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Deuteron polarizability shifts and the deuteron matter radius
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New laser-based measurements of the isotope shift between hydrogen and deuterium by Hansch
et al. should determine accurately the deuteron matter radius r . We study the contribution of
the deuteron polarizability energy shifts to the isotopic difference and show that this is known in
a model independent way. We also make accurate determinations of the asymptotic normalization
and the electric dipole polarizability by exploiting empirical linear relations between them and r

PACS uumber(s): 32.30.Jc, 32.10.Bi, 21.10.Ft

I. INTRODUCTION

Recent high accuracy measurements of the Lamb shift
in the hydrogen isotopes [1,2] have opened new possibil-
ities for high precision tests of quantum electrodynamics
and also for accurate determination of the charge distri-
butions of the hydrogen isotopes' nuclei. Thus the pro-
ton radius has been recently redetermined [3] using the
measured Lamb shift in hydrogen and, after careful con-
sideration of all relevant /ED contributions, found to be
in good agreement with the Mainz value extracted &om
electron scattering experiments [4]. In a similar vein, the
isotopic difFerence in the Lamb shifts for hydrogen and
deuterium has been analyzed [5,6]. Here a value for the
mass radius of the deuteron has been extracted which
contradicts the accepted analysis [7] of low momentum
transfer electron scattering experiments designed specif-
ically for the determination of the radius. It was soon
realized [6,8,9] that this new value would solve the long-
standing contradiction between theory and experiment
pointed out by Klarsfeld et al. [7], which had put in ques-
tion the ability of realistic nonrelativistic NN potential
models to reproduce simultaneously the ensemble of low
energy data for the two nucleon system.

A detailed theory of the hydrogen-deuterium isotopic
shift has recently been given in Ref. [6], reviewing the
evaluation of the diferent contributions and their corre-
sponding uncertainties. Among these, the polarization of
the deuteron by the presence of the orbital electron is rel-
atively small, and has been treated only with very simple
models of nuclear structure: with separable NN interac-
tions of the Yamaguchi type in Ref. [8] and with a square
well potential for the S-wave component in Refs. [5] and
[6]. Consequently, the error estimates quoted for that
contribution are conservatively large. In view of the fore-
cast increase in experimental accuracy and improvements

in the computation of the remaining contributions, we be-
lieve that it is timely to make a more careful assessment
of the value of this polarizability contribution and of the
errors that affect its calculation. This is the main pur-
pose of this paper. The evaluation of this contribution
will be analyzed in detail in Sec. II, avoiding some of the
approximations introduced in [6] so as to obtain a more
accurate estimate. Then the corresponding expressions
will be evaluated using a representative set of realistic
NN interactions.

Section III of the paper is devoted to a redetermina-
tion of the deuteron radius using the new estimates for
the polarizability contribution. We show that there is
a very precise proportionality relation between the po-
larizability and the mass radius squared, and that this
allows one to reduce the contribution of this term to the
error in the extracted matter radius. We then reexam-
ine the compatibility between the predictions of realistic
NN interactions, the experimental value of the scatter-
ing length and the matter radius thus determined. We fi-
nally present in Sec. IV relations between the radius and
two other outer quantities, the total asymptotic normal-
ization and deuteron polarizability, and determine cor-
responding values for them using the value for the mass
radius.

II. POLARIZABILITY ENERGY SHIFTS

The most naive description of the deuterium atom con-
siders its nucleus to be merely a static source of the
Coulomb Geld. This picture neglects the changes in the
structure of the nucleus induced by the interaction with
the bound electron, and the corresponding changes in
the total energy of the atom, usually called nuclear po-
larizability energy shifts. They can be conveniently com-
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puted using perturbation theory. The explicit expres-
sions for these shifts have been given independently in
Refs. [5,6,8]. For convexuence we shall follow the deriva-
tions of Refs. [5,6] and use their notation and conven-
tions. In the Appendix we analyze the expressions used
in Ref. [8] and show under which approximations they
become equivalent to the previous ones.

