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New improved expressions for the oscillator spacing ~ are derived. These expressions have the
advantage of being isospin dependent. They are obtained by employing new expressions for the
mean square radius of nuclei, which fit the experimental mean square radii and the isotopic shifts
of even-even nuclei much better than other frequently used relations. The trend of the variation of~ with the neutron excess is studied. A formula for Ru calculated in the present approach as a
function of the mass number A agrees well with ~ coming from a completely different input, i.e. ,
the separation energies of the last nucleon. Very accurate approximate asymptotic formulas for hen

are also derived, which are suitable for practical use.

PACS number(s): 21.60.Ev, 21.60.Cs, 21.10.Pc, 21.10.Dr

I. INTRODUCTION

This paper addresses an old question of nuclear
physics: the determination of the harmonic-oscillator en-
ergy level spacing ~ as a function of N and Z. This
quantity is useful in various nuclear studies.

It approximates the lowest single-particle energy level
spacing, thus giving an estimate for this quantity as well
as for its variation with the number of neutrons and pro-
tons. It represents also the average trend in the variation
of the shape of the self-consistent nucleon-nucleus poten-
tial as a function of N and Z.

There are various expressions in the literature for ~
as a function of A. The most well known expression [1,2]
is

In Sec. III the procedure of Sec. II is repeated. In-
stead of a uniform distribution, the symmetrized Fermi
(SF) density distribution [15,16] (see also [17],[18])is used
together with a new parametrization of the radius param-
eter R.

In Sec. IV approximate asymptotic expressions for ~
are given.

In Sec. V Lu is determined again, as in Secs. II and III,
but the usual corrections due to the center of mass and
finite size of the nucleons are taken into account together
with the valence nucleons. Shell efFects are observed at
the closed shells.

Finally, Sec. VI contains our main conclusions.

II. DETERMINATION OF 4u WITH A
UNIFORM DENSITY DISTRIBUTION

where f = 4( ",)(2) ~ 41 MeV (ro ——1.2 fm), which

holds for large A. Other improved expressions [3—10] have
been proposed with the aim of obtaining more satisfac-
tory expressions for lighter nuclei. The most sophisti-
cated approaches so far are those of [7] and [9,10]. In [7]
certain approximations made in other approaches were
removed and a Fermi density distribution for the nucle-
ons was used with parameters po and a determined by
fitting to experimental values of the charge mean square
(MS) radii (r ),b. In [9,10] we used the rather recently
proposed semiphenomenological density distribution [11—
13] of Gambhir and Patil based on the separation energies
of the last neutron or proton.

The aim of the present paper is to determine Lu as a
function of % and Z introducing an isospin dependence
by exploiting very accurate recent experimental data for
the isotopic shifts. The paper is organized as follows.

In Sec. II the usual method to determine ~ is briefly
outlined and a new formula for ~ as a function of N and
Z is derived, using a very recently proposed expression for
the nuclear charge radius [14]. This expression is isospin
dependent and is based on a uniform density distribution.

The average harmonic oscillator shell model square ra-
dius for nucleons is

(r2)~ = — (K+1),3
(2)

For K the following relation holds:

K(K+1)(Ky 2) = —A,3
(4)

which for A &) K gives the following approximate solu-
tion:

K'+ 1 (2A) ~ (5)

Equating the MS radii from (2) and (3) using (5), one
may obtain (as is well known) relation (1) for Ru. Here

where K is the number of the highest filled shell. Then
using a uniform distribution of radius R one finds for the
MS radius
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one uses B = Boo ——roA ~, which is the simplest known
liquid drop model formula for the nuclear radius. This
forinula, as pointed out in [14], does not lead to the ex-
periinentally known MS radii (r ),„~ or isotopic shifts
h(r ),„z and it does not describe properly the change of
the charge radius with N when the proton number Z is
kept constant.

Very recently, a new formula for the nuclear charge
radius was proposed [14], dependent on the mass number
A and neutron excess N —Z in the nucleus:

Roo —1.240A
~

1 + —0.191
~

. (6)
1.646 (N —Z) &
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where t = 1/2( —1/2) for a neutron(proton). The first
term of (8) (isoscalar term) originates from the condition
that the radius of the nucleus should be given roughly
by 1.2 Ai~ fm. The second term (isovector term) comes
&om the requirement that (r ) should have roughly the
same value for protons and neutrons. However, it was
shown in [21] that this choice of Ru does not correspond
to the right values of the MS radii and the isotopic shifts.

