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Pygmy dipole resonances in the calcium isotopes
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We present microscopic density functional theory calculations of the total dipole absorption cross sections of
the even-A calcium isotopes from Ca through Ca. The results reveal the onset of a collective dipole

oscillation occurring at low energy and decoupled from the giant dipole resonance. The radial density fluctua-

tions associated with this low-lying mode have the character of the pygmy dipole resonance predicted to exist

in neutron rich nuclei.

PACS number(s): 21.60.Jz, 25.30.Fj, 27.40+2

Recently, the availability of beams of light, unstable nu-

clei has elicited increased interest in the physics of neutron
rich nuclei [1]. These nuclei display several features not
readily observed in stable light nuclei with N=Z. One of
these is the so-called "neutron halo" [2], which has been the
focus of intense investigation [3].Another is the "soft" [1,2]
or "pygmy" [4] dipole resonance (PDR), which is thought to
result from the excess neutron density vibrating out of phase
with a stable core nucleus [5,6]. This paper presents results
on the structure of that particular resonance obtained from a

microscopic study of the the electric dipole response of the
calcium isotopes.

We first present the density functional theory (DFT) for-
malism [7—9] used to determine both the ground state prop-
erties of the nuclei and their collective excitations. This
theory is an elegant method for simplifying the many-body
problem and has found a wide range of applications, prima-
rily in atomic, molecular, and condensed matter physics
[7,8]. In these contexts it is based on the rigorous theorem of
Hohenberg and Kohn [10],which establishes the total energy
as a functional of the electronic density; the density which
minimizes the energy functional is then the true ground state
density of the system.

Extensions of the theory to nuclear systems is hampered

by the absence of an external potential confining the nucle-
ons. Although some formal justification for the theory in the
nuclear context has appeared [9],most applications are based
on a heuristic generalization in which the energy is consid-
ered a functional of both the proton (p~) and neutron (p„)
densities [11,12]. Such applications have demonstrated that
the theory provides a reasonable description of ground state
properties, but no applications to collective response have
been presented yet.

The functional we employ is composed of several terms,
which we write as

&[P P ]=&k[P, ,P.l+E.[P,]+E.[P, P.]+&vt:P, P.].
(1)

Following the electronic example [13], we define

E/, [p~, p„] to be the kinetic energy of a collection of Z non-

interacting protons and N noninteracting neutrons, which
have densities p~ and p„, respectively. This kinetic energy
term can be expressed in the form

Ek[pz, p„]=g d r Pz,(r) — V P&„(r) (2)2' j

in which the single-particle wave functions satisfy the Schro-
dinger equation

V'P„,(r) +v,'tt(r) P„,(r) = e„P„(r). (3)

The function u,'tr(r) is a local effective potential confining
the nucleons with isospin index r, and ez, is the correspond-
ing single-particle eigenvalue. The above assumes the exist-
ence of such a local potential which allows the construction
of the nucleon densities according to p,(r) = Xz~ @„gr)~

.
The energy associated with the Coulomb interaction is

simply

t' „ , p, (r)p, (r')

(3) (3l &/3

—e — — drp '(r).
(4) ( ~) (4)

The first term represents the classical Coulomb self-energy,
while the second denotes a local approximation to exchange.

The E„[p~,p„] term encompasses part of the effects of
the strong nuclear force as represented by the energy of in-
finite nuclear matter. Within a local density approximation
[10]we have
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where p(r) = p~(r) +p„(r) and e„(p~,p„) is the energy per
nucleon of infinite nuclear matter having the densities p~ and

p„. Following Brueckner et al. [11],we use the parametri-
zation

(6)

where n is the asymmetry parameter defined as

n=(p~ —p„)l(p~+ p„). With ni=1, nz=413, and n&=5l3,
the coefficients a; and b; were obtained by fitting to the
equation of state of ter Haar and Malfliet [14]; we find

a g
= —0.684, a p

= —0.943, a3 = —1.743, b g
= —779.5,

bz= 1185.0, and b3= —345.6. These values give the energy
in MeV when the density is expressed in units of fm . The
coefficients differ from those of Lombard [12], which were
found to give unphysical interaction energies for high densi-
ties and large asymmetries.

