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Multiparticle scattering theory and inclusive cross sections in nuclear collisions
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The dynamics of inclusive breakup processes is studied in the framework of an exact multichannel
multiparticle scattering theory. Due to the proper physical description cross sections are uniquely
de6ned in terms of multiparticle transition operators without the problem of post-prior asymmetry.
Unlike previous treatments, the present work includes Coulomb and exchange effects. In order to
derive tractable expressions certain mathematical approximations have to be invoked. These, and
the corresponding physical approximations, are discussed in detail.

PACS number(s): 25.10.+s, 03.65.Nk, 25.70.—z

I. INTRODUCTION

Inclusive reactions until recently played only a minor
role in low and intermediate energy nuclear reaction stud-
ies. Udagawa and Tarnura [1] found, however, that mas-
sive transfer reactions involving heavy ions can be suc-
cessfully described in terms of a two-step breakup fu-
sion mechanism. In these processes the first step pro-
ceeds very rapidly by a direct mechanism, so that the
ejectile can be reasonably assumed to have been part
of the projectile. The second step of the reaction pro-
ceeds much more slowly, and the various decay modes of
the highly excited residual system are irrelevant &om the
point of view of the primary ejected particle. Thus, in or-
der to account for the angular and energy distribution of
the observed ejectile, a special type of process, inclusive
breakup, has to be considered.

Following the initiative by Udagawa and Tamura [1] a
variety of theories [2—5] were proposed for the reaction

a + A ~ 6 + anything,

where the ejectile 6 is a definite fragment of projectile a.
The various formulations yielded difFerent results, how-
ever, producing considerable confusion [6,7] over the dy-
namical treatment of the basic process. Even though
Ichimura [8] later tried systematically to describe re-
lations between the proposed formulations, no proper
breakup fusion cross section has yet been derived in an
unambiguous way.

The aim of the present work is to use the methods of
exact multiparticle scattering theory to clarify the basic
theoretical situation and obtain from first principles an
expression for the desired inclusive cross section. Our
formulation includes Coulomb interactions and the an-

tisymmetrization required by the Pauli principle, which
were not treated by previous authors. It is shown that
the very notion of an inclusive breakup mechanism is in
itself an approximation that precludes particle exchange
efFects between the ejectile and the residual system. In
addition it is shown that even the definition of a difFer-
ential inclusive cross section, which is central to previous
treatments, depends on neglecting certain polarization
efFects.

In particular, it turns out that the multitude of chan-
nels emerging from the decay of the residual system can
be treated in a unified way in terms of an absorptive ef-
fective potential only if that system is described in terms
of two basic clusters. This realization leads naturally
to a three-body model of the collision process, as was
pointed out by Austern and his co-workers [5]. The re-
action mechanisms used to describe the final stage of the
reaction are logically independent, however, from those
used in the treatment of the initial (direct) stage. This
fact was not exploited by Austern et al. but is essential
if exchange efFects are to be included in a fundamental
way.

In Sec. II the necessary notations and facts of nonrela-
tivistic multichannel scattering theory are summarized in
a way that accommodates Coulomb and exchange efFects.
In Sec. III an exact general expression is derived for the
total inclusive cross section of the reaction of Eq. (1.1).
It is pointed out that a similar exact formula cannot be
derived for the difFerential inclusive cross section if the
ejectile 6 in Eq. (1.1) has nonzero electric charge. In
Sec. IV it is shown how a sequence of approximations
leads to the formulas of previous authors [1—8]. Conclud-
ing remarks are presented in Sec. V.

II. NOTATION AND DEFINITIONS

Present address: Electronic Structure of Materials Centre,
School of Physical Sciences, The I linders University of South
Australia, GPO Box 2100, Adelaide, SA 5001, Australia. Per-
manent address: Department of Physics and Astronomy, Uni-
versity of New Mexico, Albuquerque, NM 87131.

