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A method of truncating the large shell model basis is outlined. It relies on the order given by the unperturbed

energies of the basis states and on the constancy of their spreading widths. Both quantities can be calculated by
a simple averaging procedure. The method is tested in the sd shell where the JT dimensions are of the order
of a few thousand. It proves to be very effective in the middle of the fp shell where JT dimensions of the order

of a few times 10 are truncated to a few times 10 .

PACS number(s): 21.60.Cs, 21.60.Ka, 27.30.+t, 27.40.+z

Shell model calculations of the ground state and low-lying
excited states are of interest for our understanding of nuclear
dynamics and the (effective) nuclear forces. They are also of
great interest for the prediction and analysis of various pro-
cesses (Gamow-Teller rates, parity nonconservation matrix
elements, electromagnetic transition probabilities, isospin
breaking matrix elements, spectroscopic factors, etc.) impor-
tant for nuclear astrophysics and tests of the fundamental
interactions in nuclei. Unfortunately, even for light nuclei,
the large model-space dimensions present a challenge for the
traditional diagonalization methods (see, e.g., Ref. [1]).Dur-

ing the last few years other approaches to this problem have
been vigorously investigated [2,3].

In this work we outline a quantitative method of truncat-
ing the nuclear shell model spaces to manageable sizes. To
achieve this we show that the basis states, whose unper-
turbed energies (the diagonal matrix element of the Hamil-
tonian) are far away from the lowest one, give relatively
small contributions to the structure of the ground states and
low-lying excited states. This statement can be quantified
due to an interesting property of the squared amplitudes of
the basis states (denoted by the index k), l Ck l, as a function
of the eigenvalues, E . Figure 1 presents two of these dis-
tributions for the basis state number 2 (left) and for the basis
state number 825 (right). The basis states are ordered by the
JT dimension of the partition (distribution of particles in the

Ek X ICk('E. =Hk. k

and the widths are given by

k', k' (2)

single particle levels) to which they belong. The largest par-
titions are those on the left-hand side of the k axis in Fig. 2
(the dimension of partitions is proportional to the length of
the horizontal thick lines in this figure) while the smallest
partitions are those on the right side of the k axis. Basis state
number 2 belongs to the largest partition, which is situated in
the middle of the unperturbed spectrum (Ek in Fig. 2), while
the basis state number 825 belongs to a small partition whose
unperturbed energy is closer to the lowest eigenenergy. We
note (see left-hand side of Fig. 1) that the contribution of the
basis state number 2 to the ground state (Ei = —135.9 MeV)
is small. One observes that the distributions of lCkl are
close to a Gaussian. It is straightforward to show that their
mean values (centroids) are given by the diagonal matrix
elements of the Hamiltonian
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FIG. 1. IC I
vs E for basis state

number 2 (left) and basis state number
825 (right).
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FIG. 2. Energy centroids and o.
widths of the basis states coeKcients dis-

tribution [see Eqs. (1) and (2)j.
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The small squares in Fig. 2 represent these quantities for the
case of 12 particles in the sd shell with J T=O+0. The
Wildenthal interaction [1) has been used for this plot. We
have also used different interactions and have carried out
calculations in the fp shell, but the results are qualitatively
the same. To obtain the points, no diagonalization is neces-
sary but only a knowledge of the Hamiltonian matrix as
given in Eqs. (1) and (2). Due to the empirical fact that cr is
nearly constant for all basis states we can, for example, con-
sider only those basis states whose centroids are lower than

H,„„rr=(EI),+3o, where o is an average value for o».
One would like also to avoid the construction of the large

Hamiltonian matrix. A useful procedure is to use some aver-

age values for the quantities in Eqs. (1) and (2). One simple
way to proceed is to use the m-scheme average values given
by French and Ratcliff [4]. They are presented in Fig. 2 by
the big squares. (For clarity, the two upper panels decompose
the lower left-hand panel in two components: the left for the

exact centroids and the right for the French and Ratcliff av-
erages. ) They are constant within every partition. The aver-

age values slightly overestimate the exact values due to the
fact that they are derived for the m scheme, whereas the
physical states we work with are projected onto good angular
momentum and isospin. However, the m-scheme estimate is
good enough for our purpose.

