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Existence of intrinsic reflection asymmetry at low spin in odd and odd-odd mass
nuclei in the Pm/Eu region
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The low-spin features of odd-mass nuclei in the Z 62, N 90 region, for which stable octupole
deformation has been previously suggested, are studied without introducing the static intrinsic
reflection asymmetry (SIRA). Calculations using a Woods-Saxon potential and taking into account
the Coriolis mixing show that most properties can be described in this approximation. Furthermore,
the calculated polarization energies of octupole-driving orbitals are not large enough to support the
existence of SIRA at low spin in this region.

PACS number(s): 21.60.Ev, 2?.70.+q

I. INTRODUCTION

The structure of odd and odd-odd nuclei with Z 62
and N 90 has attracted great interest recently, mainly
in connection with the possibility of static intrinsic re-
flection asymmetry (SIRA) [1—3]. Important evidence
for this phenomenon is the presence of parity doublets
(PD's) [4,5]. In odd-A and odd-odd lanthanide nuclei,
PD's have been suggested in ~s~Pm [1,2,6,7], ~ssEu

[3,8—10], Sm [11],and Gd [11].However, the recent
calculations [12] of nuclear ground-state masses and de-
formations (Fig. 1) performed through wide regions of
nuclei do not reveal the existence of stable odd-multipole
deformations (further octupole) in the ground states of
these nuclei. Similar results have been obtained in other
calculations [13] restricted to even-even nuclei, but ap-
plied also at I g 0. Thus, there appears to be an incon-
sistency between calculations and experiment. The ques-
tion is then whether too far-reaching conclusions have
been drawn from the experimental data or if there is
some important error or some important ingredient miss-

ing in the calculations. Let us point out that for a more
complete description, a model starting from either no oc-
tupole deformation [14,15] or static octupole deformation

[5] should only be considered as a basis. With appropri-
ate coupling terms, intermediate situations can be de-
scribed in both cases. Then, the important question is,
however, which basis states are most convenient in the
sense that they have as large overlap as possible with the
more complete solutions.

In the present paper, we will discuss some features re-
lated to this question. We will thus investigate if the
polarization energy of the odd particle may make spe-
cial configurations of odd nuclei in this region octupole
deformed, even though the even nuclei appear stable to-
wards octupole deformation (Sec. II). Furthermore, we
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will investigate if properties which have been taken as
evidence for octupole deformation could also be under-
stood assuming Ps ——0, namely, decoupling parameters
(Sec. III), magnetic moments (Sec. IV), and splittings
between "parity doublets" (Sec. V).

II. POLARIZATION EFFECTS DUE TO THE
PRESENCE OF UNPAIRED NUCLEONS

Taking into account that the even core is not octupole
deformed [see, for example, Fig. 15(b) in Ref. [4] and
Ref. [13]], the odd or odd-odd nuclei can get octupole
deformed only in the case when unpaired nucleons in
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FIG. 1. The nuclei of the Z=55—64, N =84—94 region
for which the existence of stable octupole deformation fol-
lows from equilibrium deformation calculations [12,13] (solid
squares and circles, open triangles) or was suggested based
on experimental spectroscopic data (open circles) (see refer-
ences in [1]). The diff'erent symbols are used for marking of
nuclei for which calculations show the existence of P3 g 0 at
the ground state (solid squares), both for ground state and
high spins (open triangles) and only for high spins (solid cir-
cles). The calculation of high-spin equilibrium deformations
was performed only for even-even nuclei [13].
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specific Nilsson orbitals polarize the shape towards oc-
tupole deformation. It is well known that a quasipar-
ticle in a specific Nilsson orbital polarizes the nuclear
shapes in such a way that this orbital comes closer to the
Fermi level. The driving force can be calculated as pro-
portional to the slope of the quasiparticle energy when
drawn versus the relevant deformation parameter [4]. In
the case when the driving forces for some orbitals are
strong enough to stabilize octupole deformed shapes, we
can expect coexistence of SIRA and static intrinsic reHec-
tion symmetry (SIRS) shapes in one nucleus since there
should be other orbitals which counteract octupole de-
formation. This situation. is observed in octupole tran-
sitional nuclei in the actinide region [16]. If the core is
octupole soft, then one would expect that a polarization
energy around 1 MeV could strongly inhuence the spec-
troscopy of odd and, especially, odd-odd nuclei and even
induce visible reBection asymmetric deformation in the
intrinsic frame.

