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Self-weakening of the tensor interaction in a nucleus
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We examine several "landmarks" for the e8'ects of the tensor interaction on the properties of light
nuclei. These were usually discussed in the context of small-space shell-model calculations. We show,
using G matrices derived from a realistic nucleon-nucleon potential, that when the model space is
small (e.g. , Ohw), these eKects are overestimated, indicating that the tensor interaction is too strong.
However, when larger spaces are used, there is a diminishing of these effects, which, in general, leads
to better agreement with experiment.

PACS number(s): 21.30.+y, 21.60.Cs, 21.10.Ky

I. INTRODUCTION

The tensor interaction in a nucleus is a rather elusive
beast. There are no first-order contributions to the bind-
ing energy of a closed LS nucleus like He, 0, or Ca
due to the tensor interaction. Likewise, there are no first-
order contributions to the single-particle energies for a
closed LS shell plus or minus one nucleon. There are
however, important second-order contributions.

To see the effects of the tensor interaction in first or-
der, the simplest thing to do is to go to systems with t~o
quasiparticles. To this end, we will consider the follow-
ing cases: (a) 1p-1h (one-particle —one-hole) system: the
J =0, T=O, and T=1 states in i 0, (b) 2h system: the
beta decay of C to N, and (c) 2p system: the E2 and
M1 moments of Li. For these cases we perform shell-
model calculations first in a small space (Ohio) and then
in larger spaces in which 2hw and sometimes even higher
excitations are included.

We employ Brueckner reaction matrices G [1] calcu-
lated according to

tion in Eq. (2) for the starting energy. Note that such a
state-dependent choice for E, leads to a non-Hermitian
G matrix but the non-Hermiticity is found to be small,
and we here use an average of G and its Hermitian conju-
gate, 2 (G+ Gt), as our efFective interaction v'+. For all
the nuclei under consideration, we fix the basis parame-
ter hw at 14 MeV and the starting-energy parameter A
at —50 MeV.

The Pauli operator Q in Eq. (1) is defined to prevent
the two nucleons from scattering into the intermediate
states which are either occupied (therefore Pauli forbid-
den) or inside the model space (to avoid double counting).
It is therefore related to the choice of the model space.
As we increase the size of the model space, we enlarge
the Q=O region to avoid double counting. We show in
Fig. 1, as an example, our definition of Q which is used

N1

G(Es) V12 + v12 i ~ vi21
s ( 1+ 2+ V12)

using the method introduced in Ref. [2]. In the above
equation, v is the bare %N potential for which we adopt
a new Nijmegen local NK interaction (NijmII) [3]; h =
t+ u is the one-body Hamiltonian with u chosen to be the
harmonic-oscillator (HO) potential u(r) = zmw r; E,
is the starting energy, which, for an initial two-particle
state ]12) in the ladder diagrams, is taken to be

Es = &1+&2++~

where e's are the HO single-particle energies,
8 N2

thus (ei + e2) is the unperturbed energy of the initial
two-particle state ~12) in the ladder diagrams. The pa-
rameter 4 in Eq. (2) can be thought of as the interaction
energy between the two particles. The reader is referred
to Ref. [4] for a partial justification for using the prescrip-

FIG. 1. The Pauli operator Q for a full 3hw calcula-
tion of 0 in a model space consisting of five major shells
(s+p+sd+pf+sdg) Q=O for Ni + N. z & 5 or Nq & 1 or
N2 ( 1. Here N, = 2n, + l, is the principal quantum number
for the harmonic oscillator single-particle state i). It is 0 for
the lowest major shell (Os) and 1 for the Op major shell, etc.
The wings extend out to include the ninth (N=8) major shell.
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to calculate the G matrix for a full 3hw-space calculation
of O. We cut off the "wings" at the edge of the %=8
major shell. We emphasize that in this work we have
used difFerent definitions of Q for different model spaces
and/or nuclei.

The matrix diagonalization is performed for the shell-
model Hamiltonian

A A

HsM = ) t, —T, +) v,, +A(H, —zh~),
i=1 i(j

(4)

where T, is the center-of-mass (c.m. ) kinetic energy
and the last term (with A )) 1) is added to remove the
spurious effects of the c.m. motion from the low-lying
states. We have not included the Coulomb interaction.
It should be pointed out that our calculations involve no
phenomenological single-particle energies. These are im-
plicitly generated from the two-body G matrix elements
as well as the one-body kinetic energy in the matrix di-
agonalization.