In this section the standard notation and a number
of basic facts about the nonrelativistic scattering theory
of systems of identical charged particles are collected for
the reader's convenience. For details one is referred to a
previous paper [9], the presentation of which we closely
follow.
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A. Scattering operators for distinguishable particles

Consider a system of N distinguishable charged par-
ticles. Let 'R~ denote the Hilbert space of vectors that
represent states of the system, and let H~ denote the
Hamiltonian operator that determines the temporal evo-
lution of those vectors. Let P denote the orthogonal
projection operators that project 'H~ onto the subspaces

P 'R~ of vectors that represent the various
asymptotic states of the system, and let H denote the
Hamiltonian operator that determines the (asymptotic)
temporal evolution of vectors in 'R . Here o. denotes
the partition of the index set (1,2, . . . , %) that repre-
sents the division of the particles into different bound
clusters and m denotes the collection of quantum num-
bers that specify the quantum states of those clusters.
The scattering processes of the system are governed by
the wave operators 0:A, —+ 'R~,(+) .

The operators that represent the permutations of 8
form an algebra. In particular, the Young operator Y

~ 'H~ de6ned by the idempotent element of the
group algebra

Y'—= 18I ').p (2.5)

where ~8~ denotes the number of elements of 8, is an or-
thogonal projection of Q~ onto the subspace of states
with the correct symmetries under interchange of indis-
tinguishable particles. The Young operator has also the
important "absorption" property that p Y = Y for ev-
ery p E8.

While a permutation p g 8 will in general change
a partition a. into a different partition, permutations
that interchange indistinguishable particles inside a given
cluster of o. leave n unchanged. For any given partition
o; the set of permutations

Al+~ = s —lime' 'D (t) e ' ~'P
t~ Zoo

(2 1) 8 =(p:pn=n, pE8) (2 6)

where D (t) is an operator necessitated by the long range
of the Coulomb interaction [10]. The scattering operators
Sp . '. 'R ~ 'Rp for the system are defined by

Sp„. =—Op„O~+~*
(2 2)

where 0&+ *
is the adjoint of 0&+ .

A property of N-body systems that is particularly
prominent in the present considerations is that of asymp-
totic completeness. If IN denotes the identity operator
on AN, and if Pj, „„p denotes the projection of 'RH onto
the space spanned by the bound states of the Hamilto-
nian H~, then the equation that expresses asymptotic
completeness is [11]

bo~~d + )
am

(2.3)

The sum extends over all partitions o. with at least two
clusters. Equation (2.3) holds separately for the + and
the —wave operators.

B. Permutations

When some of the particles are indistinguishable, the
group 8 of permutations of those particles is a symmetry
group of the system. The permutations p of 8 are rep-
resented on 'R~ by linear unitary operators that will be
denoted by the same symbol, p, with the context specify-
ing which meaning is intended. In order to treat bosons
and fermions in a unified manner, it is convenient to de-
fine operators p: 'R~ ~ A~ by

is a subgroup of 8. All the operators p, p p 8, commute
with both II and D (t).

The operators that represent the permutations of 8
form a subalgebra of the algebra associated with 8. The
operator Y:'H~ ~ 'R~ de6ned by

Ys [8
~

—1 ) (2.7)

[n] = (n': n' = pn, p C 8) .

The number of distinct elements of [n] is given by

~(-) = 181/I8-1.

(2 8)

(2.9)

The group properties of 8 imply that [n'] = [n] for all
n' C [n].

For any given partition o. there are two extremely use-
ful factorization formulas:

is trivially the Young operator of that subalgebra (though
not of the full algebra). Consequently, it is an orthog-
onal projection that projects the space 'R onto the
subspace of asymptotic states in which the bound states
of the clusters have correct symmetries with respect to
permutations of indistinguishable particles. Of course,
by construction it also has the "absorption" property
pY+ = Y foreverypE8 .