The tendency towards maximal octupole coupling oc-
curs just above the closed shells, where the (K, I., j) in-
truder orbitals interact with the (N —1, 8 —3,j —3)
normal-parity orbitals through the octupole component
in the nuclear Hamiltonian [17]. The strongest shell
corrections driving towards Ps g 0 are present where
the Fermi surface penetrates the interaction region be-
tween the Aj = AE = 3 orbitals. At spherical shape
the strongly octupole interacting subshells, i.e. , vi&3iz-
v fy/q and m hei/q-7rds/z, are about 2 MeV apart (see Ref.
[18]). With increasing quadrupole deformation, orbitals
belonging to the unique-parity subshells approach the
normal-parity orbitals which have the same 0 (eigenvalue
of j,) quantum number. For a unique-parity state both
j and 8 are approximately good quantum numbers even
at large deformations. This is not true for normal-parity

P&
——P, (0.177P, + 0.655P4 —0.0352P,' + 0.0089),

Ps ———0.2215P4 + 0.1055Ps + 0.1476PgP4 —0.0285Pq~.

(1)

As a result, our calculations are performed along the path
minimizing the liquid-drop energy. In Fig. 2, we can see
that there are some proton and neutron orbitals which
couple strongly through the Y30 operator.

We have calculated the polarization energy of the odd
particle which in the BCS approximation simply corre-
sponds to the quasiparticle energy

E„= (e„—A) (2)

The single-particle energy is given by e„, A is the Fermi
energy, and 4 is the pairing gap. The pairing gap and
Fermi energy were calculated using the Lipkin-Nogami
method [19]. In Fig. 3, the calculated quasiparticle en-
ergies are drawn for some octupole coupled orbitals in

Eu along the same Ps path as in Fig. 2.
For Z = 63, corresponding to Eu, it is evident that

the two 0 = 5/2 states, 5/2[532] and 5/2[413], are close
to the Fermi level for small Ps and that they slope slightly

states which are strongly mixed by the quadrupole inter-
action. Due to this fragmentation the simple picture of
two interacting j shells is no longer valid and as a con-
sequence all the states of normal parity with the same
0 values are coupled by the octupole interaction. The
single-particle orbitals closest to the Fermi level for pro-
tons and neutrons as functions of octupole deformation
P3 at the Pq, P4 de formations corresponding to Eu
and Sm nuclei, respectively, are presented in Fig. 2.
The higher order deformations Ps, Ps were taken as the
following functions of Pq, Ps, and P4 [13]:
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P ROTONS $2=0.252, $4=0.084 FIG. 2. Single-proton and
single-neutron orbitals of the
deformed Woods-Saxon poten-
tial drawn as functions of oc-
tupole deformation Ps calcu-
lated with "universal param-
eters" for Eu (Z = 63)
and Sm (% = 91), respec-
tively. The quadrupole and
hexadecapole deformation pa-
rameters are chosen according
to Ref. [12]. Negative-parity or-
bitals are indicated by dashed
lines, positive-parity orbitals by
solid lines. Calculated Fermi
energies are displayed by dot-
ted lines. Single-particle lev-
els are labeled by the dominant
components of wave function at
Ps = 0. Some orbitals which
couple strongly through the Y30
operators are connected by ar-
rows.
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FIG. 3. Polarization energy, calculated as the quasiparticle
energy, for Eu (Z = 63) with the odd particle in difFer-
ent orbitals labeled by their asymptotic quantum number for
P3——0. The octupole-driving orbitals are indicated by dashed
lines.

away Rom the Fermi level with increasing octupole de-
formation, Ps. Thus, the polarization energy will become
negative, striving to make the 5/2 states reflection sym-
metric. Similar results are found in odd-proton Eu
and Pm nuclei. However, some proton orbitals, for ex-
ample, those with dominant components of 1/2[411] and
1/2[420] at Ps ——0, strive to polarize the nucleus towards
stable octupole deformation.

The energy gain at Ps ——0.15 due to the polarization
energy is presented in Table I for all octupole-driving or-
bitals. For these orbitals, the quasiparticle energy is close
to a linear function in Ps, and so it is easy to estimate the
energy gain for other values of Ps. For example, we can
conclude that there are not any orbitals which for a typ-
ical value of octupole deformation in the actinide region,

Orbitals
1/2 [411]
1/2[420]
1/2[541]
7/2[523]
3/2[541]

Odd-proton nuclei
p 53E F

0.61
1.01
0.46

0.69
0.76 0.62

0.47
0.24
0.27

0.16

Odd-neutron nuclei
Orbitals Sm Gd
1/2[530] 0.74
1/2[521] 0.42 0.44
1/2[541] — 0.33
1/2[660] — 0.60
7/2[523] 0.32
7/2 [633] 0.31 0.34
3/2[651] 0.21

TABLE I. Octupole-driving orbitals and their polarization
energies, E~ & (MeV), defined as the energy gain due to the
odd particle at Pq ——0.15 relative to Pq = 0. Orbitals with
Ep i ( 0.2 MeV are not shown.