II. THE 1p-1h CASE: ISOSPIN SPLITTING
OF J =0 STATES IN ~80

the Op shell to the 18-Od shell. The splitting AE changes
from 2.809 MeV to 2.678 MeV; see Table I.

However, when 3hu 2p-2h admixtures [i.e. ,

(Os) (Op) (ls0d) and (Op) (lsOd) (1pOf) i] are in-
troduced, the situation improves dramatically: LE goes
down to 1.641 MeV. This number is in better agree-
ment with experiment, but we have an overshoot. When
we furthermore include 3hcu 1p-1h configurations [i.e.,

(Os) i(lp)i and (Op) i(2sld0g) ] to make our model
space complete for a full (1+3)her calculation, the split-
ting becomes 1.931 MeV, in very good agreement with
experiment.

This is one example of the "self-weakening" mechanism
for the effective tensor interaction. The 2p-2h diagrams
which contribute to AE in second-order perturbation
theory are shown in Fig. 2. We classify them as particle-
hole (or bubble) [Fig. 2(a)], hole-hole [Fig. 2(b)], and
particle-particle [Fig. 2(c)] diagrams. In order to show
how different parts of the interaction contribute to the
isospin splitting AE, we present the perturbation-theory
results in Table II for a schematic interaction which was
introduced in Ref. [8] for an easy control of the strengths
of the spin-orbit and tensor interactions:

V = V. + xV. + yV, ,

We previously considered in some detail the isospin
splitting of J =0 states in 0 [5]. We will here take
the opportunity to discuss a few points. It was shown by
Blomquist and Molinari [6] and Millener and Kurath [7]
that without the tensor interaction, the energy difference
LE between the J =0&, T=l and J =0&, T=O states
in 0 would be very small. Experimentally, the J"=0~,
T=O state is at 10.952 MeV and the J =0~, T=1 is at
12.797 MeV so that the value of LE is 1.845 MeV. The
results for LE using various model spaces, using the G
matrices derived from the NijmII potential, are given in
Table I.

In the 1h,~ 1p-1h space, in which the dominant con-
figuration is (1siy20pi~2)

= with small admixture of

(Odsy20psy2) =, the value of EE is too large, i.e.,
2.809 MeV as compared to the experimental value of
1.845 MeV. The situation is not improved much when
3h,~ 3p-3h configurations are included in the matrix di-
agonalization, i.e. , when, besides the 1hw 1p-1h already
there, we allow two additional nucleons to be excited from

where c=central, s.o.=spin-orbit, t=tensor. For x=1 and
y=1, the matrix elements of this interaction approxi-
mately resemble G matrix elements derived from a real-
istic NK potential like Bonn A [9]. By setting z=O (1),
we switch the spin-orbit interaction off (on); by setting
y=0 (1), we switch the tensor interaction off (on).

As noted in Ref. [5], the particle-hole diagram
[Fig. 2(a)] is the most important for getting a large, neg-
ative contribution for AE, but this only occurs when the
tensor interaction is turned on. Prom Table II, we also
note that the particle-particle and hole-hole diagrams are
of the same sign and they act against the particle-hole di-
agrams. For x=1 and y=1, whereas the particle-hole dia-
grams contribute an amount of —1.728 MeV to the split-
ting AE, the particle-particle and hole-hole diagrams to-
gether give a contribution of +0.901 MeV, leading to a
net result of AE= —0.826 MeV.

We wish to note, and this point has not been made
before, that for the particle-hole diagrams of Fig. 2(a),
the most important contribution comes from the case in

TABLE I. The isospin splitting AE of the lowest 0 states in 0 obtained from shell-model
diagonalizations in various model spaces. The binding energy (Es) for the ground state and the
excitation energy for the Oi T states (T is the isospin) are also listed. The Coulomb interaction
is not included. (The experimental binding energy listed in the table is Coulomb corrected. ) All
energies are in MeV.