As a test of the new formula and for the sake of compar-
ison with other known formulas, which however depend
only on A, we remove from (7) the isospin dependence
putting N=Z and plot the resulting formula for ~ for
A up to about 60 (where N=Z is meaningful),

38.6
Ai&s(1+ 1.646/A) 2 '

as a function of A in Fig. 1 (solid line). In the same figure
the old formula (1) is also plotted (long-dashed line) to-
gether with the corresponding curve (short dashed line)
obtained using the radii obtained with the distribution
of Gambhir and Patil [11]. We recall that this semiphe-
nomenological algebraic form for the nuclear densities has

In contrast to the simple expression B = roA ~, the
above formula reproduces well all the ",xperimentally
available MS radii and the isotopic shifts -&f even-even
nuclei, much better than other &equently used relations.
This should be expected as the isotopic shifts, which are
obtained &om high precision laser spectroscopy [19],pro-
vide an extra very accurate input. In addition, they give
us the opportunity to study the effect of the isovector
component on the nuclear radius and consequently on
Ru.

As (r2) is directly connected to Ru, it is interesting to
estimate the effect that the improved expression (6) may
have on Ru. Thus, using (6) instead of R = Roo ——roA ~

and following the procedure described previously, we ob-
tain the isospin dependent formula in a straightforward
way:

38.6
A ~s[1 + 1.646/A —0.191(N —Z)/A]

This expression could be compared with another isospin
dependent expression existing in the literature, namely,
the formula suggested in [20],

FIG. 1. Oscillator spacing ~ as a function of A (without
corrections) for three cases: (1) the simple liquid drop formula
(long dashed curve), (2) formula (6) (solid curve) and (3)
using the distribution of Gambhir and Patil (short dashed
curve .

no &ee parameter and the only experimental input is the
separation energies of the last proton or neutron. It is
seen in Fig. 1 that the new formula gives values for Lu

significantly lower than the old one and also it agrees
very well with the curve coming &om the distribution
of Gambhir and Patil. It is noted that the three curves
of Fig. 1 were derived without taking into account any
corrections as described below.

III. DETERMINATION OF ~ WITH THE
SYMMETRIZED FERMI DENSITY

DISTRIBUTION

An isospin dependence of the charge radius can also be
derived using the symmetrized Fermi density distribution
[15,16]

sinh(R/a)
cosh(r/a) + cosh(R/a)

(10)

with

- —1

Po
—— 1+

The advantage over the usual Fermi distribution is that it
is more suitable for light nuclei because it has zero slope
at; the origin. In addition the expression for MS radius,

is exact and not a transcendental function of the ra-
dius A, as is the case with the Fermi distribution. We
parametrize the radius B as follows:

R = ciA ~ + c2A ~ + cs(N —Z)A

The parameters are determined by a least squares Bt-
ting of (12) to the experimental radii and isotopic shifts
of 142 even-even isotopes, in the spirit of [14]. The best
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TABLE I. The values of Ace calculated with the exact and asymptotic expressions using a uniforxn
nucleon density distribution (columns 3,4) and a symmetrized Fermi density distribution (columns
5,6). It is seen that the asymptotic expressions are quite accurate and thus they can be used in
practice.

A
180

N-Z Exact (7)
12.86

Asympt. (15)
12.66

Exact (14)
12.06

Asympt. (16)
11.58

44C 10.51 10.50 10.22 10.18

Ni 12 9.64 9.64 9.44

106Z 26 8.69 8.67 8.51 8.59

1328 8.12 8.09 7.96 8.01

208pb 44 6.96 6.94 6.85 6.87

some nuclei increasing the neutron excess. It is observed
that the asymptotic expressions are very accurate and
can be used in practice.

number of the highest filled shell. It is found that K
satisfies the equation

2

3
—K(K+ l)(K+ 2) +n = A . (18)

V. DETERMINATION OF ~ TAKING INTO
ACCOUNT CORRECTIONS AND THE

VALENCE NUCLEONS

The average harmonic oscillator shell model square ra-
dius for nucleons may be written [7]

(r')(w+. )
=

4 g (p + 1/2) N(p) + (K + 3/2)n
h p=1

4 P N(p)+n
p=1

(17)

where n is the number of valence nucleons and K the

Using (17) and taking into account the corrections due to
the center of mass and to the proton and neutron finite
size effects, we obtain

3 g' [(K+1)(A+ —,'n)+ ,'n —2]-
4 rnA [(p2) —((r2) + (r )„)]

where ((r )p + (r2) ) 0.659 fm2.
However, in the present paper we take into account an

additional isospin dependence in the numerator of (17),
i.e., the sum over nucleons is replaced by a sum over pro-
tons and neutrons separately. Expression (17) is modified
as follows:

(') =

Kp
2 P (p+ 1/2)N(p) + 2 P (p+ 1/2)N(p) + (K + 3/2)n + (Kz + 3/2)n„

p=1 p=1
(20)

where K„(K„)is the number of the highest filled shell of neutrons (protons) and n„(n„) is the number of valence
neutrons (protons).