The final term, Ev[p~, p„], is a correction for the inho-

mogeneities in a finite nucleus. It was taken in the form of a
gradient correction [11,12]

The equilibrium properties are determined by minimizing

E[p„,p„] with respect to the proton and neutron densities.
This is achieved [13] by solving Eq. (3) self-consistently
with v,'rt(r) defined as the functional derivative of the inter-

action part of the energy functional in Eq. (1). To reproduce
the experimental binding energies, the parameter y was ad-

justed accordingly; it was found to exhibit essentially a linear
relationship with neutron excess, from a value of S0.7 MeV
fm for Ca to 32.5 MeVfm for Ca. For each of these
isotopes the calculated rms radii fell within experimental un-

certainty of the observed values [15], indicating that our
method provides a realistic characterization of ground state
properties.

Having determined the ground state proton and neutron
densities for each of the calcium isotopes, we then performed
linear response calculations to examine the effect of electric
dipole perturbations. Within the DFT formalism [16,17], the

variation in the equilibrium density is given by

~v[p„p.]= «(rjl ~p(r) I'+ tel ~(p(r) tr(r))l'}

(7)

where», „,(r, ~) is the externally applied perturbation at

frequency co and

which can be viewed as the leading terms in a systematic
gradient expansion. This correction is essential since without
it the nuclei are found to be severely overbound and con-
tracted. The gradient coefficients y and ~ are in principle
functions of the nucleon densities, but in practice we have
treated them as constants for each particular nucleus. For the

ground state properties, ~ plays a secondary role since the

asymmetry n is typically small in the nuclei studied, and

could be set to zero without adversely affecting our fits to the

equilibrium properties. However, as we will see, ~ cannot be
neglected since it has an important effect on the dynamic
response.

accounts in an average way for the effects of the nucleon-
nucleon interactions in the polarized state. In contrast to the
usual nuclear random phase approximation calculations [18],
this effect is incorporated through changes in the effective
potential acting on the nucleons rather than by means of an

effective (nonlocal) nucleon-nucleon interaction represented,
for example, by the Skyrme interaction.

Finally, the noninteracting density response function ap-

pearing in Eq. (8) is given by

(10)

where the states P;(r) and @ (r) are eigenstates of the

ground state Hamiltonian. The factor of 2 accounts for the

assumed spin degeneracy of the occupied states. %hile the

sum over m includes all eigenstates, transitions to occupied
m states cancel and therefore do not contribute to the re-

sponse function, as required by the Pauli exclusion principle.
The response function is conveniently calculated by express-

ing it in terms of single-particle Green s functions [16,17],
which in turn are constructed from regular and irregular so-
lutions to the radial Schrodinger equation. In this way, both
continuum and bound state excitations are included.

In our application to the study of electric dipole responses
of the calcium nuclei, we employ the electric dipole operator

as the external potential. Eliminating center-of-mass motion
to avoid spurious isoscalar E1 resonances, the dipole opera-
tor is written

». (r.~) = X 9 X " &i (r)
r I m )

with effective charges q = eN/A for protons and

q„= —eZ/A for neutrons. Note here that Eqs. (8) and (9)
constitute a pair of integral equations for the density fluctua-

tions Bp,(r, co) and that by discretizing the radial variable,
these integral equations are reduced to a set of linear equa-

tions which are solved numerically to obtain the density fluc-
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FIG. 1. Calculated total dipole absorption spectrum for Ca and

Ca as a function of the excitation energy.

tuations. Once these have been determined, the total photo-
absorption cross section is calculated using

4 7Tco
rr, b,(co)= dr+ r Y,* (r)g q,lm Bp,(r, co).

(12)

The F. l absorption spectra for Ca and Ca are dis-

played in Fig. 1. In both cases the dominant feature centered
at approximately 19 MeV corresponds to the giant dipole
resonance (GDR) and exhausts the Thomas-Reiche-Kuhn
sum rule to within a few percent. Although the ~ parameter
in the gradient correction was not needed for the ground state
calculations, it is required to position the GDR correctly. In
the case of Ca, the GDR appears at 15 MeV and is far too
narrow when ~= 0, while a value of ~= 363 MeV fm places
the resonance close to the experimental position with a rea-
sonable width. This effect can be easily understood in view
of the fact that the gradient correction associated with ~
tends to inhibit a large proton-neutron asymmetry in the sur-

face region of the nucleus. Since this is precisely the charac-
ter of the isovector GDR polarization, a finite z value intro-
duces an additional restoring force which acts to shift the
GDR up in energy. On the other hand, for an isovector po-
larization in which the total density remains essentially con-
stant, the parameter y has no effect. We have used the same
value of sc for all the isotopes and find that the GDR remains
close to 19 MeV as shown in Fig. 1 and consistent with
experiment [19].