Because a permutation of identical particles does not
change any physical property of the system, any two par-
titions o. and o.' are physically equivalent if o, ' = po. ,

p F 8. This property leads in a natural way to an equiv-
alence relation which divides the set of all partitions into
equivalence classes

p —= fop (2.4) Y =N(j' ) p Y-=N(j' ) Y-p
a'g [n] c 'qra]

where f~ is —1 if p involves an odd number of fermion
permutations and is +1 otherwise. All the operators p
commute with the Hamiltonian H~ of the system.

(2.10)

Here p denotes the permutation that maps o. into o.',
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p denotes the permutation that maps o.' into o. , and
the sums are over the K~

~
distinct partitions in [n].

C. Scattering operators for indistinguishable
part icles

mom

g&(+) g &(+)+
[cx ]m [a ]m (2.13)

it follows directly from Eq. (2.11) that

E =Y N o0()0() Y
r l

[~'] ~pm ~pm
nom )

(2 14)

On the other hand, by using the factorization formulas
for Y, the property that p Y = Y for all p p 8, and
the label transforming property pO = O„p, one(+) (+)

obtains
(+) g(+)*-,Y~..Yam am

n mnQ[n ]

= ) ) n l+~ n ~+~* Y
cx m a&[a ]

Similarly,

E = Y ) ) n&+&nl+&*.
npm ng [ao]

(2.i5)

(2.16)

(2.i7)

It now follows &om Eq. (2.3) that the equation expressing
asymptotic completeness for systems of identical particles
1s

Y = Y Pb gY +E (2.18)

III. INCLUSIVE CB.OSS SECTION

In this section a fundamental formula for the total in-
clusive cross section is derived. It is exact within the
framework of a multiparticle scattering theory that in-
cludes both Coulomb and exchange efFects.

The notation for the representative initial states is as
follows. I.et o. denote a two-cluster partition represen-
tative of the initial state of the reaction, and let m de-
note the quantum numbers of the two bound states. Let
the product of kets of the two bound states and of a
plane wave for their free relative motion (with relative
momentum k) be denoted by ~o. mk). Although only

If some of the particles are indistinguishable the def-
initions of the scattering operators must be changed to
reflect that fact [10]. The correctly symmetrized wave op-

erator nI,
~

.'Y ''R 0 —+ Y 'R~ for the equivalence&(+) . s., s
class [n ] is defined by

n"+) —= N"' Y'n(+) (2.11)
[cx ]m [cx ] npm ~

where Y and n, are defined by Eqs. (2.S) and(+)

(2.1). The correctly symmetrized scattering operator

S[&o] «, ]
. Y ''8~pm —+ Y &''Rpo~ is defined by

&(+)+ &(—)
S[po] .

[ p]:0 [pp] 0«p] (2.12)

If E+(+):Y 'R~ —+ Y 'R~ is defined by

i+i I i[HpP +vpP tjD (t) iH~t P—
t—++ao

q C P'. (31)

The notation p C Po signifies that the partition p is either
equal to P or can be obtained from P by breaking apart
the cluster B into subclusters.

There is no flexibility in the way that Coulomb inter-
actions are included in Vpo. They must be included as
the sum of Coulomb interactions between the fictitious
particle and each of the individual particles of the clus-
ter B. This follows from the requirement the structure
of Vpo be consistent with the structure of the operators
D~(t) for all p C Po. Any other way of including the
Coulomb potentials would, in particular, be inconsistent
with D~(t) for the partition in which each particle of B
is assigned to a separate cluster. This fact has an inter-
esting consequence which is discussed at the end of this
section.

There is, however, some freedom in choosing the eB'ec-
tive nuclear interactions included in Vpp. It is only im-
portant that they cannot overcome Coulomb repulsion to
create a bound state of the particles in B and the ficti-
tious particle. In other words, it is necessary that Vpo
be chosen so that the Hamiltonian H~o + Vpo has no dis-
crete spectrum (proper eigenvalues) but only continuous
spectrum.

