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Realistic phase shift and miming parameters for elastic neutron-deuteron scattering:
Comparison of momentum space and configuration space methods
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Eigenphase shift and mixing parameters for elastic nd scattering below the breakup threshold
are compared as determined by the Faddeev theory and the correlated hyperspherical harmonic
method. The AV14 NN potential is used. The agreement is very good and the numbers can be
considered as benchmarks.
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I. INTRODUCTION

Scattering of nuclei as composite objects upon each
other, each one carrying nonzero spin, can yield a com-
plicated S matrix, which allows for coupling of difFer-
ent channel spins and diferent orbital angular momenta.
The complex spin dependence of the NN interaction act-
ing within and between the nucleon clusters yields an
e8'ective cluster-cluster potential, which depends in gen-
eral in a complicated manner on the channel spins and
the orbital angular momenta. Due to the complexity of
the NN interaction and the few- or many-nucleon sys-
tems, little is known theoretically about the strengths
and presence of the various couplings. The ignorance is
refiected, for instance, in older phase shift analysis (PSA)
for pd elastic scattering. This is the simplest system of
composite particle scattering, where only one of the in-
teracting bodies is composite. All sorts of assumptions
have been made in those PSA's: no mixing of states of
difFerent orbital angular momenta and channel spin con-
servation, or mixing of angular momenta but still channel
spin conservation, or finally the general case (see Ref. [1]
and references therein). Above the nd breakup threshold
all phase shift and mixing parameters will even become
complex. Again up to now no theoretical guidance ex-
ists about what should be reasonable magnitudes of the
imaginary parts and again various sorts of ad hoc assump-
tions have been made [1]. Recently a PSA for Pd elastic
scattering at E~ b = 3 MeV appeared [2] based on new
measurements of various spin observables. That PSA was
compared to results of a Faddeev calculation and in gen-
eral a reasonable agreement could be established. The
theory, however, was based only on a rank-1 separable

approximation to the Paris potential. This was enforced
by the wish to include the pp Coulomb force. Certainly
this has to be improved in the future, since a closer look
into the comparison of the PSA values with that the-
ory exhibits quite some difFerences. Nowadays with the
possibility to treat the NN force in the 3N system with
all its complexity one would like to pin down the phases
much more precisely, especially since there still exists an
outstanding discrepancy between theory and experiment
in elastic Nd scattering: the low energy analyzing power
Av [3).

Here in this article we would like to compare for one
NN potential, AV14 [4], theoretical nd phase shift and
mixing parameters achieved by two basically different
theoretical methods: the Faddeev equations in momen-
tum space [5] and the pair correlated hyperspherical har-
inonic (PHH) basis method [6] in configuration space.
The results can be considered as benchmarks for nd elas-
tic scattering and using NN forces with their full com-
plexity.

Previous calculations [7] for nd phase shifts and the
simple s-wave MT(I-III) potentials will also be confirmed.

In Sec. II we briefly present the two theoretical meth-
ods and the definition of the phase shift and mixing pa-
rameters related to the 8 matrix. Our results are shown
in Sec. III. We end with a brief outlook in Sec. IV.

II. THEORETICAL FORMULATIONS

We briefly review the two approaches used in this arti-
cle, the Faddeev one and the pair correlated hyperspheri-
cal harmonic basis method. The Faddeev equations [5,8]
read
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0 = 0o+ Got&0 . (2.1)

For a conserved total three-body angular momentum J
and a given parity the driving term go can be chosen as
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0p(~, y) = ).):V i(*)iA(qpy)
l=p, 2

(P() )= (&() /) k . (22)

rewritten as GV, where G—:(E + is —Hp —V) and
V is the NN force. Then using spectral decompositions
and performing one integration, the Green function G
can easily be found to have the following form in the
subspace of a fixed JM and restricted to the deuteron
channel:

3 2E=Ep+ qp,4m
(2.3)

