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The multiphonon structure is shown for the O(6) limit of the interacting boson model. The phonon states are
created by the O(6) quadrupole operator with proper symmetrization. All the o= N states can be described in
this scheme in terms of phonon quanta and two-phonon anharmonicity, while the ground state is y unstable.
This structure is carried over into higher-lying <N states.
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The O(6) dynamical symmetry [1] of the interacting bo-
son model (IBM) [2] has been used for the description of
quite a few nuclei, especially in the Xe-Ba [3] and Pt [4]
regions. Besides such success in phenomenological descrip-
tion, the O(6) has attracted much interest regarding its inter-
pretation in terms of a more intuitive picture. The commonly
accepted picture [5—7] has been the y-unstable rotor of Wilet
and Jean [8]. Its relation to the rigid triaxial rotor of Davidov
and Filippov [9] has also been discussed [10-15]. In this
Rapid Communication, we shall present a completely differ-
ent picture of O(6) limit. This is a multiphonon description
with a strong ground state correlation, where the phonons are
built upon a y unstable ground state. The aim of this work is
to show that the phonon description arises in a natural way
from the basic properties of the O(6) Hamiltonian.

We focus upon the o=N eigenstates of O(6), where o
and N denote, respectively, the O(6) quantum number and
the total boson number [i.e., SU(6) quantum number] [1,2].
The states with o<<N are situated at higher energies for usual
boson Hamiltonians, and can be described in a similar way,
as stated at the end of this article.

The Hamiltonian we shall consider is

H=—«(0-0Q), 1

where « denotes the strength parameter, the symbol (-)
means a scalar product, and

O=d's+std, 2)

with d being the modified annihilation operator
[d,,=(—1)"d_,,]- This Hamiltonian is a linear combination
of quadratic Casimir operators of O(6), O(5), and O(3) [1,2],
and manifests the feature of the quadrupole collectivity of
O(6). By this Hamiltonian, we do not lose the generality of
the following discussions. We shall comment on this point
later. The strength « is supposed to be positive, and hence
Eq. (1) means an attractive quadrupole-quadrupole interac-
tion.

We now construct the ground state for the Hamiltonian in
Eq. (1). This Hamiltonian can be rewritten as

H=—«[ \/g{[deT](O)ss+sfsf[&3](0)}+ 2(d"-d)sts
+(dt-d)+5s's], (3
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where [ ]©) means the coupling to an angular momentum L .
Here, on the right-hand side (RHS), the first two terms are
those of the monopole pairing, the third is a monopole-
monopole interaction, and the remaining terms are single-
particle energies, because (d'-d) is nothing but the d-boson
number operator. Therefore, the ground state should be of the
form

107y=2 ¢, {[dtdT1 O} (shHV=21|0), @)

where |0) is the boson vacuum, and the c,’s stand for am-
plitudes. Here the RHS should be normalized.
We shall first show the commutation relation

[Ons Omr1=d}dy _dL'aM
E121‘,[‘1‘,17. (5)

The Ry 5 operator in Eq. (5) can be expressed through
[dTd]™) and [dTd]® operators. We mention that

Ry pm[07)=0, (6)

because [Rys a5 [dTd"]®] is identically zero. This relation
plays a key role in the following procedure.

The commutation relation with the Hamiltonian then be-
comes

[H, Ou]=4kQy—2k2 (—1)"Q_,Rpp - (1)

This results in
[H, Oup]107)=4KQ|0]), 8

which means that Q,,|0,") is an eigenstate with the excita-
tion energy 4«. The state 0|0, ) is nothing but the first
2% state, as seen later.

We proceed to another illustrative example. The states
with double Q’s can be treated as

HQ,Qn|07)
={8kQuON+2kONOuy—2k(—)N8y _N(Q-Q)
- KQMQN(Q'Q)}|01+>’ ©)
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by using the relation
2 (—D)"Q_pRpups On|=(—)Vy _mQ-0)

—ONOwm > (10)

which arises from the double commutator
[[H, Qum], Qn] For the states [QQ]%)|0; )with L=4 or
2, the excitation energy turns out to be 10«, whereas it van-
ishes for L=0. The latter 1is natural, because
[QQ1@]0]) x| 07). In other words, the double action of
the O operator produces eigenstates of L =4 and 2, which
are the first 4* and second 27 states, respectively, as seen
later also.

