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Alleged contra-rotation of neutrons and protons
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The claim made in a recent Letter that neutrons and protons in the ground states of deformed nuclei rotate
in opposite directions is based on an artifact arising from using the angular momentum defined relative to the
laboratory frame rather than relative to the center-of-mass frame. This can be demonstrated already for a

simple two-body system such as a diatomic molecule.

PACS number(s): 21.60.Ev, 21.10.Re, 21.60.Fw

In his recent Letter [1] and a subsequent conference pro-
ceeding [2], Otsuka arrived at the startling conclusion that
the neutrons and protons in the ground states of deformed
nuclei collectively rotate in opposite senses. If this were so, a
radical revision of our understanding of nuclear structure,
and, indeed, nuclear forces would be required. The collective
mode closest to this description is the “scissors mode” [3],
but this involves a small-amplitude torsional oscillation of
neutrons against protons, not a free large-amplitude contra-
rotation. In spite of the revolutionary implications, the con-
clusions in Refs. [1,2] were based on an examination of sev-
eral venerable but conventional nuclear models, namely, the
Nilsson model [4] with pairing and angular-momentum pro-
jection, the interacting boson model (IBM-2) [5], and also
the shell model (results to be published). While the emer-
gence of the same qualitative results from such a diversity of
nuclear models might at first sight appear to bolster Otsuka’s
claims, on second thought one wonders how such a salient
feature as contra-rotation could have escaped notice all these
years and what common property might be shared by all
these models to give rise to this feature. First of all, it will be
shown here that the common model-independent feature is
an elementary result of angular-momentum algebra. Second,
it will be argued that Otsuka’s claim, based on using angular
momenta defined relative to the laboratory frame as declared
in the title of his Letter, is spurious since he should have used
angular momenta defined relative to the center-of-mass
frame. The argument given here is based on a much simpler
two-component system, namely a two-body system, where
results qualitatively similar to those of Otsuka can be ob-
tained in the laboratory frame. However, in this model there
is obviously no contra-rotation of the two particles.

Consider a two-component quantum system where the
constituents carry respective angular momenta j, and j,,
with the total angular momentum J=j; +j,. In Otsuka’s pa-
per, j;.j» correspond to the neutron and proton angular mo-

menta. Since j; -j,= 7(|J|*~|j1|*—|j|*), the angle between

the two angular-momentum vectors as defined by Otsuka is
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obtained by coupling the subsystems to a resultant angular
momentum J (a refers to quantum numbers other than angu-
lar momentum). It is immediately clear that if J=0
((3%)=0) then j,=j,=j and (|j;*)=(|j,|?), which implies
cosf#=—1 from Eq. (1). This explains the ubiquity of Otsu-
ka’s results for different models involving the coupling of
neutrons and protons. In addition to this result for the ground
state, Otsuka also describes an approximately parabolic in-
crease of (j;-j,) with increasing J for the neutron-proton
systems. While a quantitative calculation is model dependent
in this case, the qualitative behavior can be obtained for a
simple two-body Hamiltonian as shown next.

Consider the general spinless' two-body system described
by the Hamiltonian

|P1!2 |P2!2
H——+2—mz+ V(rl—rz), (3)

which can be treated in the textbook manner by introducing
the center of mass (c.m.) and relative coordinates. In order to
obtain eigenvectors with a finite norm as in Otsuka’s work,
one may employ the device of working with the modified

Hamiltonian H=H + $ MQ?|R|?, where the vector R is the
position of the c.m. and M=m;+m,. In this way, the
Hamiltonian for the c.m. motion becomes that of a three-
dimensional isotropic harmonic oscillator centered at the ori-
gin. Ultimately, the spurious c.m. excitations can be pushed
up to high energies by making the frequency () arbitrarily
large.

Clearly, to meaningfully check the opening angle between
the angular momenta of the two particles, one should calcu-
late (1;-1,), where I;=(r;—R)X[p;— (m;/M)P], i=1,2, is
the angular momentum of each particle relative to the c.m.
frame (P is the total momentum relative to the laboratory
frame). Upon transformation to the c.m. and relative coordi-
nates, one easily obtains I[;=(m;/M)I, where I=rXp
is the total angular momentum relative to the c.m.
frame, with r=r;—r, being the relative vector and

The inclusion of spin is straightforward, but irrelevant in the
present context.
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p=(m,p;,—mp,)/M its conjugate momentum. In
this _case, there is no question of contra-rotation since
(- LY=(uw/MYa?/(/ +1)=0, where / is the angular-
momentum quantum number of the relative motion and
M=mm,/M is the reduced mass.

Suppose that instead one follows Otsuka and calculates
(l;-1,), i.e., using the angular momenta relative to the labo-
ratory frame and a wave function that is the direct product of
a relative wave function and that of the c.m. oscillator
ground state. After a straightforward calculation, one finds

2 2
1

m m
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= (L) B2+ )=y,
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which is exact. Therefore, this result depends on the
c.m. zero-point fluctuations. For any state with /=0, such
as the ground state, Eq. (4) implies cos6=—1, which holds
independently of any intrinsic deformation, as expected from
the earlier discussion. If the potential V(r; —r,) has a deep
minimum at |r|=r, to give a diatomic molecule, and if () is
chosen very large [ Q>#%2/(ur§)], then only the first term
on the far right of (5) contributes significantly, and one finds
from (4) that

w? i
(h-b)y=—57 ﬁﬂréi—ﬂ—/[ R/ +1), (6)

and

cosf=—1 (7 +1), (7
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which gives the parabolic dependence on / similar to that
found by Otsuka.

The important lesson taught by this simple model is that
the separation of the c.m., while essential, is not enough; the
simultaneous transformation of the angular momenta to the
c.m. frame is also required to obtain correct results. Since
this was not done in Refs. [1,2], the conclusions concerning
the existence of contra-rotation are unfounded. There are
other physical reasons for disbelieving the existence of such
a mode. For example, it is easy to see that time-dependent
mean-field theories, while permitting the scissors mode, dis-
allow uniform contra-rotation, unless, of course, the neutron-
proton interaction were to vanish (which indeed would con-
stitute a radical revision of nuclear forces). The cranking
model [6], whose citation by Otsuka suggests harmony with
his picture, actually describes neutrons and protons rotating
in the same sense.

The above discussion also indicates that Otsuka’s result
cosf=—1 is not limited to the ground states of even-even
deformed nuclei, but should also hold for doubly closed-shell
nuclei, where the notion of “neutron and proton ellipsoids”
does not apply. A corrected calculation properly taking ac-
count of the c.m. degrees of freedom can certainly be carried
out for the shell model starting with a translationally invari-
ant effective interaction, but this would be more difficult
within the framework of the Nilsson model with pairing or
the IBM-2. The Nilsson model, being a phenomenological
mean-field approximation, is not translationally invariant to
begin with, so that the spurious c.m. motion may be signifi-
cantly mixed with physical modes. However, methods have
been suggested for adding residual interactions in such cases
to restore translational invariance [7]. The IBM-2 is even
more problematical since it is a phenomenological boson
model whose relation to microscopic physics is still tenuous.
Therefore, Otsuka may have exposed a real deficiency in this
model, the correction of which would require the identifica-
tion of c.m. degrees of freedom. Perhaps this can be done by
either adding dipole bosons or deriving the model from a
microscopic shell model, taking into account the c.m. de-
grees of freedom.
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