Here x and y are the usual Jacobi vectors in configuration
space [5], «(x) (l = 0, 2) the s- and d-wave components
of the deuteron, jA(qpy) the spherical Bessel function re-
lated to a fixed orbital angular momentum A of the pro-
jectile nucleon with respect to the deuteron, and the rest
are obvious angular momentum states in j-J coupling.
The relative momentum qp of the projectile is given by

G"= ).~(*)):«~(*.)~.),=. &~.(')~.i.),&

l=p, 2 AJ

x (—1) —uA (qpy() ioA (qpy) )
4m 1 ~+1 1 (+)

yy qp

& ):«(*')((&i*(*')~i).=i
E'=P, 2

(&*( ') ',
g ) )™ (2.4)

where Ed ( 0 is the deuteron energy and m the nu-
cleon mass. The free 3N propagator Gp acts on the NN
t-matrix t in the integral kernel and that piece can be

I

Here uA and zvA are Riccati-Bessel functions [9]. From
that follows easily the asymptotic form of the Faddeev
component @(x,y) in the deuteron channel:

@(~ y) ~ ) V~(*) ):((&A(*)Xi)i=i(&A(y)»(2)J)
l=p, 2

1 i(qp y —1/2Am) —i(qp y —1/2Am)

2'Lqpy

i(qp y —1/2A'~)
fA' J',AJ

qpy
(2.5)

The transition amplitudes f between different orbital an-
gular momenta A and total angular momenta J of the
third nucleon (not the one in the deuteron) are

I

obvious &om the asymptotic form.
Using standard normalizations for momentum states

~qAm) and configuration space states ~yAm) one finds

-+ tI,A& (qpy )
fA J AJ= dX dy ) pl"(&)

l I I

&&((&i*(~')~ah=i(&A*(y')~i)2) J )
x(z'y ~VPQ) . (2.6)

(yA'm'~qAm) =

and consequently

i"jA(qy)~A A~ (2.11)

z .4m
SAg Jg AJ —8A A8J J 2i fA J AJ (2.7)

The asymptotic behavior can also be chosen differently
by replacing the square bracket in (2.5) by

[ ] M [ ] —ISA A8J JjA (qpy) —KA J A JnA (qpy), (2.8)

where np is again a Riccati-Bessel function, defined
through its asymptotic behavior

The quantity P is the sum of a cyclic and anticyclic per-
mutation of three objects, which typically occurs in a
Faddeev equation [5].

Clearly (2.5) defines the S matrix as [9]

fA J,AJ = qp i" ) (yq (lp"1)1(A' —)J2'JM~VPQ) . '

E
I I

(2.12)

) ((pqpa~VPQ) = ) (pqpn~(E —Hp)PQ)
E

I I

We used the notation of a partial wave projected momen-
tum space basis vector [5].

Let us now relate the elastic scattering amplitudes f to
the form that we use in our momentum space treatment
[10]. Summarizing all the discrete quantum numbers in
(2.12) into n, one has

1nA(z) + ——cos(z ——Avr) .
z 2 (2.9)

= ) (pq n~P(E —H )g) . (2.18)

S = (1+iK) (1 —iK)-' . (2.10)

The index sw in (2.8) stands for standing wave, as is

It then easily follows (using a matrix notation) that the
matrix S is related to the matrix K by

The first equality is due to the Schrodinger equation for
the asymptotic channel state ~yqpn) and Hp denotes a
differentiation to the left. Because of the permutation
operator P there are no surface terms in the partial in-
tegration, which means that Hp acts to the right. Then
we insert the Faddeev equation (2.1) and get
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) (pq nIP(E —H )Q)

= ).(wqoo'IP(E —IIo) IA + GotPO)
)I I

= ).(« ~IPG. 'I& ) + ).(v qo~lPtP&) .