We shall now consider the general cases. In Eq. (9), there
are two important features; (i) both Q,Qy and QyQ,s ap-
pear on the right-hand side (RHS), (ii) the third term on
the RHS produces nonvanishing effects only for two
Q’s coupled to L=0 because of Xy y(2M2N|LM
+N)(—)N Oy -N= NG 0y o- Considering these points we con-
struct a state as

[W)=2 CUM1,My,....M,}).70u,Qu, - - O 0T ),
(11)

where . implies a symmetrizer with respect to
M ,M,,....M,, and the C’s mean amplitudes. By choosing
proper C’s, the state |¥) can have a good angular momen-
tum, and one can introduce a set of |¥')’s so that different
| ¥)’s are orthogonal to each other. Here, we impose a con-
dition on |¥) that any pair of two Q’s is not coupled to
angular momentum L =0. Therefore, in the case of n=2,
only the total angular momenta L =4 and 2 (and their linear
combinations) are allowed in Eq. (11).

We then consider H|¥'). The first term of the RHS of Eq.
(7) yields 4 kQ, from the same Q, at the same place. This
keeps the state unchanged. On the other hand, R,, y, of the
second term must form a commutation relation with one of

the Q operators further right, because of Eq. (6). Using Eq.
(10), one obtains from [R,,,,Mi,QMj],

+2KQM1‘"QMj"'QMi"'QMnIO;r>a (12)

where .7 and the C’s are omitted for brevity. Note that
Oum, and QM]. are interchanged with a factor 2« in Eq. (12)
due to the double commutation discussed above. The first
term on the RHS of Eq. (10) does not contribute because no
pair of the Q’s is coupled to L =0, as required in the con-
struction of the state |¥'). Thus, one ends up with

H|VY={4xkn+2kin(n—1)}¥)+E0])|¥), (13)

for all states constructed according to Eq. (11). Here
E(07) is the energy of the ground state. Table I shows the
energy levels of some low-lying states, highlighting several
characteristic features.

We would like to mention several points: (i) the energy
level is determined only by n, i.e., the number of the Q’s, (ii)
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TABLE I. Classification scheme of lowest O(6) eigenstates (of
o=N) in terms of the number of phonon quanta (n) and the
excitation energies (£,) normalized by 4«.

Angular momenta

Number of phonon quanta (n) E,/(4k) of eigenstates
0 0 0 (ground state)
1 1 2
2 25 4,2
3 4.5 6,4,3,0
4 7 8,6,5 4,2

the energy level can be expressed by # and 3n(n—1) which
can be viewed as a one phonon energy and its anharmonicity,
(iii) the symmetrizer in Eq. (11) produces only phononlike
states, (iv) two Q’s coupled to L=0 is forbidden. The first
three points strongly suggest that the phonon structure domi-
nate the present system. It is evident that the Q operator with
the symmetrization plays the role of the phonon operator.
Note that n stands for the number of the phonon quanta.

The fourth point is due to the strong ground state corre-
lation, which can be seen in the structure of the Q operator;
the d's term of Eq. (2) is the usual “phonon creation” op-
erator as is in the U(5) limit of IBM [16]. The second term,
sd, corresponds to the so-called backward amplitude in the
random phase approximation, and annihilates L =0 pairs of
the d bosons (i.e., [d'dT](?) when it is acting on |0;). We
need this second term with the equal strength as the first
term, in order to make up the present scheme. On the other
hand, it should be noticed that the backward-going contribu-
tion in the present case is probably much stronger than that
obtained in the random phase approximation where the
backward-going contribution should remain reasonably
weaker than the forward one.