We also obtain, below the GDR, several narrow peaks
which are derived from single-particle dipole transitions.
More interestingly, we find a broad resonance for the
neutron-rich isotopes in the energy range 5—10 MeV. In Fig.
2, we focus on this particular spectral range. The relative
strength of the resonance increases as more neutrons are
added to the valence f shell —a result quantified in Fig. 3,
where we display, as a function of neutron excess, both the
centroid position of the resonance and its integrated strength.

The smooth character of the resonance is evidence of a
collective excitation of decidedly different character from the
sharply peaked single-particle-like excitations. To better es-
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FIG. 2. Calculated low energy photoabsorption spectra for
Ca— Ca. The smooth broad peak seen in all isotopes and high-

lighted by a solid line is the part of the spectrum identified as the

pygmy dipole resonance. The dashed portions correspond to single-

particle-like excitations as distinct from the PDR.
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FIG. 3. Centroid energy and integrated strength of the pygmy
dipole resonance calculated as a function of the number of neutrons

excess to the Ca core.

tablish the character of this collective state we plot in Fig. 4
the variation of the polarization density along the nuclear
axis for an excitation energy of about 8 MeV. This figure

displays a neutron polarization which clearly can be inter-

preted as a surface neutron density oscillating out ofphase
with a stable Ca core, thus consistent with the character of
the collective excitation usually associated with the pygmy
dipole resonance.

The possibility of a PDR in neutron-rich calcium isotopes
has been investigated recently by Suzuki, Ikeda, and Sato [6]
using a three-Quid model first introduced by Mohan, Danos,
and Biedenharn [5]. In this model the valence neutrons are
treated as a distinct component from the neutron Quid com-
prising the core of the nucleus. With this additional degree of
freedom, both the GDR and PDR collective modes were ob-
tained [5]. Suzuki, Ikeda, and Sato [6] imposed the addi-

tional constraint that the core neutrons oscillate together with
the protons, thereby eliminating one degree of freedom and
leaving only the PDR. In addition, these authors arbitrarily
choose Ca as their core and considered an exotic range of
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FIG. 4. Nucleon density variation calculated in the region of the

pygmy resonance. Ca is shown at 8 MeV, Ca at 7.6 MeV. The
solid line is for protons„ the dashed line for neutrons.

isotopes reaching up to 'Ca. Their model predicts the posi-
tion of the the PDR to increase with neutron excess in con-
trast to our results which show the opposite behavior. One
can understand such a result by invoking an analogy with a
simple harmonic oscillator model where the resonance fre-
quency is determined by the restoring force per particle.
Since our PDR is associated with continuum excitations of
the 1f neutrons, the separation energy is a measure of how
tightly bound these neutrons are. Thus, as the threshold en-

ergy for 1f neutron emission decreases with increasing neu-

tron excess, the centroid energy of the PDR should be ex-
pected to decrease with it, as we indeed find in our
calculations.

Another quantitative disagreement with the hydrodynamic
model is seen in the strength of the PDR. In our calculation
for "Ca, fox example, the PDR has a strength of ~2% of
the total absorption cross section (most of which is concen-
trated in the GDR). On the other hand, the hydrodynamic
estimate is about 10% for a system with a neutron excess of
8. However, these differences should not be overstated since
the hydrodynamic description is after all a simplified picture
with obvious limitations. In fact it was constructed specifi-
cally to yield the PDR, whereas in our calculation this col-
lective mode arises naturally through the microscopic treat-
ment of the full dipole response.

In conclusion, we have shown that the density functional
formalism can provide a unified description of both ground
state and collective nuclear properties. In the case of calcium
isotopes with N&Z, we find a collective dipole mode at low
energies —the so-called pygmy dipole resonance —which in-
volves the oscillation of the neutron excess against a Ca
core. These results of course have a broader significance in

the context of the PDR in heavier neutron-rich nuclei where
their presence has already been ascertained [4], as well as in

the physics of neutron halos [1].This, we hope, will encour-
age experimental studies to explore the onset of collective
resonances well below the GDR, especially now that higher
resolution machines are becoming available.
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