Defining T by

tPQ =—Tgo,

we end up with

(2.i4)

(2.15)

Note that as a consequence of this relation the phase
factor i " can be dropped without loosing unitarity.
Such a definition would be natural if one started from
the unitarity relation for the transition operator U [5].
Here, however, we shall stick to the usual definition (2.7),
connected. to the asymptotic behavior in configuration
space.

In one of the approaches of the authors (Bochum
group) one solves Eq. (2.17) in momentum space and
determines then the UA, J, AJ matrix elements via quadra-
ture [see Eqs. (2.19) and (2.22)].

Now we follow Seyler [ll] and use the channel spin
representation. The channel spin in our case is the sum
of deuteron and nucleon spins jp, and sN, respectively:

) (rpqonIVPl/J) = ) (pqo IPG + PTIyo) (2.16) ~= jd+8N (2.25)

and

Tgo = tPgo + tPGoTgo (2.17)

The last equation is the one that we use in our momen-
tum space treatment [10] of nd scattering. The operator
T generates the full breakup operator Uo directly via [5]

Using the channel spin obviously requires the following
recoupling:

1

Ux z xz = ) ) ~J'~'( 1)
J' J

A — J1
x IJZ( 1) ~ Ugg jgZ 7

Uo ——(1+P)T . (2.iS) (2.26)

In Eq. (2.16) we encounter the operator

U=PG +PT (2.19)

(p q ~ IWo) = ~ 4 i4 j—A 6 (q' —qo)

g
2 «(p ) (2.20)

we find

for elastic nd scattering. Since the driving term (2.2) has
the momentum representation

These new quantities obey exactly the same unitarity
relations (2.24) as the previous U's.

In the other approach of the authors (Pisa group) one
works in configuration space and uses the pair correlated
hyperspherical harmonic basis method, brieHy described
below [6,12]. In this approach the wave function of the
system for an nd scattering state is written as a sum
of two terms (for the details, see Ref. [6] and references
therein)

~ .A' —Afpjgj=qo —KUpgjg„j
2

where

—= ). ~A'*eve') f ~vs'e(u)

x(p'q (I'1)1(A )J'+~IUIp—q

x(11)1(A2)JgM) .

Thus we end. up with the unitary S matrix

(2.21)

(2.22)

The first term 4'~ d.escribes the system when the three
nucleons are close to each other, and goes to zero when
the two clusters are well apart. It can be written as a
sum of three Faddeev-like amplitudes,

@c = Qc(x y') + @c(x~,y'~) + @~(xq, yq) . (2.28)

Each amplitude corresponds to a total angular momen-
tum gM and total isospin TT, ; therefore, if we use
the L-S coupling, the following channel expansion is ob-
tained:

4~.
A'J' AJ A'A J'J '+ A'J' AJ3 (2.23)

A' J',A J ™A'J',AJ

4' ' ) ~ j ~j x j wj . ( )
All J It

The fact that this expression defines a unitary S matrix
follows, of course, also directly from the well known rela-
tions for three-body transition operators [5]. They lead
to the equivalent statement

1Vc

@c(x;,y') = ).C~(x, , y, )P.(jk, i),
Ck=1

&-U» ') = ((&.(*')& %)) .( '." *.k .)
x (t~A, ti )T'r.

(2.29a)

(2.29b)

Each channel is specified by the quantum numbers
, A, L, 8~",V", S with 8 + 8~ + V" odd to ensure

antisymmetrization. The number of channels N taken
into account in the expansion can be increased until con-
vergence is reached. The corresponding bidimensional
amplitude 4 is expanded in terms of the PHH basis
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c'. (*' y') = p""-f-(**)

x ) ulc(p) P~"" (P, )
K=Kp

(2.3o)

where we have introduced the hyperspherical coordinates

x; = p cosP, , y, = p sing; . (2.31)

In Eq. (2.30) the one-dimensional functions f (x;) are
the pair correlation factors included to give the proper
behavior of the system when the two particles (j, k) are
close to each other [12,13]. ~ lPlc ' (P, ) is a hyperspher-
ical polynomial [14] and u~(p) are the unknown hyper-
radial functions which satisfy the conditions u». (p) ~ 0
when p m oo.