The symmetrization and the elimination of two Q’s
coupled to L=0 in Eq. (11) imply that the states constructed
in Eq. (11) can be classified in terms of the 7 quantum num-
ber of O(5) as a matter of mathematics. In fact, also from the
comparison between energy levels of Eq. (13) and those of
the O(6) limit, one finds that the states of n in Eq. (11) are
nothing but the states of 7=n in the O(6) limit with the
excitation energy rewritten as «7(7+3). Thus, it turns out
that all the states of o=N are created by Eq. (11).

The possible use of the Q operator in the classification of
the O(6) eigenstates has been mentioned in Ref. [17]. It was
shown in Ref. [17] that low-lying O(6) states can be con-
structed by successive operations of the Q’s, whereas the
pattern of the energy levels (i.e., phonon quanta and anhar-
monicity), the dynamical origin of the phonon structure, and
the precise manner of constructing the wave functions have
remained untouched in Ref. [17]. Thus, the “Q construction”
introduced in Ref. [17] means the interrelation among low-
lying O(6) wave functions, and hence does not fully suggest
the phonon structure.

It is of interest that one can obtain the present ground
state exactly from the vy-unstable intrinsic states with the
integration over the vy variable [6,7], while one can extract
the ground state in a good approximation from the rigid-
triaxial intrinsic state of y=30° for smaller boson numbers
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[14,15]. Clearly the ground state is characterized also as a
y-unstable or triaxial state, and then it is most likely that the
phonons introduced in this note preserve the y softness to a
good extent. This point should be better clarified in the fu-
ture. We would like to point out that the present result does
not contradict the vy-unstable or triaxial nature of the O(6)
system as a whole. We should stress, on the other hand, that
the excitation mechanism is indeed of the phonon nature.
Combining with the conventional phonon picture for the
U(5) limit, this new feature may be viewed as a support to a
recent observation by Casten et al. [18] that low-lying col-
lective levels of most even-even nuclei except for strongly
deformed ones can be described in terms of phonons with
anharmonic terms.

There are higher-lying states with <N in the O(6) spec-
trum [1,2]. The lowest state of a given o(<N) isa 0™ state,
which contain (N—o0)/2 boson pairs with a specific struc-
ture. This pair is monopole, and is referred to usually as the
.’ pair [1,2] (or the S pair [19]). The .»° pair is not included
in the ground state in Eq. (4). This lowest state of o(<N)
can be decomposed into a sector created solely by the .7
pairs and the rest [19]. In other words, this state is created by
(N—0)/2 times successive actions of the .7’ pair-creation
operator on the rest part. This rest part has a similar structure
to the ground state in Eq. (4), but consists of o(<N) bosons.
The phonon operator, O, commutes with the .»” pair opera-
tors, and acts only to the rest part. Thus, the Q operator
produces phonon excitations without disturbing the .»° pair
sector. To be more precise, the phonon operator conserves
the o quantum numbers, and the phonon excitation occurs
within a subspace belonging to the given o. Thus, one can
construct all the states of an O(6) nucleus in terms of the
multiphonon excitation and the .»” boson pairing mode [19].

We have chosen the Hamiltonian in Eq. (1). There are
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three independent terms in the general O(6) Hamiltonian
[1,2]. Besides the present term in Eq. (1), one of them is the
total angular momentum, which does not change the wave
function and yields the trivial variations of the energies. The
third term can be the pairing interaction for the .»” boson
pairs [1,2]. This interaction shifts all the levels of a given
o by the same amount. It does not change relative energies
for the states belonging to the same o. By including this
interaction, the wave functions are not changed either. Thus,
the above discussions based on the Hamiltonian in Eq. (1)
are quite general for the O(6) limit.

In summary, we have presented that the low-lying
(0=N) O(6) states are multiphonon states built upon the y
unstable ground state, where the ground state correlation is
dominant and a rather large number of d bosons are con-
tained reflecting a strong deformation. The energies are rep-
resented in terms of phonon quanta and two-phonon anhar-
monicity. This consequense appears to be different from the
usual picture of O(6) as a vy unstable “rotor,” although the
triaxial nature is inherent in this multiphonon picture through
the ground state. The o(<N) states are constructed as a
product of the .7 pair sector and the present multiphonon
states.
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