A. The longitud. inal energy shift

The dominant contribution to the shift is that due to
the exchange of a Coulomb photon. As shown in Ref. [5],

this longitudinal contribution can be written as

KE(~1 = (OIP(&BIO)

where IO) is the unperturbed deuteron ground state and
P~'~ is an electron matrix element obtained &om second-
order perturbation theory with the electron treated rel-
ativisticaBy and neglecting the Coulomb interaction in
(virtual) intermediate states. The explicit form of P1'1 is
given in Eq. (18) of Ref. [5]:

~(l) 2y(0) 2 dsq (4'5, xx (E~ + m 1 E, —mgR.
I

g 1 —e(&~)' gq'y q 2E, m —A —E, 2a, m+A+Z) ) ' (2)

where q, m, and Eq are, respectively, the electron Ino-
mentum, mass, and energy. They are related by Eq =
gq2 + m2. The electron wave function at the origin is
written as P(0), where for simplicity, the quantum num-
bers specifying the electron eigenstate are not explic-
itly written. The operators A, H. , and H.' act on the
deuteron wave function: R (R'), is the relative coordi-
nate between the neutron and the proton in the wave
function on the left (right) of the expectation value,
whereas A = II —Eo, with H, Eo the unperturbed
deuteron Hamiltonian and ground-state energy, respec-
tively. Starting kom the above expression, Pachucki et
at. [5] proceed to introduce several approximations lead-
ing to their much simpler final result, Eq. (21) of Ref.
[5] and Eq. (6) below. Since this expression has been
used in their numerical estimates, we shall now reexam-
ine these approximations to better ascertain their accu-
racy. The first step in simplifying Eq. (2) is an expansion
in R = IRI which is found in [5] to be equivalent to the
dipole approximation. We reformulate this simplification
as follows: first we note that, since the integration over
angles is trivial, the factors

in the integrand of Eq. (2) can be exactly replaced by

sin (qB/2) sin (qR'/2) sin (qIR —R'I/2)
(qR/2) (qR'/2) (qIR —R'I/2)

+ , (4)

and next, by truncating the power series expansion of
the sin(x) at order x, we recover the dipole approxima-
tion. However, it is easy to see that when one adds more
terms to the expansion, the integral in Eq. (2) diverges.
Therefore we have studied the accuracy of that approxi-
mation numerically, choosing representative values of A,
B., and K' and comparing the results of the integration
over q with and without the dipole approximation. Prem
such calculations we estimate that this approximation is
accurate to a few parts per thousand. This rules out siz-

able contributions to LE~ ~ &om virtual excitations to
deuteron states of multipolarities other than the dipole.

The simplified forxn found for Pi 1 is then Eq. (19) of
Ref. [5], which we rewrite as

, B, . R'Pi'1 = —2m''y(0)'
3

dq A+ 2Eq
E (A+E ) —m

5

It is shown in the Appendix that, under similar approxi-
mations, the expression for the longitudinal energy shift
used in Ref. [8] agrees with this result.

In a second step, a further expansion is performed in
powers of m/A and truncated to lowest order. This leads
to the simpler expression for P11, Eq. (20) of [5]:

Pi'1 = —2m~'y(0)' —
I
1+ ln, 1 ( 2AI R. R,'

Aq mp 3 (6)

(') = ' O'I(~A+2m +2m+A —vA
v A /2m+ A+ ~A

dA —2m V~ —v'A —2m) R R'
ln

vA vA+ gA —2m)

For completeness we note that by expanding in powers
of z = m, /A one finds that

which is used in their numerical estimates. However,
there is no discussion in that paper of the accuracy of this
additional approximation, and in the review [6], half of
the error in the estimate of AE~ i, given in their Eq. (49),
is assigned to the neglected contribution of the terms of
higher order in m/A. To avoid this source of error we
shall use Eq. (5), without further approximation, for the
evaluation of the longitudinal energy shift. In addition,
we will compare these results with those given by Eq. (6)
to estimate its accuracy.

The integration over q in Eq. (5) caxi be performed
analytically using standard decomposition and change of
variable techniques, with the result:
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2R R' t' z21 2P"1 = —n'P(0)' 2z 1+
~

1+ —
~

ln—
3 ( 2 J z

(8)

intermediate states ~N). Similarly, for the transverse
shift, with Eq. (10) for P~il, we can write

AE = —mng(0) nE ——+ ln(i) 2 ( 5 2E)
6 m)

from which Pachucki et al. 's final expression, Eq. (6), is
recovered by performing an additional truncation. Working in the zero-range approximation for the

ground state

B. The transverse energy shift u(r) Age
~0)p, radial =

r r (14)

Repeating the derivation in [6], but avoiding the ex-
pansion in powers of z, we 6nd and neglecting the forces in the odd waves

P~ 1 = ma P(0) —A QA2 —2A ln
~
gA —2A —A + 1~

~N)p, d; l = 2kjx(kr), (15)

yAgA'+ 2Aln ~gA'+ 2A —A —1~

R. R'
+2A ~ 2A ln(2A)

6 (9) 0 o&+S2
(16)

Priar and Fallieros found that the dipole electric polariz-
ability has an analytic expression:

where A:—A/m. For large A this reduces to the simpler
form written explicitly in Eq. (47) of [6]:

P&'& = —n $(0) —
(

——+ ln
m f' 5 2A'It R R'
Aq 6 m) 6

(1o)

Since the transverse contribution is one order of magni-
tude smaller than the longitudinal one, we have found
Eq. (10) sufficiently accurate for our purposes.