The second term 4~ of Eq. (2.27) has to describe the
asymptotic configurations of the system when the two
clusters are far &om each other. In this asymptotic re-
gion, the wave function 4 reduces to 4~, which must
therefore be the appropriate asymptotic solution of the
Schrodinger equation. 4~ can also be decomposed in
three Faddeev-like amplitudes and each of them is writ-
ten as a linear combination of the following functions:

"~zz(»* y*) = ). «. (&')~i(«y')
=0,2.(((&.(*')".") "). &. (y'))™

x(t'"t') (2.32)

where pi (x;) is the deuteron wave function component
in the waves with l = 0, 2, and the coupling is given in
the channel spin representation [11].An asymptotic state
will be labeled as ~ + ~A~, the corresponding phase shift
as b&+&, and the parity II of the state is given by (—1)".

The functions R&(«y, ) of Eq. (2.32) can be taken as
the regular (o—:R) and irregular (o—:I) radial solutions
of the two-body nd Schrodinger equation without nuclear
interaction.

%Pith the above definitions, the ith Faddeev-like am-
plitude for the asymptotic wave function is written as

RAgz~(»;, y;) = O„z~(»;,y;)

+). I~AA ~~A z J(»* y') (233)
A'z'

/

where the matrix elements +K&&, give the relative
weight between the regular and the irregular components.
They are closely related to the corresponding K matrix
elements (following Delves [15], in Ref. [6] this matrix
was called R,):

&+X'+1 ~ ~ZZ'
xzxz =&0 (2.34)

= ). 4~(»' y*)+&iz~(»* y')
1 j3

- ~ -zz'+ ) ~pg~ ~g~z~~ (»ii yi )
A'z'

(2.35)

The unknown quantities in the wave function (2.35)
are the hyperradial functions and the K matrix elements
which can be determined by means of the Kohn vari-
ational principle [6,15], stating that the K matrix ele-
ments, considered as functionals of the wave function,
must be stationary with respect to variations of all the
trial parameters. These functionals are

The variation of the diagonal functionals with respect to
the hyperradial functions urc(p) gives a set of second or-
der inhomogeneous differential equations. The variation
with respect to the K matrix elements gives a set of alge-
braic equations, whose solution represents their optimum
choice [6].

Finally we come to the S matrix parametrization as
given by Seyler [11]. With the exception of the Q =
case (which is two dimensional), the 9 matrix S&,z, &z
is three dimensional and describes, for the two possible

1
parities II = (—1) 2, the following coupling:

By definition of the K matrix its eigenvalues are tan bz&.
This K matrix is identical to the one defined in Eq. (2.8).

The total wave function corresponding to an asymp-
totic state ~ + ~A~ is written, in this approach, as

@wzz = ).[0c(»', y*) + fl~z~(»', y')]
i=1,3

S=
X+2 2 ZW2 2

S 33 33
S

Z+ 2 2' 2 2

l
S

2 2' 2 2

S+

S+
2S+
2

3 1 1
27 2 2

1 1 1
2' 2 2

3 1 1
2' 2 2

S+
X+2

S+
2S+
2

3 1
2) 2

1 1 3
2) 2 2

3 1 3
2' 2 2

(2.37)

The matrix can be diagonalized:

U T 2iEU (2.38)

U=vwx (2.39)

with

where 4 is the diagonal matrix of eigenphases bz+& and
U can be chosen as

o o
0 cos e sine
0 —sin e cos e

cosf 0 sin( )
0 1 0

l —sin( 0 cos( j
( cosg sing 0 )—sin g cos g 0

0 0 1

(2.4o)

(2.41)

