21], the
open circles are the uncorrected data taken from [20], and the
crosses are taken from [26].

the proton cross section is fitted by assuming that the
proton has a Maxwell-Boltzmann distribution in a frame
which is moving in the laboratory. We take this mapping
&om [20]. When the mapping from this phenomenologi-
cal approach is used, the fit with the experimental data
is quite good when the freeze-out density is taken to be
0.39po (see Fig. 11). What is also very pleasing is that
the predictions for difFerent freeze-out densities are also
sufIiciently difFerent to be experimentally accessible. The
combined study of S2 and ~ as a function of beam energy
should be useful in determining the freeze-out density.

VIII. HIGH TEMPERATURE
CHARACTERISTICS

Most of the attention in the present work has been fo-
cused on temperatures that are close to what is believed
to be the critical temperature of nuclear matter. Indeed,
in the past the percolation model has mostly been used
for mild to moderate excitation energies. At higher ener-
gies (i.e. , Bevalac energies) other models have been used
with moderate success. These models use approxima-
tions that are valid in the high-temperature —low-density
limits. Chemical equilibrium between difFerent species is
assumed. We will call these models by a generic name,
the thermodynamic model. In this model rather simple
expressions for the average number of monomers (single
nucleons—:nq), dimers (clusters of two nucleons= n2),
three-body clusters (ns), etc. , can be obtained. An early
review can be found in [27]. We do not expect to find
exact correspondence between these calculations and the
present classical model at the high temperature limits
since we do not have quantum degeneracies. The clusters
in our model consisting of attached cubical boxes in the
lattice have degeneracies also. Even for moderate sized

FIG. 11. The same as Fig. 10, but the curves are obtained
by using the temperature 6tted from experimental data.

clusters these degeneracies require considerable efFort to
enumerate analytically. Nonetheless, many features seen
in experiments are common in both models. For example,
in the thermodynamic model, nz, n2, and n3 vary with
temperature but in a way that T ~ n2/(nq) remains con-
stant. Here we have neglected the binding energy of the
dimer with respect to kT. Constancy for this ratio is ob-
tained in our present model also. Similarly nuns/(n2)
is a constant in both models. The so-called coalescence

gS— gs-
relation "&, ' (2p) oc [ "&, ' (p)]2 is obeyed in both models.
Thus rather reasonable features emerge when the model
is extrapolated to the high temperature side.

IX. SUMMARY

We have presented a model that has links with both
mean field aspects and fragmentation of nuclei. We stud-
ied the equation of state under difFerent approximations.
The model shows a liquid-gas type phase transition. We
also studied the nuclear fragmentation and discussed the
critical exponents near the critical or percolation points.
Some comparisons with experimental data were made.

The purpose of this paper was to present the essentials
of this model. The issues we addressed here are far from
exclusive. Many other features may be further explored.
The present model, we believe, is one step forward from
the percolation model which was proved to be helpful for
the analysis of experimental data.
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