AEp ———4mnp(0) aE
~

1+ ln + 21n2 ——
~

(I) 2EE
m 12j

= —4map(0) aE
~

1+ ln
m &

(17)

where p is the reduced mass in fermis, and K,

+2IJExx/hc
With the zero-range approximation and Eq. (6) for

P( ), we have found an analytic expression for AE( ):

C. Zero-range estimates

It was shown long ago [10,11] that the zero-range ap-
proximation is a very useful, and sometimes remarkably
accurate, model to describe deuteron properties domi-
nated by the long-range part of the wave function. Ex-
plicit calculations, to be presented later, show that this is
the case for the polarizability shifts. We therefore present
estimates obtained with this simple model, to gain a qual-
itative understanding of which quantities inQuence the
value of the LEp ~. We were guided in this study by the
discussion and findings of Friar and Fallieros [10] on the
dipole electric polarizability,

R. R' a [(0/R[N) ['
6 H —Ep 6 Elv+ Ea

where in the second line we have written the result in the
form of Eq. (12) by defining Ep as

E, = 4~-"/" E& —4.966 MeV. (18)

In Ref. [5] a square well potential was used to estimate
E = 4.915 Mev, which is close to the analytic predic-
tion (Ep) of the zero-range approximation. The values
predicted for the electric dipole polarizability are also
similar. The zero-range results for o«are given in the
Grst row of Table I and will be discussed later.

We note 6nally that in the zero-range approximation,
the expression for the ground-state mass radius is also
very simple:

where E~———Eo is the deuteron ground-state binding en-

ergy, and ~N) are interxnediate states with spin S=l and
isospin T=1. It is understood that both the ground-state
and. intermediate-state wave functions in the above equa-
tion contain only the spatial component.

When P~xl is approximated by Eq. (6), the energy shift
b, E~x1 can be written in the form used in Ref. [5]:

Combining Eqs. (16)—(19) oxxe sees that the polarizability
shift LEo and the squared mass radius r 0 are propor-
tional in the zero-range approximation. We shall show
below that this is still true to a great extent in the more
accurate estimates of the next subsection.

D. Results for realistic NN interactions

aE&'1 = —4mny(0)' nE
~

1+ ln m) (12)

where E represents the average excitation energy for the

Prom the zero-range estimates we expect that the main
source of model dependence in the predicted energy shifts
will be linked to the variation of the mass radius. Hence



1130 J. MARTORELL, D. W. L. SPRUNG, AND D. C. ZHENG

TABLE I. Calculated results for the deuteron electric dipole polarizability: o« for the zero-range
approximation, n& for the deuteron S-wave-only approximation, Ao.z for the D-wave correction,
Ao;& for the correction due to the odd-parity forces, and o.~ for the full result. The deuteron
asymptotic normalization As, the ratio g=AD/As, the mass radius r, aud ln(2E/m) are also
listed.

Potential
cuba(fm )
ua (fm3)
b.as(fm )
an~v (fm')
n~ (fm')
As(fm '~

)
'fI

~-(fm)
lu(2E/m)

