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Decay properties of giant multipole resonances: Hybrid model for channel types competition
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The decay properties of giant multipole resonances (GMR) are studied using the hybrid model in the context

of channel type competition. We found that the analysis of GMR decay with several open channel types has the

same analytical expression as when only one channel type is allowed. The generalization of the hybrid model

presented provides a simple way to study the competition between the direct and statistical decay of GMR.

PACS number(s): 24.30.Cz, 24.10.Eq, 24.60.Dr

The study of the decay properties of giant multipole reso-
nances (GMR) is of paramount importance for the unravel-

ing of their dynamical and microscopic structure. Since giant
resonances are located at high excitation energies, they decay
mainly by particle emission. Treated as isolated resonances,
the GMR are characterized by a width composed of two

pieces: the "escape width" I ~, which represents the cou-

pling of the GMR to the continuum, and the "spreading
width" I ~, which measures the degree of fragmentation of
the strength due to coupling to complex intrinsic nuclear
configurations (e.g. , two-particle —two-hole) [1].Of course,
whereas the first stage of the reaction, namely the giant reso-
nance population, is a very coherent process in which one-
particle —one-hole configurations act in phase, the other,
more complicated, stages are complex enough to call for a
statistical treatment.

It has so far been a common practice to analyze the par-
ticle spectra originating from the decay of GMR with one of
two extreme models, which ignore completely the interme-

diate, preequilibrium stages [2—5]. These models either as-

sume the dominance of I ~, meaning the GMR predomi-
nantly decays "directly, " or the predominance of I ~, which

implies necessarily that the fragmentation of the resonance
into the complex background is complete [3,4]. In this last
case the Hauser-Feshbach theory [6] is utilized in the analy-
s1S.

Within the hybrid model theory [7] the GMR decay by
particle emission accounts both for the direct component and

for the equilibrated compound nucleus part. This theory was
used only in the analysis of exclusive data of the giant mono-

pole (EO) resonance in Pb [7,8].This analysis is based on
the expression

b; =(1—p, )
XIX,-~'D

8,+p, H,
+p,

xi', (r,', + p, r,'D)
(2)

where k is a running index over the different channel types
(k= 7r for protons, k= v for neutrons, . . . ), and the sum in

I means that the denominators in Eq. (2) are summed over all

particle channels. In Eq. (2), we have

g b', =g P,=l,
k l i /

k

(3)

In the application of the above theory for F.O decay in

Pb [7] the meaning of the mixing parameter p is com-
pletely connected with the statistical component of the neu-
tron channels since only these channels are open. In situa-
tions where more than one type of channel is open the
connection of p, with the statistical component of each chan-
nel is not possible since the p, in Eq. (1) is necessarily the
same for all types of channels. Also the analysis of experi-
mental data when more than one type of channel is present is
complicated because we need information on all types of
channels at the same time.

The objective of the present Rapid Communication is to
develop a generalization of the hybrid model that accounts
for the separation and independence of the particle channels

types. In this hybrid model generalization the p, parameter is
composed of the various p, k's belonging to each open chan-
nel type, where the p, z provides the statistical component in

the respective branching.
In order to start our formalism we note that, if various

channel types are present in the decay, Eq. (1) is written as

where b; is the branching ratio for particle emission to the ith
level of the residual nucleus, which is written in terms of the

compound nucleus and GMR doorway transmission coeffi-
cients, ~;, and ~;D —2mI",. pD, and a mixing parameter

p, = I ~/I measuring the degree of fragmentation of the door-

way. The quantities I,- and pD are the partial escape width
and 1p-1h density states, respectively.

b, =(1—
/J., )PD p +p,P,

c ) -g) ). .D+ p
(4)

with the definitions

with PI,= X;b,- dered as the emission probability of the kth

particle (obtained from the experimental data).
Then we introduce in Eq. (2) the Po and P, probabilities

as follows:
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and

PD=k

X,(X!r,'D)
(5)

@Pc=PkPk,
k (13)

which contains only terms in the kth channel.
With the definitions in Eqs. (11) and (13) the branching

ratios in Eq. (4) become

X,(P,+pd )

XEX;(~,+p ~D)]
(6) b, =(1—p,k)Pk

j jD

Pk= g b, = (1 p)PD+—PP, , (7)

with the normalization XkPk= 1. Since the p, parameter con-
tains information about all channel types, we need to rewrite
each piece of Eq. (7) in such a way that Pk contains only
information on the respective k channel. Then we start by the

recognition of the direct portion (1—p)PD in Eq. (7).
If we consider only situations where the GMR may be

treated as a single doorway we can write the escape width as
a sum of the partial width of the k's particles:

(PD and P, are the direct and compound branching to the k
channel type).