Our method consists of retaining only those partitions
whose average centroids (calculated with the approximate
formulas [4]) are smaller than H~„rr. The method has the
advantage that one can include step-by-step new partitions in
the order of their centroids. We have tested the method in the
sd shell where we know the exact results. In Fig. 3 we show
the results for the lowest 0+1 states in the case of 10 par-
ticles in the sd shell [o.=9.7 MeV, (Ek) +3o= —66.5
MeV which corresponds to a dimension of 310 in Fig. 3].
The left part of Fig. 3 shows the eigenvalues of the ground
state and first excited state as a function of dimension of the
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FIG. 3. Energies of the two low-lying
states vs the dimension of the truncated
space (left); overlaps of the truncated

space wave functions with the exact ones
(right).
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FIG. 4. Energies of the first

hvo los-lying states of Fe as a
function of truncation diagonal
matrix element (left) and vs the

dimension of the truncated space
(right). The filled circles with the

error bars are the result of a recent
Monte Carlo calculation [6].
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truncated space. The dimension of the full space is 1132.The
filled circles (to the right) are the exact values. One can see
that with relatively truncated spaces one can approach the
exact eigenvalues. To have another measure of the precision
of the method, we plot in the right-hand part of Fig. 3 the

overlaps of the approximate ground state wave function with
the exact ground state wave function (full line). One can see
that with less than 30% of the full dimension one can obtain
more than 90% overlaps. The dashed line represents the "op-
timal" truncation in the sense that we retained only those
basis states whose exact amplitudes are the highest. One can
see that our simple truncation procedure is near to the "op-
timal" one.

Our investigations in the sd shell (maximum JT dimen-

sion of the order of a few thousand) show that by using this
method one can reduce the dimension of the Hamiltonian
matrices by typically a factor of 3. Going to larger model
spaces one might expect this factor to be even higher, par-
ticularly in cases where simple shell model configurations
(e.g., those with the lowest Ek in the left-hand side of Fig. 2)
represent a reasonable approximation to the exact ground
state wave function. As an example we investigated the
0+1 low-lying states of Fe (14 particles in the fp shell,
with the Brown-Richter interaction [5]) using our truncation
method. The dimensions of the problem make the traditional
calculations unmanageable, even with the next generation of
computers: 2229178 JT dimension and 345400274
m-scheme dimension. The results of our truncation method
are presented in Fig. 4 [o.=8 MeV, (Ei,);,+3o = —143.6
MeV]. We do not have exact results with which to compare,
but we can refer to the result of a recent Monte Carlo calcu-
lation [6] indicated by the filled circles with errors bars in

Fig. 4. The comparison is encouraging, and our method
should allow the calculation of energies to within less than 1
MeV accuracy for the ground states and low-lying excited
states for even larger model spaces.

Usually, the shell model spaces are truncated according to
some qualitative scheme by retaining only the lowest
Hartree-Fock configuration and some simple one-particle-
one-hole (1p-1h) or 2p-2h configurations (see, e.g., Ref. [7]
for a recent survey of this method in the fp shell). These
methods are useful for some particular class of problems;
they are a straightforward extension of the Tamm-Dancoff

approximation. They do not fully take into account the de-

tails of the interaction between the valence particles. Our

method is more general; it selects the most important parti-

tions determined by the interaction, and it is suited for a
hierarchy of successively better approximations.

A model which has some similarities with our method has

been presented in Ref. [8] and slightly refined in Ref. [9].
The crucial differences between our approach and that given
in Ref. [9]are the following: (i) We have proposed a general
quantitative criteria for selecting the most relevant configu-

rations based on the o. widths given by the off-diagonal ma-

trix elements of the Hamiltonian. The criteria used in Ref. [9]
were based on the observation that one can use the lowest
33% of the total configuration as a reasonable approximation
for model spaces with JT dimensions of the order 1000—
2000. Our findings coincide with those from Ref. [9] for
similar dimensions but diverge in some cases for larger di-

mensions. (ii) The truncation scheme of Ref. [9] was useful

only to reduce the diagonalization process; the JT basis
states are still necessary. Our truncation scheme is able to
select the most relevant partitions before the basis state con-
struction, thus avoiding the calculation of all diagonal matrix
elements of the full Hamiltonian (which is the most time
consuming part for any shell model calculation).

Our method works wel1 in a full major harmonic oscilla-
tor shell (Ofhce calculations), where the spurious center-of-
mass motion factors out. The standard method of removing
the center-of-mass spurious components of the shell model
wave functions, when many nba excitations are included, is
to add to the nuclear Hamiltonian, H&, the center-of-mass
Hamiltonian, H, , multiplied by a large constant [10]. In
this case the matrix elements of H, , which dominates, are
different from that of the nuclear part, and the method de-
scribed above cannot be directly applied. One way to cir-
cumvent this difficulty is to use our method to select the
most important partitions by taking into account only the
nuclear Hamiltonian, HN. The part proportional to H, is
included only during the diagonalization in the truncated ba-
sis. A calculation in N [(0+2+4)A,co], using this scheme
reproduces the energy of the 0+1 yrast state within 400 keV
with a JT dimension of the truncated space which is one-fifth
of the dimension of the full space (19498). Work in this
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direction is in progress.
We also note that the present method might be used as a

criteria for an importance sampling mechanism for any kind
of Monte Carlo method, such as the "stochastic diagonaliza-
tion" [11],due to its ability to identify the most important

configurations contributing to the structure of the low-lying
state. It may also be applied to more general calculations
such as those for atoms, molecules, or atomic clusters.
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