RSC
0.6269
0.6205
0.0050

-0.0019
0.6236
0.8776
0.0262
1.9569
2.9638

RHC
0.6308
0.6237
0.0049

-0.0021
0.6265
0.8803
0.0259
1.9600
2.9631

HW
0.6359
0.6282
0.0052

-0.0025
0.6309
0.8852
0.0264
1.9672
2.9637

TRS
0.6426
0.6348
0.0051

-0.0022
0.6377
0.8883
0.0262
1.9751
2.9623

NjmNR
0.6372
0.6299
0.0047

-0.0018
0.6328
0.8847
0.0252
1.9671
2.9624

NjmR
0.6373
0.6308
0.0047

-0.0019
0.6336
0.8845
0.0252
1.9675
2.9621

Reid93
0.6385
0.6318
0.0046

-0.0017
0.6347
0.8853
0.0251
1.9686
2.9618

we have determined the values of AE~ ~ and AE~ ~ for a
selection of realistic potentials that cover a range of val-
ues of r that enclose the expected experimental value.
This selection contains conventional old potentials and
also NN interactions newly fitted to experimental data
and including a much more solid theoretical input. The
most representative in the first class are Reid's potentials
(RSC and RHC) [12], the improved Hamada-Johnston
potential of Humberston and Wallace (HW) [13], and
the supersoft core potential of de Tourreil, Rouben, and
Sprung (TRS) [14]. The more recent potentials include
the relativistic and nonrelativistic potentials NijmII (de-
noted by NjmNR and NjmR) given by the Nijrnegen
group [15], and a new Reid-like potential (Reid93) &om
the same group, also with relativistic kinematics. The re-
sults for this selection will be discussed in the following.
We have also used other potentials that do not modify
the conclusions drawn below.

For a given potential we have computed the wave func-
tions for the deuteron bound state and the Po, Pi,
and P2- F2 partial waves. In this calculation a step
size of 0.003 fm was found to give the required accuracy.
The partial waves were determined up to the c.m. en-
ergy 1000 MeV with a step size of 2.5 MeV. We checked
our results against published values of the ground. -state
properties, and with the computed values of the deuteron
dipole polarizability given in Refs. [10,16]. In Table I we
give, in a format similar to Table I of Ref. [10], our cal-
culated results for the electric dipole polarizability o.~,
its zero-range approximation o«, the deuteron S-wave-
only approximation u&s, the D-wave correction En+~,
and the correction due to the odd-parity forces La&.
We also list the asymptotic normalization Ap, the ratio
g=AD/As, and the deuteron mass radius r . The re-
sults for ln(2E/m), as defined by Eq. (12) or (13), are
also shown for the sake of comparison. The energy shifts
b,E(~) and AE(~) corresponding to the use of Eq. (6) for
P(~) and Eq. (10) for P(~) (as in Refs. [5,6]) can be eas-
ily evaluated using the results for n~ and ln(2E/m). We
prefer, however, to use Eq. (7) for P&~) to calculate AE(~).

The total energy shift LE»~ is obtained by adding the
longitudinal shift LE& & to the transverse shift LE~ ~.

Since the quantities of interest are the contributions to

the 1S-2S transition, one has to take the difference of the
expectation values for these two states. Since

(20)

this amounts to using a factor

7 1

8 +a@
(21)

TABLE II. Total polarizability shift for the 1S-2S transi-
tion (in kHz) calculated for seven representative NN poten-
tials.

Potential
Zero range
S wave
S+D waves
Pull

f~

RSC
19.17
18.93
19.11
19.05
4.98

RHC
19.29
19.02
19.20
19.14
4.98

HW
19.45
19.16
19.35
19.28
4.98

TRS
19.65
19.36
19.54
19.48
4.99

NjmNR
19.49
19.21
19.38
19.33
4.99

NjmR
19.49
19.23
19.41
19.35
5.00

Reid93
19.53
19.26
19.44
19.38
5.00

for the contribution of the electron wave functions to the
difference. The computed results are shown in Table II.
The trends are similar for all potentials considered: the
zero-range approximation already gives a very accurate
estimate, 100.8% of the full result, whereas the use of
the true S wave function reduces that to about 99.4%.
Adding the D wave causes an increase to 100.4% and fi-
nally switching on the interaction in the odd waves brings
in again a reduction, of 0.4%. Thus there is a sizable
cancellation between these contributions that makes the
zero-range prediction surprisingly reliable. The reduction
produced by the inclusion of the full S wave can be eas-
ily predicted using a model wave function of the Hulthen
type. We have not found any simple explanation for the
smallness of the changes induced by the inclusion of the
D component or the interaction in the odd waves. Still,
the smallness of all these effects makes the prediction of
the polarizability shift more reliable since it is mainly
determined by the very basic quantities that appear in
the zero-range analytic expression and very little by the
specific details of each NN potential. This is confirmed
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in the last line of Table II, where the ratio to the corre-
sponding deuteron mass radius squared, fz ——AE~ i/r
is shown. It is seen to be constant to a very good ap-
proximation. Since our selection of potentials covers a
range of mass radii that (we can be confident) encloses
the experimental value, we take the two extreme values
in the table to have a conservative prediction of the value
and uncertainty of the total polarizability shift:

AE i
——19.27(22) kHz . (22)

This value is compatible with the estimate in the re-
view [6], which uses a simple square well potential for
the neutron-proton interaction: 19(2) kHz, but the error
there has been overestimated by an order of magnitude
and our result is based on a more realistic description
of the deuteron structure. The other estimate presently
available is that of Ref. [8] for the polarizability shift
in the 1S state, which when converted into a LEp(XS-2S)

leads to values 17.9 kHz somewhat lower than those
above. However, these results have been obtained for
very simple separable models of the NN interaction, and
thus should not be directly compared to our calculations.
We believe that the analysis presented in the Appendix
is more significant: it shows that by introducing suitable
approximations the analytical expressions used here and
in [8] become equivalent.

Note that to determine the values in Table II and
Eq. (22) we have used Eq. (7) for P( ) and Eq. (10) for
P(~). The use of the simplified P( ) in Eq. (6) produces
a small systematic shift that begins to be relevant at
the present level of accuracy: for the Reid93 potential,
the results in the last column of Table II would be de-
creased by 0.36% to 19.46, 19.20, 19.37, and 19.32 kHz
for the four cases considered, so that there is a difference
of 0.07 kHz with the more accurate values. The situ-
ation is similar for the other potentials. The difference
is reduced to only —0.02 kHz when the more accurate
expression of Eq. (8) is used for P(').

deuteron charge radius, as done in Ref. [6]. Given that
at present the error b(AE) = 26 kHz is much larger than
the estimated 0.22 kHz in Eq. (22) this is su%ciently ac-
curate. However, since it is anticipated that in the near
future improvements in the analysis of the Lamb shift
experiments will allow one to reduce h(AE) to 1 kHz,
we present in the following a more careful discussion of
the determination of the deuteron radius with a view to
minimizing further the contribution to the error due to
the uncertainty in the polarizability shift.

The finite-size effect is written [6]

with

~E(ls-2s) 2y (())
2

( 2)12' (24)

( ) ="D+ .+
362

4m2c2 ' (25)

where the neutron charge radius is known experimen-
tally: r2 = —0.1192(18) fm and the zitter bewegung
or Darwin-Foldy (DF) contribution is 3h /(4m„c )
0.03317 fm with negligible error. The deuteron electric
radius rED still contains relativistic and meson exchange
current (MEC) effects, and possibly a contribution from
the quark degrees of &eedom, and these must be removed
before we can obtain a value for the matter radius r
which is the quantity that can be compared to potential
models. Kohno [17] calculated that the MEC and rela-
tivistic effects give br = rED —r = 0.0143 fm . From
Fig. 8 of Ref. [18] one can read oK values of 0.014, 0.004,
and —0.005 fm for three representative covariant calcu-
lations (after subtracting out the DF contribution). Thus
the indications are that hr is small. Wong [19]estimates
a small negative contribution of —0.005 fm &om quark
exchange effects, to be included in it; his review should
be consulted for a more thorough discussion. Putting
these numbers together, we will estimate that

III. DETERMINATION OF THE MATTER
RADIUS

br = 0.0 + 0.010 fm (26)

We determine the sum of the finite-size (FS) and po-
larizability shifts by subtracting from the experimental
value of the 1S-2S transition given in [2], the remain-
ing theoretical contributions to the isotope shift listed
and evaluated in Sec. II of [6]. Since the expression for
the n m. /M recoil correction given. in that reference has
been recently reexamined [20] and modified, we correct
the contribution of this term accordingly, and have

(ls-2s) + ~E(ls-2s) —5182 kHzFS pol

with an error of i/22 + 14 26 kHz, obtained by
adding quadratically the experimental error and that due
to the reduced mass correction. At this stage one can
subtract the predicted AE i given in Eq. (22), to(1S-2S) ~

determine a value for LE&s and obtain &om it the(XS-2S)

~E(is-2s)
pol &rm & (27)

with f„=4.99(2) kHz fm is satisfied by all potentials
considered. In order to combine these equations, we re-
place r2 by rE2D in Eq. (27) to get

We emphasize that the Darwin-Foldy correction is in-
cluded separately in Eq. (25), both because it is known,
and because it is a part of the physical proton radius
rather than a deuteron structure effect.