Performing the summations, we obtain

(r') = (K„+1)(3N + n„) + 2n„+ (K„+1)(3Z + n„) + 2n„
7AGP 4A

Note that instead of (18) the following relations hold:

s K„(K„+1)(K„+2) + n„= N,

,'K„(K„+1)(K„+—2)+ n„= Z .

Using (20), and taking into account the corrections referred to above, we find

3 h,' (K„+1)(N+ —,'n„) + ,'n„+ (K„+1)(Z+ ,'n„) +—-',n,„—2—
=4 A [(")—((").+ —".(")-)]

(22)

(23)
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(i) As seen from Figs. 2(a)—2(d) and the comments
made in Sec. III, the isospin dependence of Ru is im-
portant for relatively light and medium heavy nuclei.
For very heavy nuclei, all the formulas examined in the
present paper give practically similar results.

(ii) Shell effects, i.e. , discontinuities in the slope of the
curve of Ru as a function of N [Figs. 4(a)—4(c)] are ob-
served at the closed shells (N=8 and N=20).

(iii) We derive very accurate approximate asymptotic
formulas for Lo as functions of N and Z, which can be
used in practice.

FIG. 3. Oscillator spacing Ru as a function of A taking
into account corrections and the valence nucleons, for four
cases: (1) with the simple liquid drop formula (upper solid
curve), (2) with expression (6) (lower solid curve), (3) using
the SF distribution (short dashed curve) and (4) using the
Fermi distribution (dotted curve).
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Next we calculate numerically ~ as a function of N
and Z using as input in (23) the MS radii corresponding
to the following four cases: (i) the simple formula Rop ——

1.2A~~s, (ii) expression (6), (iii) the SF distribution with
parameters determined in Sec. III, and (iv) the Fermi
distribution with parameters from [7].

In Fig. 3 we plot for the special case N=Z the cor-
responding curves of ~ as a function of A for the four
cases mentioned above. It is seen in Fig. 3 that the old
formula [case (i)] gives again a curve which is higher than
the other cases (ii)—(iv).

The isospin dependence of Lu can be seen in Fig.
4(a), where we plot Ru = f(N) for various values of
Z (8 ( Z ( 20), i.e. , for various isotopes, calculated nu-
merically from (23) using as input the mean square radius
corresponding to the formula (6). In Fig. 4(b) we plot the
corresponding values obtained with the SF distribution
[relations (12) and (13)]. Shell effects (i.e. , a discontinu-
ity in the slope of the curve) are observed at the closed
shells with N=8 and N=20. In Fig. 4(c) we compare
the two cases [i.e. , Ru calculated using relations (6) and
(12), respectively] for three nuclei increasing the neutron
excess. It is seen that, in accord with Figs. 2(a)—2(d)
and the comments made above, the curve correspond-
ing to SF distribution lies lower than the curve obtained
with the uniform distribution. It is also seen that an in-
crease of the atomic number Z results to a decrease of
the difference of the two curves.
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VI. CONCLUSIONS

In the present paper we exploit the extra input pro-
vided by very recent and accurate experimental data for
the isotopic shifts in order to obtain expressions for the
MS radius of nuclei as functions of N and Z. These ex-
pressions allow us to propose formulas for Lu using a uni-
form distribution from [14] and the symmetrized Fermi
density distribution. Thus we are able to study the effect
on Lo of neutron excess and the diffuseness of the nuclear
surface, as well as the variation of ~ with ¹

Our study has shown the following.

N

FIG. 4. (a) The variation of the oscillator spacing ~ as a
function of N for various isotopic chains. The values next to
each curve denote the atomic number Z. For the calculation
formula (23) is used with the MS radius of (6). All the cor-
rections are included. (b) The same as in Fig. 4(a) but w'ith

the MS radius from the SF distribution [relations (12) and

(13)]. (c) Comparison of bc' as a function of N for two cases:
The solid boxes correspond to the uniform distribution from
Pomorski [Fig. 4(a)] and the solid circles to the SF distribu-
tion [Fig. 4(b)]. The difference of the curves decreases as Z
increases.
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(iv) The efFect of the nuclear surface on Ru, which is
studied by comparing the results using the uniform dis-
tribution of Pomorski with those coming from the SF
density distribution, is that the distribution with a sur-
face has a larger radius compared with the radius of a

uniform distribution and consequently the values of Ru
for the SF distribution are lower than the corresponding
values obtained with a uniform distribution. The di8'er-
ence ranges &om 1 MeV for light nuclei to 0.3 MeV for
heavy nuclei.
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