0+: Oh+
0+: (0+ 2)h~
0+: (0+ 2)h~

0+: (0+ 2)h(u

Model space

0: 1h(u 1p-1h0: 1h(u 1p-1h + 3hu 3p-3h0: 1hw 1p-1h + 3hcu 3p-3h
+ 3h(u 2p-2h0: Full (1+3)h(u

Experiment

118.933
114.404

124.692
124.692

142

@(0;,0)

15.943
17.747

15.946
15.646
10.952

Z(0;, 1)
~

18.752
20.425

17.587
17.577
12.797

2.809
2.678

1.641
1.931
1.845
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FIG. 2. The 2p-2h admixtures to the 1p-1h configuration:
(a) particle-hole (bubble) diagrams, (b) hole-hole diagram,
and (c) particle-particle diagram.

For the t=even, T=O, and S=l channel ("deuteron chan-
nel"), V is proportional to (W+ M+ H+ B) which is —1
by convention. For the i=odd, T=O, and S=O channel,
V is proportional to X = W —M+ H —B. It was found
that LE is very sensitive to X. As X increases, the
energy of the J =0, T=O state increases linearly, and
the energy of the J =0, T=1 state decreases linearly.
These two states become degenerate when X is about
0.75. For a larger X, one gets the erroneous result that
the T=1 state comes below the T=O state. This is the
case for the Rosenfeld interaction (X = 1.8) which has a
strong p-wave repulsion. Therefore, if the central interac-
tion in nature were close to a Rosenfeld interaction, one
would need a strong tensor interaction as a corrective
to invert the order of the T=O and T=l states. How-
ever, the Rosenfeld interaction was rejected on the basis
of neutron-proton scattering data. At intermediate en-
ergies, the Rosenfeld interaction leads to a much larger
dilferential cross section at 180' (in the center-of-mass
frame) than at zero degree. Experimentally the two are
nearly equal. So the data go more in the direction of a
Serber interaction (for which X' = 0) where the p-wave
interaction vanishes.

We see from the above discussion that if one were al-
lowed to adjust the exchange mixture at will, one would
be able to obtain the experimental isospin splitting even
with a strong tensor force. So it is vital to use realistic
interactions before one can make quantitative, or even
qualitative, statements about the role of the tensor in-
teraction in a nucleus.

which the lower vertex involves a central interaction and
the upper vertex involves a tensor interaction. Indeed,
when the PH in Fig. 2(a) is equal to (ls)(0s), the
lower vertex cannot involve a tensor interaction at all
because the matrix element for the lower vertex involves
only /=0 orbits. Thus Fig. 2(a) is approximately linear
in the strength of the tensor interaction, and it tends to
act against the first-order 1p-1h tensor interaction.

It should not be construed as a theorem that for any
central, spin-dependent, interaction, the isospin splitting
LE is small. Indeed, there is considerable discussion of
this splitting in the classic paper by Elliott and Flowers
[10]. The authors considered a central interaction of the
following form:

III. THE A.=14 SYSTEM (2 HOLES):
ALLOWED BUT INHIBITED BETA DECAY

Another landmark example of the effects of the tensor
interaction in a nucleus is the famous A=14 beta decay:

C(J = 0+ T = 1) ~ N(J = 1+ T = 0). The quan-
tum numbers involved in this transition are just right for
an allowed Gamow-Teller (GT) transition, but the tran-
sition is very strongly suppressed. The matrix element
B(GT) is essentially zero.

For the two holes in the Op shell, the wave functions
of the initial and final states in the LS coupling can be
written as [8]

V = Vp(W + MP —HP + BP ) ria It was shown by Inglis [11] (see also Ref. [12]) that it is im-

TABLE II. The contributions (in Mev) of the two-particle, two-hole perturbation-theory dia-
grams of Fig.2 to the isospin splitting of the lowest J = 0 states in O.

Interaction Diagram

Spin-orbit
Off
On
Off
On

Tensor
Off
Off
On
On

Particle-Hole
0.012
-0.024
-1.739
-1.728

Particle-Particle
0.252
0.249
0.639
0.593

Hole-Hole
0.049
0.057
0.385
0.308

Total
0.312
0.282
-0.714
-0.826
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possible to get B(GT)=0 with the above wave functions
unless there is a tensor interaction present. Since the GT
operator g o„(i)t+(i) cannot change the orbital angular
momentum, one way (but not the only way) of getting
B(GT)=0 would be to have gy =

~
Di). In general, the

GT amplitude is [B(GT) = ~A(GT)
~ ]

(8)