Finally, the interchange of indistinguishable particles
in the cluster B must leave Vpo invariant:

p Vpo ——Vpo p for all p C Spo . (3.2)

The corresponding modified transition operators
T«&o] .«o] . Q o M 'R&o are given by

]/2 (+) + y
—

q S(—)
T[&o]~[~o]m = N[ ]

cu&p p (Hpf Hpo Vpo) +[ ]

(3.3)

properly normalized linear superpositions of these plane-
wave states can belong the Hilbert space 'H, for the
purposes of this paper mathematical rigor can be relaxed
and plane-wave states used to represent the asymptotic
states of the systems.

Similarly, let p denote a partition representative of a
final state of the reaction, and let n denote the quan-
tum numbers of the bound states of the clusters of p .
The plane-wave states that will represent the asymptotic
states with this clustering are denoted by ~p nq~o), where

q~o denotes the Jacobi momenta of the free relative mo-
tion of the bound clusters.

It is now useful to introduce certain auxiliary wave op-
erators. Let P = (b, B) denote a two-cluster partition
in which b is a representative cluster for the particle b

of Eq. (1.1). Imagine a fictitious particle with the total
mass and charge of the cluster 6 located at the center of
mass of that cluster. Define the potential Vpo to be an
efFective interaction between that fictitious particle and
the individual particles of cluster B. The (distinguish-

able particle) wave operators w&,
'. 'R~„~ R~ that(+)

represent the distorted waves are then defined by
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The po are representatives of the equivalence classes (generated by permutations in Spa) of partitions p C Po.
The total inclusive cross section o'"' is now given by the following formula:

) dq oP(E 0 —E 0 ) (p nq O~T~ oj .
[ oj ~n mk) (3.4)

where p o denotes the reduced mass of the two initial bound clusters and n = (ns, n") with nb denoting the quantum
numbers of the detected particle b. Equation (3.4) can be rewritten with the aid of standard manipulations [8j:

0'"' = lim Im ( —(2vr) p~o/x~k~ I(e)), (3.5)

with

(3.6)

where

)
+0 ~l i

(+) (+)+
N[~O] (AJPO 0 MPO 0

dq~o N(~0) ~p, ,„~p nq~. ) {p n q~o ~u)p,
(+) o 0 (+)* (3.7)

(3.8)

In Eq. (3.6) the definitions

„)—:(H~ —Hpo —Vpo) 0( ~,)l ~n mk) (3.9)

and Gpo (z):—(z —Hpo —Vpo) have been introduced.
Because 0~0 is a sum of the internal Hamiltonian for

the cluster 6 and a Hamiltonian that refers only to vari-
ables external to the cluster, and because Vp, is indepen-
dent of the internal coordinates of the cluster 6, the wave

operators (L)p0 0 have the form(+)
PO:pOn

(+) „-(+)
(4) ~0 0 —VLQ M~0 0p P: f 7L

(3.10)

The operator IIb acts on the Hilbert space 'Rg of functions
of variables internal to the cluster 6, and on that space it
is a projection operator onto the bound states of 6 with
the quantum numbers np. The operators u&0 0 „act on

—(+)

the Hilbert space 'Rb of functions of variables external
I

Y~~' (ll& @I~)Y' ~' = Y ~' Fpo Y &', (3.11)

where I& is the identity operator on Q& .
Because the wave operator O~ 0] has the proper sym-&(—)

metry under the interchange of identical particles, and
Y &' commutes with both H~ and H~O + Vpo, then

(3.12)

Consequently, with the aid of Eqs. (3.10) and (3.11),
Eq. (3.6) can be rewritten in the form

to the cluster b, and on that space they are the wave
operators for a system consisting of the particles in the
cluster B and the 6.ctitious particle with the total mass
and charge of cluster b located at the center of mass of
that cluster. Since it is assumed that V~O is chosen so
that H~O + Vpo has no discrete spectrum, the equation
expressing asymptotic completeness is