The finite-size effect has to be complemented by the
much smaller polarizability shift computed in the previ-
ous section, where we have shown that the model depen-
dent relation
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/@(1S-2S) /@(1S-2S) 3h'

+fi (rED —br ), (28)

where we have defined

n h,c Pig(0)
=7~ 2

12 (29)

Explicit calculation then gives ( = 1369.50kHz fm
to be compared to the much smaller f„ indicated above.
The electric radius is therefore

2 P
ED (30)

and substituting numerical values, we get rED
3.884 fin, and then from Eq. (25) (r ) = 3.798 frn, in
agreement with the value 3.796(19) determined in [20].

A. Error analysis

The first two terms in the numerator of Eq. (30) have
absolute errors b(AE) = 26 kHz and ( . 8(r ),„~
2.47 knz, so that the latter is as large as the transverse
polarizability shift. When the improvements in the Lamb
shift experiments allow a reduction of 8(AE) to 1 kHz,
the main source of error in extracting the deuteron elec-
tric radius will be that associated with the neutron charge
radius. In contrast, the relative smallness of f~ ensures
that the lack of knowledge of MEC and other such ef-
fects does not at present impinge on the determination
of the electric radius. The relative error contributed by
the numerator is found to be 0.54 x 10

The contribution of the denominator to the error is due
to the estimated 8(f„) = 0.02 kHz fm, giving a contri-
bution to the relative error of 1.46 x 10 which is neg-
ligible compared to that &om the numerator at present
and will remain so when the error in the latter is re-
duced by an order of magnitude. Therefore we find that
8(rED) jrED = 0.54 x 10 which gives

= 3.884(21) fm',
rED = 1.971(5) fm.

This is the value for the electric radius extracted from the
experimental values of the Lamb shift and the neutron
radius. Note that with this method the uncertainty of
the polarizability shift plays a negligible role.

Using the estimate of Eq. (26), the matter radius r
will have the same numerical value as rED but the com-
pounded errors in Eq. (31) will be increased to (23) and
(6), respectively. In our earlier work we used Kohno's
value which made the matter radius 0.003 fm smaller
than the electric radius. It should be clear that knowl-
edge of br has only a small inftuence on the extraction
of rED, but it is absolutely vital in taking the final step
to get r~.

B. Comparison with other determinations

The value of r obtained above confirms the findings
of Refs. [6,8,9], and is in contradiction with the previously
accepted value based on low momentum transfer electron
scattering data: in Ref. [7] we found r = 1.950(3) fm.
In a recent review Wong [19] has reanalyzed all exist-
ing electron scattering data and concludes that r
1.9505(20) fm, in good agreement with our analysis. The
most recent set of electron scattering data, taken by the
Saclay group at higher momentum transfers [18], seems
to favor, however, a higher value for the mass radius:
r = 1.961(7) fm according to [21] or r = 1.966(8) fm
according to the more exhaustive analysis of [19]. Both of
these estimates are in better agreement with the result in
Eq. (31). It is thus an open question whether some unac-
counted systematic error in the low momentum data can
account for this discrepancy. Wong discounts this possi-
bility. Alternatively, it has been suggested that the effect
of dispersion corrections, not included in the analysis of
the electron scattering data, could increase the extracted
radius. The calculation of these corrections turns out
to be nontrivial [16], and it is not possible at present to
reach any firm conclusion on their relevance. The analy-
sis of the Lamb shift experiments is Bee from these un-
certainties, and therefore is at present a more reliable
method to determine the mass radius of the deuteron.
In addition, a look at Fig. 1 of Ref. [11] shows that this
value solves the previous incompatibility between theo-
retical models of the NN interaction and the experimen-
tal values of scattering length and mass radius. Using
the experimental value for aq, one can read off Rom that
figure a value r 1.969(4) fm. A value r = 1.967 fm
is derived in a similar but more careful analysis by Wong
in his recent review [19]. These values overlap very well
with that of Eq. (31), so that one must conclude that
there is no contradiction between estimates based on the
low energy properties of realistic NN interactions and
the mass radius extracted from the Lamb shift experi-
ments.