From the definitions given above, the Pk probability in

Eq. (3) can be obtained by performing a sum over the i index

in the b, 's of Eq. (4):

8,+p, H

Xj(v",,+ p, r,"D)
(14)

(15)

Utilizing XkP, =1, as defined in Eq. (6), we obtain the

p, parameter by performing a sum in k in Eq. (13) which is
composed of all channel types:

In this equation, the competition between direct and statisti-
cal decay in systems where different particles may be emit-
ted is clearer than in the analysis by Eq. (2). However, some
information on the interference between the channel types
still remains in the p, parameter of the second term in the
right-hand side of Eq. (14).At this point let us call this term

kS;, :

rt=g rt,
k

(8) P=X PkPk
k

(16)

T

PD=~~ (9)

and since the 7";D is directly connected with the partial escape
width, we have PD written as a ratio of the partial and total
escape widths by Eqs. (5) and (8):

Now if we introduce the p, expression [Eq. (16)] in Eq. (15)
we obtain

(~ic P'kPk~(P) XIPkp'I !~iD
S;,= PkPk XJl. ( ~j + 8'kPk~jD) + X I4 kP'IPI~JDI

(»)

rt
p=1 (10)

Assuming that I'= I'"+rt and observing that p, =r t/r we

may rewrite it as

The interference terms are apparent in Eq. (17) and are
contained in XI+kpIPIv;D of 5;, . In cases where the statis-
tical decay dominates and there is a predominance of one
channel type (as in a medium mass nucleus), the interference
terms may be disregarded in comparison with the other
terms, allowing the approximation

These equations permit us to separate the direct portion in

Eq. (7) for each jr channel by the substitution of Eqs. (9) and

(10) in (1 p, )PD as follow—s:
4+ pkPk~D

Stc P kPk' 'X,(~+pkPk~D)
(18)

I t

(1—p, )PD r ——(1 p,„)Pk,— —

where p, k is defined as

This approximation allows the complete separation of the
channels types, permitting the analysis of the decay spectra
of each particle kind with independent treatment between the
channel types:

I 'k 1
k

(12)

which is a parameter analogous to the p, of Eq. (2) and mea-
sures the statistical component in the decay through the kth
particle channel.

The statistical component of Pk [PP, in Eq. (7)] can be
rewritten using Eq. (11) as

8,+ p.„P,P
b;=(1—P,k)PkX ~ +P,kPk

j jD Xj jc P'k k jD
(19)

The comparison between the above expression and the
experimental data provides an estimation of the p,k param-
eter which measures directly the statistical component of the
respective channel type. With the analysis of the spectra of
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all possible particles we can obtain the p, parameter from Eq.
(16) and the partial or total escape width in Eqs. (12) and (8),
respectively.

Within this approximation the unitarity of the b, [Eq.
(19)] is lost in the sense of the hybrid model [Eq. (14)]
because we are disregarding the interference terms. But the
unitarity is recovered in this approximation when we write
the S,, in Eq. (18) to contain only terms which correspond to
the specific channel type. The unitarity of Eq. (19) of our

approximation is equivalent to disregarding 7.;D in the statis-
tical component of the hybrid model formalism [see Eq. (1)],
which is similar to that of Brandenburg et al. [9] and Piza
et al. [10].

The generalization of the hybrid model proposed here
shows that the studies of the GMR decay with channel type
competition have the same form as that performed when only
one channel type is open and shows that each spectrum is
analyzed independently, having its own p, k . This approxima-
tion provides a simple way to study the competition between
direct and statistical decay when different kinds of particles

may be emitted in the process.
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