Ps ——0.10, give an energy gain larger than 0.6 MeV. As
a result, added to an "even-even" energy surface without
octupole minima, it is clear that these orbitals can only
polarize the nucleus towards more pronounced octupole
softness, but cannot create the deep minima which are
necessary to form stable octupole deformed shapes.

Even though no SIRA shapes are formed, the repul-
sive character of two orbitals with equal 0, but difFerent
parities at Ps ——0, points to the possibility of dynamical
octupole correlations. For example, the two pairs of pro-
ton orbitals (1/2[420],1/2[550]) and (1/2[411],1/2[541]),
which are seen to repel each other in Fig. 2, are strongly
octupole correlated in the case of SIRS according to the
quasiparticle-phonon model [20].

In our simple model, the total polarization energy of
unpaired particles in specific two-particle configurations
in odd-odd nuclei will be the sum of the proton and neu-
tron quasiparticle energies. The polarization energy for
all experimentally assigned low-lying two-quasiparticle
states, based on proton orbitals 5/2[413], 5/2[532], and
3/2[411], for odd-odd nuclei in this region is small, since
not only are SIRS shapes energetically favorable for these
proton orbitals, but also the polarization energy of neu-
tron orbitals is small. As a result, the presence of SIRA
shapes in experimentally observed states of odd-odd nu-
clei appears questionable.

For the nuclei considered here, the suggestion of SIRA
is mainly based on spectroscopic data. Therefore, we
will now compare such data with calculations using the
Woods-Saxon potential. The P2 and P4 deformation pa-
rameters for all nuclei under study are taken from Ref.
[12].

III. DECOUPLING PARAMETERS OF THE
K = 1/2+ BANDS

In the picture of the SIRA, the K = 1/2+ PD bands
are expected [5,21] to have decoupling parameters of
equal magnitude but opposite sign. In Refs. [2,3,11] the
decoupling parameters of K = 1/2+ bands calculated
in the Nilsson potential were compared with experimen-
tal ones. It was argued that this comparison revealed
the approach of those values to the hybridized values ex-
pected for octupole shape. Based on similar arguments,
the following PD's have been proposed in A = 150—155
nuclei: 7r(1/2[420], l/2[550]) and m(1/2[411], 1/2[541]) in
odd-proton nuclei is Pm, s ' Eu; v(1/2[530], 1/2[440])
and v(l/2[521], 1/2[660]) in odd-neutron nuclei Sm,

Gd. However, the experimental values of the de-
coupling parameters can be extracted only in a few
cases (see Tables II, III), and from this point of view
the assignments of pairs of Nilsson orbitals as mem-
bers of PD's seem to be very speculative in most cases.
Such assignments are relatively well founded only for
two proposed PD's: a(1/2[420], 1/2[550]) in Eu and
v(1/2[400], l/2[530]) in Gd.

Our calculations of decoupling parameters for these
orbitals using the Woods-Saxon potential and account-
ing for hexadecapole deformation (see Tables II, III), but
no octupole deformation, reveal that the discrepancy be-
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TABLE II. Experimental and theoretical decoupling parameters a in Pm, Eu, and Eu.
Experimental values of decouping parameters are taken from [20]. Theoretical values of decoupling
parameters are calculated using the Woods-Saxon potential with deformation parameters taken
from [12]. For comparison, theoretical values of decoupling parameters calculated using modified
oscillator (MO) potential [20] are presented.

Conf.

1/2[420]
1/2[55O]
1/2 [411]
1/2[541]

MO
0.94
-5.56
-0.76
2.71

151p

WS
1.18
-4.80
-0.26
1.21

Expt.
1.21(7)

-0.54(2)

MO
0.75
-5.56
-0.66
2.21

153E

WS
1.20
-4.96
-0.42
1.36

Expt.
1.44(2)

MO
0.76
-5.50
-0.66
2.07

155E

WS
1.20
-4.74
-0.24
1.43

Expt.
2.24(15)
-1.79(32)
-1.oo(33)

tween theory and experiment is relatively small. It is only
in the case of the pair m (1/2[420], 1/2[550]) in Eu that
the discrepancy between theory and experiment is large.
This pair has decoupling parameters of approximately
equal magnitude but opposite sign which SIRA can ex-
plain. One should note, however, that the assignment of
this pair as a PD is not consistent with the calculation
of the polarization energy.