The fact that the one-body spin-orbit force for holes is
minus that for particles (whereas the hole-hole two-body
interaction is equal to the particle-particle two-body in-
teraction) leads to a large admixture of

~
Di) in the

J =1+ ground state of N.
Are higher-shell effects important here? To answer this

question, we give in Table III the results for B(GT) along
with a few other observables, obtained in the Ohu and
2hio calculations using the Nijmll [3) G matrices. [As we
mentioned in Sec. I, when going from the Oh~ space to
the 2hcu space, we have modified the Pauli operator Q
in the G matrix equation (1) to exclude the model-space
states from the intermediate spectrum. ] As a contrast we
also show in Table III our results for a one-hole system
(A=15) for which there is much less sensitivity to the
2h~ configuration mixing.

The results in Table III for B(GT) require some ex-
planation. The value of B(GT) for A=14 that we obtain
in the Ohu calculation is 3.967, much larger than zero.
However, in terms of the tenso'r interact'ion, this means
that we have an overshoot As discu.ssed in Ref. [8], the
amplitude A(GT) is large in magnitude when there is
no tensor force. As we turn on the tensor interaction
and gradually increase its strength, A(GT) decreases in
magnitude, goes through zero and changes sign. This
happens well before we come to the full tensor strength.
When we further strengthen the tensor interaction to-
wards the full scale, A(GT) becomes large in magnitude
again. Therefore, the large result obtained for B(GT) in
the Ohu space again indicates that the tensor interaction
is too strong.

When we go from the Ohw space to the full 2h~ space,

the value of B(GT) decreases by about 55'%%uo from 3.967
to 1.795. This latter value is still far from satisfactory,
but it is much closer to the experimental answer of nearly
zero.

It should be pointed out that, unlike the example of the
isospin splitting between J =0 states in 0 which we
discussed in Sec. II, in the present case of the A=14 beta
decay, the spin-orbit interaction also plays an important
role. An alternate way of getting B(GT)=0 is to keep
the tensor interaction at its full strength but increase
the strength of the spin-orbit interaction. However, in
a previous work [5], we have seen that the higher-shell
effects do not have a significant effect on the spin-orbit
interaction as they do on the tensor interaction.

The higher-shell admixtures also have a large effect
on the magnetic dipole (Ml) moment p of the ground
state (1 =1+, T=O) in N, which is 0.768@iv in the Ohio

calculation and 0.554@~ in the 2hu calculation. These
values are obtained using the bare g factors: gi(p)=1,
gi (n) =0, g, (p) =5.586, g, (n) =—3.826. The experimental
result is 0.404piv [13,14].

For the 4=15 system, we note that the higher-shell
admixtures do not have a significant effect on B(GT).
We can understand this from the theorem which says
that there are no first-order corrections to B(GT), or
to the Ml moment for a system consisting of a closed
LS shell plus or minus one nucleon. For the two-hole
system, on the other hand, the higher-shell effects can,
in part, renormalize the particle-particle (or hole-hole)
interaction between the two quasiparticles.

IV. THE A.=6 SYSTEM (2 PARTICLES): THE
MAGNETIC DIPOLE MOMENT AND ELECTRIC

QUADRUPOLE MOMENTS OF sLi

One more landmark signature of the tensor interac-
tion, although one that is somehow not recognized by
many people, is the fact that the electric quadrupole
(E2) moment of the ground state in sI i is negative. To
show this, we again use the schematic interaction previ-
ously described. With the bare values of e„=1and e =0,

TABLE III. Properties of 4=14 and A=15 nuclei from the Ohw-space and 2hu-space shell-model
matrix diagonalizations. In the Table, we also give the binding energy E&(J,T) for the ground
state and the excitation energy E (J,T) for the excited state involved. Bare electromagnetic
operators are used.

14

Observable

B(GT)(0+ 1 m 1+ 0)
B(M1)(0+ 1 m 1+ 0) (y~)

V(1' o) (~~)
Q(1+ 0) (e fm')

E~(1+,0) (MeV)
E (0+, 1) (MeV)

B(GT)( ' —+ -' )-
~("N) (s ~)
V("O) (V~)

Eis( '+, -') (MeV)-
E (-, -') (MeV)

3.967
9.737
0.768
1.236

82.928
2.142
0.333
-0.264
0.638
98.496
4.102

1.795
4.998
0.554
2.151

89.521
1.836
0.326
-0.277
0.655

104.778
5.444

Expt.