IV. DETERMINATION OF THE ELECTRIC
POLARIZABILITY AND THE ASYMPTOTIC

NORMALIZATION

The zero-range expressions suggest also that the ra-
tio n@/r is approximately constant. This is indeed
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= 0.1634(5) fm.r' (32)

Combining this result with the previously extracted value
for r2, Eq. (31) and compounding the corresponding er-
rors we find

true for the values in Table I. It is found that this ra-
tio ranges &om the lowest value, for RSC, of 0.1629 fm
to the largest, for Reid93, of 0.1638 fm, so that a con-
servative estimate applying to potentials in that range of
values of r is

where a and b are parameters, to the pairs of points
[r2, A2&(1+ q ) . (r,„~/r)s], generated &om several NN
potentials. (The correction factor (e,„~/v) is relevant
only for potentials Stted to old values of r ) . One such
fit is shown in Fig. 1. When only the data points corre-
sponding to the seven potentials in Tables I and II are
included in the fit, one finds a = 0.2440 and b = —0.1617.
For a larger selection of potentials (those in Table I of
Ref. [11]),the fit is very similar.

Combining Eq. (34) with the value of r from Eq. (31)
one finds

nE = 0.635(6) fm (33) As(l+ rI ) = 0.7860(47) fm (35)

A', (1+~') =o" +b, (34)

This should be compared to the experimentally deter-
mined value [24]: na = 0.70(5) fm, and to that ex-
tracted in Ref. [26] from deuteron photoabsorption data:
0.61(4). An estimate similar to ours, but based on the
proportionality between 0;~ and Ap, has also been given
in [10]: cr@ = 0.632(3) fm . There is thus good compati-
bility among all these estimates.

It was noted by Friar and Fallieros [10] that the zero-
range value for a~ is already a very good estimate. This
can also be seen by comparing the first and fifth rows
of Table I. It is worth remarking that the additional
changes due to the inclusion of the full S wave func-
tion, the D wave function, and the odd-parity forces are
strongly correlated to those shown in Table II: the ra-
tios of the corresponding changes are practically inde-
pendent of the potential and quite similar: 38, 37,
and 31 kHz fm, respectively. This indicates that
there should be a zero-range relation similar to Eq. (16)
describing the bulk of these small changes.

The zero-range expressions and the more detailed anal-
ysis in Ref. [11] suggest that there may be a linear rela-
tion relating the asymptotic normalizations to the mass
radius. We have therefore tried a fit of the following form:

As = 0.8863(26) fm (36)

which is compatible with the more precise value Ag ——

0.8838(4) obtained by Stoks et al. [24] from a direct anal-
ysis of low energy NN scattering data. (A similar esti-
mate As = 0.8843(10) fm has been given by the
same group in [15].) Note that this solves the discrepancy
pointed out in Ref. [24] between their value and that de-
termined in [7] using the deuteron radius extracted from
the electron scattering data, and thus confirms again the
compatibility of low energy NN data with the I amb shift
experiment.

V. SUMMARY AND CONCLUSIONS

We have obtained accurate estimates for the polariz-
ability shifts using realistic NN interactions. Our results
are in agreement with earlier calculations using less so-
phisticated models, but the estimated accuracy is now

and, since the contribution Rom the D state is almost
negligible, we use this to extract a value for Ag. Choosing
ri = 0.0252(1) from Ref. [15] we get

0. 82
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FIG. 1. The empirical linear relation be-
tween the squares of the total asymptotic
normalization and mass radius. The crosses
correspond to the seven potentials described
in the text, and the diamonds to additional
potentials indicated in Table I and Fig. 1 of
Ref. [12]. The three square boxes are the
Bonn potentials from Table A.1 of Mach-
leidt's review [26].
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considerably improved. Furthermore, for all the NN po-
tentials studied, we have found a very precise proportion-
ality relation between polarizability shifts and the mass
radius squared. This has allowed us to present a method
to determine r where the uncertainty in the polarizabil-
ity has practically no effect on the estimated error.

The mass radius that we have determined confirms
the discrepancy with determinations based on low mo-
mentum transfer electron scattering data, but is in good
agreement with the systematics of low energy NN data
and the linear relations predicted by potential models.
With the same methods we have also extracted a value
for the asymptotic normalization that is in agreement
with the determination of the Nijmegen group. The com-
patibility of all these results makes it very tempting to
blame the discrepancy, between the mass radius derived
from low momentum electron scattering experiments and
that determined here, on unaccounted systematic errors,
or neglected dispersion corrections. A new effort to re-
peat those measurements, and to compute the missing
theoretical corrections, would be very welcome to settle
this matter with greater confidence.

ACKNOWLEDGMENTS

We would like to thank Professor 3. L. Friar for useful
discussions and communication of unpublished data. We
are also grateful to NSERC Canada for continued sup-
port under Research Grant No. OGPOO-3198 (DWLS).
The work of J.M. is supported under Grant No. PB91-
0236 of DGICYT, Spain. D.C.Z. is supported under NSF
Grant No. PHY-9321668, USA.