= (C .' '. „~Gp.(E ~ +is) 'Y ~' (lI I, ) Y ~' ~4p~. l. „)
= (@,' ', „~Gp.(Z ~ +ze) (IIb g Ib ) ~Cp. . '. „). (3.13)

A formal, but instructive, simplification of the states ~4'p, . , &) in Eq. (3.13) is obtained with the aid of the
factorization formulas:

„)= N(, )
(H~ —Hpo —Vpo) ) 0 ~nmk),

Cxq [nO]

(3.14)

where

O~ l~nmk) —= p o 0 . ~n mk). (3.15)
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Here it has been assumed that Y '0, ~n mk) = 0, ~n mk). It is evident from Eq. (3.14) that states corre-
sponding to all distinct physically equivalent initial partitions appear on an equal footing.

Finally, the desired exact formula for the inclusive cross section is provided by combining Eqs. (3.5) and (3.13):

~'" = lim —(2~)'p.o/~~k~] (ep. '. „~Gpo(Z ~ +ie)(II, g I, ) ~Cp.
' '. „)a~0

(3.16)

with the states ~4p, , k) being given by Eq. (3.14).
It is important to remember that this derivation yields

a total, not a difFerential, inclusive cross section. To de-
rive a formula for a difFerential inclusive cross section one
would begin with a version of Eq. (3.4) in which the rel-
ative momentum of clusters 6 and B would be held fixed
rather than being an integration variable. The present
derivation then fails at the step leading from Eq. (3.7)
to Eq. (3.8). To proceed further it is then necessary for

the wave operators w&, , „ to be a product of a wave
—(+)

pO .~O ~I I

operator in the internal variables of cluster B and a wave
operator for the motion of 6 relative to B. If the cluster
6 has zero charge, such a factorization occurs if Vpo is
chosen to be independent of the internal coordinates of
the cluster B, and an exact expression for the difFerential
cruss section is obtained. If cluster b has nonzero charge,
the required factorization is not compatible with the form
of the Coulomb part of Vpo which, as mentioned earlier,
is determined by internal consistency requirements. In
this case the spectator model approximation discussed in
the next section must be introduced in order to obtain a
useful expression for a difFerential cross section.

IV. APPROXIMATIONS

Db~(t) is the operator whose presence is required by
the long range of the Coulomb interaction between the
clusters b and B [10]. Since Vpo is chosen so that it
cannot support a bound state of the clusters b and B,
it is assumed that Ub~ also supports no bound state.
Consequently, the equation expressing asymptotic com-
pleteness Is Ib~ ——ub& cub&, where Ib~ is the iden-

t (+) (+)+

tity operator for the coordinates of cluster 6 relative to
cluster B. With the help of the intertwining relation

(Kia + Usga)cu&&
——a&& Ks~, the difFerent parts of the(+) (+)

spectator model assumption can be combined into the
mathematical form

Gpo (z) = ~b~ Gpo (z) ~b~
(+) (+)* (4.2)

where Gpo(z)—:(z —IIpo)
It is the mathematical structure of Eq. (4.2) that fa-

cilitates the definition of difFerential cross sections later
in Sec. IVC.

B. Three-body reaction mechanism

The second major approximation follows from an as-
sumption that the reaction proceeds via a three-body
reaction mechanism that allows Eq. (1.1) to be rewritten
as

In the following a series of approximations are intro-
duced to show how to obtain formulas that can be com-
pared with those of previous authors, all of whom confine
themselves to the case in which the ejectile 6 can be con-
sidered a fragment of the projectile a.