IV. MAGNETIC MOMENTS OF "PARITY
DOUBLET" STATES

One of the consequences of the rigid SIRA is that the
magnetic moments of PD bandheads with opposite pari-
ties are predicted to be identical and approximately the
hybridized mean of the values calculated from the reflec-
tion symmetric Nilsson orbitals [5,23]. For example, the
hybridized magnetic moment, assumed (s, ) = 0, of PD
states with K = 5/2 in odd-proton nuclei under study
should be equal to 2.08. The fact that the magnetic mo-
ments of the 5/2[413] and 5/2[532] bandheads in odd-
proton Pm, ' Eu differ from the Nilsson values in
the direction of the hybridized mean has been taken as
evidence for SIRA in Refs. [2,3].

However, these values of magnetic moments calculated
in the Nilsson or Woods-Saxon models cannot be taken
as a reliable indicator since they do not take into ac-
count the influence of different types of mixing, mainly

TABLE III. Experimental and theoretical decoupling pa-
rameters a in Sm and Gd. Experimental values of de-
coupling parameters are taken from [22]. Theoretical values of
decoupling parameters are calculated using the Woods-Saxon
potential with deformation parameters taken from [12].

Configuration

1/2 [400]
1/2 [530]
1/2[521]
1/2[660]

153S
at, h(WS)

0.13
-0.48
0.24
0.75

aexpt

(-0.05)
(o.33)

155Gd

a,h(WS)
0.16
-0.41
0.35
0.98

aexpt
0.23

-0.47
0.35

The confidence of this value is low since the spin value of
this band was defined as preliminary.
This value is derived using the 422 keV 1/2 level in Gd as

the K = 1/2 bandhead [22]. The alternative choice is the
451 keV 1/2 level as this bandhead which yields a = —1.02.

the Coriolis interaction. Therefore, it is not surprising
that such calculations of magnetic moments within these
models [24,25] do not reproduce the experimental values
for these nuclei with good accuracy.

Admixtures of vibrational states to low-lying states
should be relatively small, and so we can consider the
rotor+particle coupling (RPC) model [26] as a suitable
tool for the calculation of magnetic moments. The re-
sults of our calculations are presented in Table IV. Since
different authors used different values of the polarization
charge x for the spin gyromagnetic factors g, = xg,'
with values varying from x = 0.6 [24,25] up to x = 0.7
[27], calculations were performed for these two limiting
values. The Coriolis interaction was attenuated in some
cases as specified in the table. The energies of the rota-

TABLE IV. Magnetic moments of the different states in
the nuclei under study, calculated within the rotor+particle
coupling model [26]. Experimental values are taken from Ref.
[28]. The calculations are performed for the following combi-
nations of the attenuation factor of Coriolis interaction, y,
and the polarization charge for spin gyromagnetic factors,
x:A:y=q, x=0.6;B:y=q, x=0.7;C:y= 0.0,
x = 0.6; D: y = 0.0, x = 0.7, where q = 1.0 for positive-parity
states of odd-proton nuclei, q = 0.65 for negative-parity states
of odd-proton nuclei, and q = 1.0 for positive- and nega-
tive-parity states of odd-neutron nuclei.

Nuclei State
5/2+5/2[413]

151p

153E

5/2-5/2[532]
3/2+3/2[411]
5/2 5/2[413]
7/2+5/2[413]
3/2+3/2[411]
5/2 5/2[532]

155E

153S

155Gd

5/2+5/2[413]
5/2 5/2 [532]
3/2+(3/2[651]

+3/2 [4O2])
3/2 3/2[521]
5/2+ (3/2 [651]

+3/2 [402])

Expt.
1.8(2)

1.29(3)
2.2O(14)
1.77(24)
1.555 (42)
1.81(6)

2.048(6)
3.22(23) or
-0.52(23)
1.56(10)
2.49(27)

-0.0216(1)

-0.2591(5)
-0.533(4)

A B C D
1.84 1.86 1.46 1.32

2.95
1.74
1.50
1.90
1.78
3.06

3.12
1.87
1.35
1.78
1.92
3.22

2.72
1.67
1.44
1.76
1.70
2.72

2.88
1.80
1.29
1.64
1.83
2.87

1.48
2.90

1.32
3.07

1.42
2.73

1.27
2.89

-0.36 -0.42 -0.14 -0.21

-0.24 -0.30
-0.60 -0.69

-0.018 -0.15
0 ~ 50 0.46

The values determined experimentally in Ref. [6] and their
apparent accuracies are strongly dependent on the choices of
Qp and gR.
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tional bands were not fitted.
As follows from Table IV, the RPC model with the

Woods-Saxon potential is able to reproduce the exper-
imental values of magnetic moments assuming x 0.6
without introducing the SIRA idea.