0.404
1.56

104.64
2.313
0.270
-0.283
0.719

115.476
6.324
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TABLE IV. The results for the electric quadrupole mo-
ment (in e fm ) and magnetic dipole moment (in yiv) and the
binding energy (in MeV) of the ground state in Li from Ohcu,

2hm, and 4hu shell-model calculations. Bare electromagnetic
operators are used.

Space
Oh~
2hu]
4hu

Expt.

-0.360
-0.251
-0.0085
-0.082

P
0.866
0.848
0.846
0.822

g~
26.49
27.58
30.03
31.989

the quadrupole moment Q of the J =1+ ground state of
Li assumes the following values when we fix the spin-

orbit interaction at its full strength (x=1) and vary the
strength (y) of the tensor interaction:

Q= 0.106 efm for y =0,
Q = —0.135 e fm

Q = —0.358 e fm for y = 1 .

for y = 0.5,

That is to say, when the tensor interaction is switched
ofF, the quadrupole moment is positive. As we increase
the strength of the tensor interaction, Q decreases from
being positive to being negative.

We also calculate the E2 moment Q of Li using the Ni-

jmII G matrices. The results from the shell-model diago-
nalization are shown in Table IV for three model spaces:
Ohu, 2hu, and 4hw. We also give the results for the M1
moment p obtained using again the bare g factors.

In the Ohw space, the calculated value of Q is
—0.360 e fm, which is much more negative than the ex-
perimental value of —0.082 e fm . Again, this could be
interpreted as being due to the fact that the effective
tensor interaction in this Ohw space is too strong. How-
ever, as we enlarge the model space, the magnitude of
Q comes down. In the 2hw-space calculation, the value
of Q is —0.251 efm and in the 4hw space, there is an
overshoot: we obtain —0.0085 e fm .

For the M1 moment p, the experimental value is
0.822@~. Because the ground state of Li has isospin
zero, this is an isoscalar magnetic moment. The ex-
perimental value lies between the value for the jj limit
(0.627piv) and the value for the IS limit (0.880@iv). Go-
ing from the Ohu to the 2hu space, the calculated value
of p changes from 0.866p~ to 0.848@~. We are still
above the experimental value even in the 4hw calcula-
tion. The deviation is only 0.024@iv or 2.9%. However,
for the isoscalar moments, one generally has a higher
standard than for the isovector moments. The experi-

mental isoscalar moments lie much closer to the Schmidt
limit than do the isovector ones, and they are less sensi-
tive to configuration mixing.

We feel that Li deserves further study. It is the most
elementary example of a system with two nucleons em-
bedded in a nuclear medium. The medium corrections
can be calculated to a higher precision than in heavier
nuclei.

V. ADDITIONAL H,EMAHKS

There are other approaches for dealing with light
systems such as cluster calculations for Li performed
by Lehman et al. [15], Eskandarian et al. [16], and
Schellingerhout et al. [17]. As compared to our shell-
model results, the above authors seem to get better agree-
ment for the isoscalar magnetic moment of the ground
state, but the quadrupole moment of this state comes out
positive. One can argue that the cluster approach is more
physical. On the other hand, the Brueckner shell model
is not self-limiting. With improved technology the calcu-
lations can always be extended in a systematic manner.
This does not necessarily mean that perfect agreement
with experiment will be reached since the assumption
that we can describe a nucleus solely in terms of neu-
trons and protons interacting via a two-body interaction
may not be correct. But to see this requires very high
quality calculations.

Another point to be made is that, in contrast to this
work where we claim that many anomalies in nuclear
structure relating to the tensor interaction can be ex-
plained by simply admixing higher-shell configurations,
in the realm of nucleon-nucleus scattering, there have
been many works which put forth the idea that the tensor
interaction in the nuclear medium must be considerably
modified. These include experimental analyses of Hintz
et at. [18) and Stephenson et aL [19]. They find that
the polarization anomalies in proton-nucleus scattering
can be removed by adopting the theoretical "universal
scaling" ideas of Brown and Rho [20] that all mesons ex-
cept the pion are less massive in the nuclear medium.
Our next task will be to consider the fact that we do
not seem to need medium modifications of the tensor in-
teraction for nuclear structure, but we do need them for
nucleon-nucleus scat tering.
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