A. The spectator model assumption

The first major approximation is use of the spectator
model [1—8] which assumes that in Eq. (3.13) the effect
of the interaction Vpo in Gpo can be accurately approx-
imated by replacing Vpo by an interaction Ub~ that de-
pends only on the relative coordinates between 6 and the
center of mass of the rest of the particles (cluster B). In
other words, cluster 6 moves in a mean field generated by
the particles in cluster B. In particular, Coulomb polar-
ization efFects are ignored, an approximation equivalent
to the "channel distortion approximation" proposed by
Bencze more than 20 years ago [12]. In the model it is
further assumed that the wave operators

(+) I i (Ko~+Uo~)t D (g) iKsat—
bB t—+oo

(4.1)

exist and are asymptotically complete. Here Kb~ de-
notes the kinetic energy operator for the relative mo-
tion of the centers of mass of the clusters 6 and B and

a+ A = (b, x) + A m b+ (x, A), (4.3)

Like the spectator model assumption, this assumption is
common to all previous treatments [1—8] of inclusive cross
sections for the reaction of Eq. (1.1).

In order that a mathematical form for this second as-
sumption can be developed, it is supposed, without loss of
generality, that the representative partitions n = (a, A)
and P = (b, B) are chosen so that a = (b, x) and
B = (x, A). The three-body reaction mechanism of
Eq. (4.3) is then represented by the three-cluster parti-
tion b = (b, x, A). The projection operators P~o . Riv -+
'Riv and Qgo . 'Riv —+ 'Riv are defined by

(4 4)Pgo = Pgo„and Qho = Iyg —-Pgo .

Here n = (nb, n, n~) with n~ denoting the fixed quan-
tum numbers of the cluster b, as before, and n and n~
denoting the quantum numbers that the respective clus-
ters x and A have in their ground states. The approxi-
mation then consists of the approximation

Gpo(z) Pgo Gpo(z) Pgo = [Z —Iso (Z)] Pgo, (4.5)

where the effective Hamiltoruan H~o(z) has the familiar
Feshbach [13] form,
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Hgo (z) = Pgo Hpo Pgo + Pgo Hpo Qbo (z —Qbo Hp OQb o) Qbo Hpo Pgo . (4.6)

Equation (4.5) allows Eq. (3.13) to be rewritten in the form

where

~(&) = J'd q (&,'z'~ „, (q)la ~
l
&,'z', ~ „(q)),

G*A =—(@ o —sb —[lql /2pba]+ ze —& A —U*A)

(4.7)

(4.8)

(pl&~ p. .. k(q)) = (~ ~« l~bB I p: k)
~(-) 0- (+)* ~(-)

a~o =(a,r )
(4.9)

Here q is the relative momentum and pb~ the reduced mass of the two clusters 6 and B. The quantity p is the relative
momentum of the clusters x and A, and K ~ is the kinetic energy operator for the relative motion of those clusters.
The effective pair interaction U ~ between clusters x and A is energy dependent and otherwise is a function nf the
relative coordinates of their centers of mass. The parameter eb is the bound state energy of the cluster b.

It is now useful to compute the imaginary part of I(e). From Eq. (4.7) it follows that

Im I(e) = J(e) = (2i) ' jd'a('Z~d. .
l
. „(Z)~ G ~ G ~ l~S'~'. . ~(a)). (4.10)

The resolvent equation is then used to obtain

and, hence,

G~x —G~~ ———G~~ (2ze+ [U~x —U~~]) G~~ (4.11)

J(~) = — d'q (+&'p'. . &(q e)l~+ W*~l+&'p'.. &(q, e)) (4.12)

In this last equation the definition

&(—) &(—)
l@&.p. ... ,(q, ~)) = G*~ITb.p. .. k(q)) (4.13)

and the notation W ~ = (2i) [U ~ —U*&] have been introduced. The potential W ~ is, of course, the absorptive
part of the effective two-body interaction U ~.