(2.42)
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The actual determination of the mixing parameters leads
to some ambiguities. The eigenvectors related to the
eigenvalue problem (2.38) build up the three rows of U.
This can be done in six ways. Moreover, there is arbi-
trariness in the choice of the overall sign for each eign-
evector. Clearly, these various U's lead to quite difFer-
ent mixing parameters. A convention is required and for
weak mixing the following one appears to be natural: we
choose the one which grows steadily out of an S matrix,
which is already diagonal and to which belongs U = 1.
Therefore we arrange the three eigenvectors in U (oc-
curring as rows) in such a way that the dominant com-
ponent stands in the diagonal and has a positive sign.
For the nd scattering investigated below the dominant
component for each eigenvector is always very close to 1.
This convention uniquely defines U and, consequently,
the mixing parameters.

III. RESULTS

b,' (qo) + —2aqo,
2

(3.1)

3

(qo) + —aqo,
2

and equivalently by

(3.2)

227t
zx=o, zw=o leo=o (3.3a)

in the momentum space Faddeev approach, or by

energy. For this reason, it is necessary to include the NN
force up to j „=3 in the momentum space approach
and N = 14 in the configuration space approach in or-
der to get fully converged results. Some of the eigenphase
shift and mixing parameters are also displayed in Fig. 1.

At zero energy only the 8-wave scattering lengths sur-
vive, the doublet (Z = 2) and the quartet (E = 2) ones.
They are defined as the limits qp M 0 of the eigenphases

TABLE I. Comparison of nd 8-wave eigenphase shifts bgq
(in degrees) for the MT(I-III) NN potentials, determined by
solving the Faddeev equations in momentum space (Bochum)
and in configuration space (Iowa/Los Alamos [7]) and by the
pair correlated hyperspherical harmonic basis method (Pisa).

E~~b (MeV)
0.75

1.5
1.5

bye Bochum
b g

—12.1
2

b 3 —42.4
2

bg—02
b g —55.9

2

—20.7

Pisa Iowa/Los Alamos [7]
—12.12 —12.1
—42.37
—20.66
—55.86

—42.4
—20.7
—55.8

Phase shift values and mixing parameters for higher Q
values can be received from the authors on request. They are
in general much smaller than 1.

I et us first reconfirm 8-wave phase shifts for the
MT(I-III) potentials, which have been determined by the
Iowa/Los Alamos [7] group through Faddeev calculations
in configuration space. Our results in comparison to the
ones in [7] are displayed in Table I. The agreement is
perfect.

We used the realistic AV14 NN potential and de-
termined, by both the methods described in this ar-
ticle, the eigenphase shift and mixing parameters for

rr i+ 5+ 7+and — at the nucleon laboratory en-2 2 2
ergies E) b

——1, 2 and 3 MeV below the nd breakup
threshold. The results are displayed in Table II. We
see an essentially perfect agreement, which demonstrates
the maturity of both methods. Since we do not include
the pp Coulomb force, we cannot compare directly to the
recent phase shift analysis [2]. It is also interesting to
note that for P = 2, the quantum numbers of the tri-

1

ton, the phase shift b
&

is correlated to the ground state
2,0

2K+1 Q~ZZ I

00 Igo —0 (3.3b)

in the configuration space approach.
In the momentum space approach we solve Eqs. (2.17)

directly at E = Ep, where no singularities are present
and which is as easy as a bound state calculation. For
more details see the Appendix.

Some of the phase shift and mixing parameters given in
Table II have been calculated before in the configuration
space approach [6]. The present calculation has been
performed by extending the Hilbert space. This explains
the small difFerence between some parameters given in
Ref. [6] and those presented here.