0 = 5/2 [E(I ) —E(I+) 100 keV], since all proton or-
bitals with 0=5/2 have

~
(m)

~

) 0.45. That is also true
for the odd-proton ' Eu nuclei.

VI. CONCLUSIONS

V. ENERGY SPLITTING BETWEEN 5/2[413]
AND 5/2[532] BANDHEADS IN ODD-PROTON

NUCLEI
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The diagonal matrix elements of single-particle oper-
ator 7r determine the energy splitting E(I ) —E(I+)
within a parity doublet of the odd-mass system in the
strong coupling limit [23]. The magnitude of the odd-A
parity splitting in the strong coupling limit is always less
than or equal to that of the core. The odd-A parity split-
ting ranges from zero for an equal admixture of parities
in the single-particle state to the full core value, E(0 ),
for a single-particle state of good parity. The expecta-
tion values of the matrix elements of the single-particle
parity operator for orbitals near the Fermi level of Pm
as functions of octupole deformation Ps are displayed in
Fig. 4. While the core parity splitting energy in octupole
transitional nuclei of the actinide region is approximately
equal to 400 keV, the observed value is around 750 keV
for even-even nuclei in the Ba/Sm region [18]. Assuming
this large value, we cannot reproduce the observed value
of parity splitting in the proposed ground-state PD s with

As a result of this investigation we can conclude that
low-spin features, such as the magnetic moments of low-
lying states and decoupling parameters of the K = 1/2
rotational bands of odd-proton nuclei Pm, ' Eu
and odd-neutron nuclei Sm, Gd, previously sug-
gested as octupole deformed, can be explained without
introducing the idea of static intrinsic reHection asym-
metry in essentially all cases. This result agrees with
calculations of polarization energies of octupole-driving
orbitals, since there are not any octupole-driving orbitals
for which the polarization energy is suKcient for stabi-
lization of octupole deformed shapes. In a similar way,
the calculation of polarization energies of unpaired nucle-
ons in two-quasiparticle states of odd-odd 'i O' Eu
nuclei do not support the existence of SIRA shapes for
experimentally observed states.

In this description, the small energy splitting between
the levels of diB'erent bands with equal K but opposite
parity has then to be explained as an accidental near de-
generacy of the two Nilsson orbitals. The enhanced E1
(AK = 0) transitions between the levels of ground-state
bands and their counterparts with equal K can be un-
derstood, for example, within the quasiparticle-phonon
nuclear model and nonadiabatic rotational model treat-
ment of Ref. [29] in terms of added contributions from the
even-even core. These calculations show that this model
can explain enhanced El transitions in the odd-proton
nuclei ' Eu using a reflection symmetric mean field.

Another interesting feature that is outside the scope
of the present investigation is the inversion of odd-even
staggering of nuclear charge radii. Such inversion is seen
in the Eu isotopic chain with A = 152—155 [8,22,30].
There is some experimental evidence that such inversion
takes place exactly in those nuclei for which reflection
asymmetric shapes were theoretically predicted and sup-
ported also by spectroscopy results in Ra/Th and Ba/Sm
regions [31].However, it is not clear at present if this phe-
nomenon can be taken as direct evidence for SIRA or can
be explained without invoking the SIRA idea.

Taking into account all features discussed above, we
believe that static intrinsic reflection asymmetry at low
spin does not exist in the Z 62 and N 90 rare-
earth region. On the other hand, we have not considered
the possibility of dynamic intrinsic reflection asymmetry
which according to Refs. [20,32,33] is an important fea-
ture of these nuclei.

FIG. 4. The expectation value of the matrix elements of the
single-particle parity operator (n) for orbitals near the Fermi
level of Pm, drawn as functions of octupole deformation
P3 . Solid lines are used for orbitals with 0 = 5/2& dashed
lines for 0 = 3/2, dotted lines for 0 = 7/2, and dot-dashed
lines for 0 = 1/2. Asymptotic quantum numbers, relevant at
Ps ——0, are given to the right in the figure.
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