It is also usual to assume that H~ —Hpo —Vpo Vb, where Vb depends only the relative coordinates of the clusters
b and x and not on their internal coordinates. Combining this assumption with Eq. (3.14) yields the approximate
expression:

(p I@,'p', ~,(q, ~)) = ~~ 'j
' ) . (~'zzqb I~b'&'* G*~ &*b ~~ ' Io'zrzk),

~~ I~a]

(4.14)

where pbo = (q, p) with q and p being the relative momenta of the clusters 6 and B and of z and A, respectively. It
is important that the Hamiltonian K ~ + U ~ acts only on the relative coordinates of the clusters x and A.

C. Approximate inclusive cross sections

The foregoing discussion implies that the exact expression in Eq. (3.16) for the inclusive cross section can be
approximated as an expression involving differential cross sections,

inc ~ d3 inc, EB + inc, NEB (4.15)

The differential cross section

o'"" (q) = lim (2zr) )(z o /lkl (e/zr) (4~,p, , „(q,e)l@~,p, . , k(q, )) (4.16)

is often called the elastic breakup cross section. The differential cross section

o'"" (q) = lim I(2zr) p 0/zrlkl] (4~.p. , „(q,e)l W~g l@~.p. . . „(q,e)) (4.17)
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is correspondingly the inelastic breakup, or breakup fu-
sion, cross section. It is the expressions for differen-
tial cross sections given in Eqs. (4.16) and (4.17), with

&(q, e) defined by Eq. (4.14), that are directly
comparable to those given by previous authors.

V. CONCLUSIONS

The study of inclusive cross sections is not typical to
low and intermediate energy nuclear reactions. Inclusive
cross sections involve an incoherent sum of the cross sec-
tions of various processes proceeding via different reac-
tion mechanisms. At low energies, due to the relatively
small number of open asymptotic reaction channels no
feasible statistical assumptions can be made about the
contributing processes. A careful theoretical treatment
that goes beyond the notion of an inclusive cross section
as an incoherent sum is essential.

In this paper the cross sections are carefully defined
in terms of on-shell multiparticle transition operators,
avoiding any confusion over the basic dynamics. A new
feature of the present formulation is the exact treatment
of particle identity and of Coulomb interactions. The
resulting exact formula for the total inclusive breakup
cross section is given by Eq. (3.16) which then serves as
the basis for introducing approximations.

Approximations introduced into Eq. (3.16) for the
states ~4&( ), &) and for the operator Gpo are logically
independent. Indeed, if the Pauli principle is to be taken
into account, the ejectile can also be produced by an ex-
change mechanism, something precluded in a theory in
which a single reaction mechanism is assumed for the en-
tire inclusive breakup process. It is an important feature
of our treatment, therefore, that the distinction between
the approximations is retained.

In order to be able to derive practical formulas certain
approximations, enumerated in Sec. IV, have to be intro-
duced for the operator Gpo. These approximations are

necessarily associated with simplifications in the underly-
ing dynamical model. The spectator model assumption is
of particular importance because it is essential to the very
definition of the differential cross sections. The assump-
tion of a three-body reaction mechanism, which follows
the work of Austern et at. [5], is less fundamental, as it
is easy to extend the treatment to include mechanisms
with a larger number of clusters.

The two basic types of approximations introduced in
Sec. IV provide a general framework within which to
build dynamical models of the inclusive process. Our
final results, given in Eqs (4.15)—(4.17), are the starting
point for introducing further approximations which must
be considered as less important, and essentially of techni-
cal nature. Therefore care must be taken not to let these
further approximations confuse the fundamental dynam-
ical picture.

Since the present formulation is based on exact multi-
particle scattering theory, we do not investigate the de-
tails of previous three-body approaches. We only point
out that aside &om the DWBA-type picture of Udagawa
and Tamura [1], the only previous systematic treatment
of the reaction dynamics, if particle identity is ignored,
is the that of Austern et al. [5] based on a simple three-
body model. Our results provide a first step toward more
elaborate models.
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