The scattering lengths have been calculated before
[6,16], and our numbers, shown in Table III, agree with
each other and with the ones in [16]. Due to the wrong H
binding energy given by the AV14 potential the doublet
scattering length, which is correlated to the binding en-
ergy, deviates from the experimental value of 0.65 + 0.04
fm. The quartet case is less sensitive and theory agrees
quite well with the experimental value of 6.35 + 0.02 fm.
In the doublet case one has to add a three-nucleon force
to bring [6,16] binding energy and scattering length to
the experimental values.

IV. OUTLOOK

We displayed the formalisms for extracting the partial
wave projected S matrix in elastic nd scattering, in both
momentum and configuration space treatments. The re-
sults found in both methods and using the realistic AV14
NN potential agree very well. The two methods are es-
sentially difFerent; in momentum space the Faddeev equa-
tions have been solved, while in configuration space the
Kohn variational principle has been applied. The almost
perfect agreement in the calculated phase shift and mix-
ing parameters fixes the actual accuracy in the theoretical
predictions of these quantities.

The next step to be done will be the inclusion of the pp
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Coulomb force in order to make contact with the experi-
mental pd data [2] at those rather low energies. This has
already been started in our configuration space approach
[6,17]. Another step is to go beyond the nd breakup
threshold, where all the phase shift and mixing parame-
ters will acquire imaginary parts. This can easily be done
in our momentum space approach. At these energies the-
ory appears to be needed to guide the phase shift analysis
with respect to choices of reasonable magnitudes of the
imaginary parts. Finally one can study the dependence
of the mixing parameters on the NN force input param-

eters (central, spin-orbit, tensor forces) and the deuteron
properties. Investigations are planned.
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TABLE II. Comparison of n& eigenphase shift b'z+z and mixing paraineters (in degrees), deter-
mined in a momentum space (Bochum) and a configuration space (pisa) method for the A&]4 ~~
potential.

JII
1+
2

1
2

bz~
b 2'

—02
'9

2'
b32'

—17.8

1.03
—4.20

12.4

—17.7

1.04
—4.20

12.4

E~~b ——1 MeV
Bochum Pisa

—1.00 —2.57
—28.0

1.20
—6.66

20.5

—2.58

—27.9

1.21
—6.67

20.5

E) b=2MeV
Bochum Pisa

—3.91
—34.9

1.25
—7.54

25.0

—3.91
—34.9

1.26

25.0

Ei b ——3 MeV
Bochum Pisa

3 +
2

3
2

5+
2

5
2

y+
2

b3
2

b1—22
b3

2

'fl

b3
2

b12'
b32'