Note: After completion of the manuscript, Professor
Friar kindly pointed out to us that J. Bernabeu and
T.E.O. Ericsson, in a very pedagogical article, Z. Phys.
A $09 213 (1983) had already derived expressions anal-
ogous to those of Ref. [6] for the polarizability shifts,
although they did not give any estimates for deuterium.
In addition, we received a preprint &om W. Leidemann
and R. Rosenfelder, with calculations of the polarizabil-
ity shifts based on a different set of realistic potentials.
Their results appear to be compatible with ours within
the quoted error bars, but they are somewhat lower. Ac-
cording to further private correspondence these authors
attribute the main part of the difference to not having
used the dipole approximation in their calculations. As
indicated in the text our own estimates for the error in
the dipole approximation are smaller than theirs.

APPENDIX A

similar to those of Pachucki et al. in [5] and [6], the two
approaches use different notations and decompositions,
so that it is useful to check that they lead to compati-
ble results. We therefore begin by summarizing the main
steps needed to recover Eq. (5) for the longitudinal en-

ergy shift starting from the expressions of Ref. [25]. From
Eq. (14) of that reference:

b, E~'l = —8n $(0) dq RL, f (q ),
0

(A1)

RL, = d(uSL, (~, q)g(~, q),
0

1
g((u, q) =

2Eq (Eq m) ((u + Eq m)
1

(Eq + m) (~ + Eq + m)

(A2)

(A3)

and

Sl.(~ q) = ) .~[~ —(& —&o)]l(Ole' 'ln)l
neo

(A4)

where r is the proton center-of-mass coordinate. Making
now the dipole approximation: exp(iq . r) 1 + iq . r
and performing the sum of the two terms in g(u, q), one
easily recovers Eq. (5).

The transverse contribution can be derived similarly,
with some additional approximations. Starting again
&om Eq. (14) of [25], we write

AE~'l = —8o. P(0) dq (RT + Rq),
0

(A5)

where now, &om Eqs. (A2) and (A3) of the same refer-
ence,

OO

&7 + &s = d~Sr(~, q)
0

1 (d+ 2q

4mq ((u+ q)~

1 (1 1 5 q'
+

l

—— + gcuq
4mur (q E~) 4m2 (A6)

Under the assumption that ST (w, q) can be replaced by
its low momentum behavior, as in Eq. (17) of [25],

where f (q ) is the spatial Fourier transform of the nu-
cleon charge density, given explicitly in [25]. Numerical
calculation of Eq. (5) for several characteristic values of
A shows that approximating f (q ) 1 is accurate to
about a part per thousand. For full relativistic kinemat-
ics for the electron, the expression for RL, is given in Eqs.
(Al) and (A4) of [25]:

In a series of papers Rosenfelder and his collaborators
have developed tools for the determination of nuclear po-
larization shifts in different nuclear systems. Of particu-
lar interest to our case is Ref. [25], where the expressions
later used in [8] are derived. Although the methods are

2

ST ((u, q) 2—Sl.(u), q),
q

one gets an approximate expression for R~ + Rs which,
when substituted into Eq. (A5), leads to
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&R. R'&
(t) 2

( )2
R R (d

3 m

„, q(E. —q)[(~+q)'+2~E. ]

E~(ur + q)2[(E~ + ur)2 —m2]
' (A8)

(R.R'P(t) 2y(p) z &')
(1 —y2)(uzy2+ 2~y+ -')

x dyy
0 (~y+ —,')' (A10)

Neglecting m compared to u in the denominator, and
making the successive changes of variables, q = m sinh(x)
and y = exp( —x), this can be rewritten as

&R. R'')
P(t) 2y(P)2

1 (I y2) ly4+(~2 i) 2+2 — + 1

0 (~y+ 2) ——.y'1 2 1 4

(A9)

where w—:u/m Finall.y, assuming again w )) 1,

The latter integral can be easily performed and after
dropping terms of O(1/tLi) one finds

R-R' 1P(') = —a P(0) — ——+ ln(2u)
6 ~ 6 (A11)

in agreement with the simpli6ed result of Pachucki et al. ,
Eq. (10).

Finally, in [8] a contribution due to the momentum de-
pendence of the potential is also estimated. It amounts to
0.31 kHz for the Yamaguchi interaction, whose momen-
tum dependence is much larger than that of any realistic
NN interaction. We have therefore chosen to omit that
term in our calculations.
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