rl

b3

b1
2

b3
2

rl

b 2'
b1—32
by

rl

b3

b1—42
b3

2

vl

3.73
—47.2

0.579
—1.07

0.651
0.544

—0.113
0.124

—4.14

14.3
—1.31
—0.186
—1.11
—0.0153

0.574
—1.14
—0.286
—0.286
—0.873
13.4
—0.0644

0.130

0.470
0.417

—0.132
—1.06

0.00792
—0.0160

0.377
0.452

—0.152

3.73
—47.2

0.579
—1.08

0.651
0.546

—0.113
0.125

—4.15

14.3
—1.29
—0.182
—1.10
—0.0151

0.575
—1.14
—0.285
—0.287
—0.872
13.3
—0.0645

0.131

0.467
0.416

—0.132
—1.06

0.00783
—0.0159

0.361
0.453

—0.152

5.37
—61.3

1.54

—2.77

0.716
1.01

—0.246
0.502

—6.50

22.7
—1.96
—0.273
—2.30
—0.0923

1.53
—2.98
—0.306
—0.516
—1.58
22.0
—0.258

0.523

0.493
0.734

—0.258
—2.73

0.0480
—0.0966

0.383
0.838

—0.317

5.38
—61.3

1.55

0.717
1.01

—0.245
0.501

—6.52

22.7
—1.94
—0.272
—2.30
—0.0926

1.53
—2.98
—0.311
—0.520
—1.58
21.9
—0.258

0.523

0.491
0.732

—0.257
—2.73

0.0481
—0.0969

0.383
0.846

—0.318

7.23
—70.5

2.41
—4.22

0.779
1.43

—0.386
0.942

—7.21

26.3
—2.75
—0.265
—3.78
—0.211

2.38
—4.57
—0.323
—0.727
—2.17
26.3
—0.478

0.969

0.518
0.993

—0.365
—4.14

0.110
—0.220

0.367
1.21

—0.484

7.24
—70.5

2.42

—4.22

0.783
1.44

—0.385
0.943

—7.25

26.3
—2.72
—0.268
—3.77
—0.211

2.38

—0.331
—0.733
—2.16

—0.477

0.969

0.513
0.993

—0.364
—4.15

0.110
—0.219

0.370
1.21

—0.490
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6 [deg] —4-
1

21

1

b,'
2 '

0 'a(fm)
a(fm)

Bochum
1.200
6.388

Pisa
1.196
6.380

Los Alamos [16]
1.200
6.372

TABLE III. nd doublet and quartet scattering lengths for
the AV14 NN potential.

APPENDIX

E) b [MeV]
In our standard manner [10] for solving Eq. (2.17) we

use a different state l@o), namely,

l&o) ~ I&) = Iv~m~t~)lqomivtiv), (Al)

b [deg]

(b)

p 0
0

—15-

—30-

1
6',

0

o
I

composed of the deuteron with magnetic and isospin
quantum numbers mp and tp, respectively, and the pro-
jectile state with corresponding quantum numbers.

This leads to the partial wave representation (qo = e, )

l4) = ) ).) f&en'sr(n)
l=0,2 AJ

x lpqo(ll)1(A2) Jgm~ + mN (02) 2tiv)

Ei.b [MeV] x (1Jg, mmmm„) (A- J, Omiv)1 A
(A2)

6-

rI, b [deg] 4-

= ) ) Iggz)(1JJ', m~m„)(A2 J, Omiv) —(A3)
AJ

(note A = 2A+ 1). Consequently, the solution of (2.17)
for a fixed J can be written as

2-"
00

p aP

—+1
AD)20 0 0

(pq~lTI&) = ).(pq~l&14~ ~ )(»'» m~m-)

A'
x (A'-' J', Omiv)2 4m

(A4)

Ei b [MeV)

FIG. l. Eigenphase shift and mixing parameters for
=

2 for nd scattering using the AV14 NN potential.

Polish Committee for Scientific Research under Grant
No. 2 P302 104 06, and the Deutsche Forschungsge-
meinschaft. The numerical calculations of the Bochum
group have been performed on the Cray Y-MP of the
Hochstleistungsrechenzentrum in Julich, Germany.

(pqnlTIP&'&') = '/4vr - ) (1J'&,m~m„)
mgm pf

x(X'-,' J', Om~)(pq~lTI&) . (A5)

Using now (2.19) and one of the representations of the
permutation operator P [5] the amplitudes U&, &, && of
Eq. (2.22) can be written as

- wi (~) v i(~) &
U&, z, zz

—— dx), G~'a„(qoqo&) i I
E—

) 7t
l' vr' ( m

l, l

- ( .q"-"ITI&»)

~IS g~ CX =&X'

Here

2 1 OO

qox & 2~ - vi (~i)
m ) —i o

(A6)
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5m=qp 4+x )

(A7)

q2 + 1 qi/2 + q qfl~

In the T amplitude the deuteron pole has been extracted (see [10] for more details). The set of quantum numbers nd
includes those of the deuteron.

In the case of zero energy nucleon-deuteron scattering (qp = 0) this expression simplifies to

ooooo - V'&' (~) V'& (7r)
Uq/ JI gJ 2Eab&P ~Xi Og~t ~g

l'l 7l mp fl ~II

1

—3 4m q"z (As)

klThe geometrical coeflicient g ', ' ' ' contained in G is given in Eq. (A 19) of [5].
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