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Quasielastic Ca(e, e') reaction in the transverse channel: Nuclear structure effects
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We present a microscopic calculation of the transverse response function for the Ca(e, e') reaction in the

quasielastic domain. Our results clearly demonstrate the necessity of including RPA correlations if one wants

to describe correctly both position and shape of the quasielastic peak. Building upon the RPA results, we then

discuss the importance of the 2p-2h background, which confirms itself to be the dominant mechanism respon-

sible for achieving agreement between theory and experiment at the peak and in the higher energy region.

Finally, the results are discussed in the context of the latest relativistic calculations and experimental work.

PACS number(s): 21.60.Jz, 25.30.Fj

It has been over twenty years since the first measurements
of the cross section for (e,e') scattering in the region of the

quasielastic peak [1] seemed to substantiate the predictive

power of nuclear structure calculations employing the Fermi

gas model —the agreement between the predicted and mea-
sured responses was certainly enticing. The quasielastic scat-
tering process had a simple interpretation. The incoming
electrons were of sufficient energy that the scattering mecha-
nism resembled elastic scattering off free nucleons producing
a peak in the scattering cross section at roughly the energy
given by the free kinematics. But, because the target nucle-
ons were both moving and bound within the nucleus, the

peak was broadened and shifted in energy. It appeared that
satisfactory accounting of these nuclear structure effects
could be ac: -. -,d by modeling the nucleus as a noninteract-
ing infinite Fermi gas. However, this agreement between the
independent particle model and the measured inclusive scat-
tering cross section turned out to be, to a large extent, fortu-
itous.

The quasielastic scattering mechanism is really a probe of
both the charge and current densities that are produced by the
nucleons bound within the nucleus. The cross section is thus
a combination of the effects due to two separate channels.
The longitudinal channel probes the charge density distribu-
tion and the transverse channel, the distribution of current
densities. Of course these two channels are not distinguish-
able in any single measurement (we observe the superposi-
tion of both effects) but a technique known as Rosenbluth
separation allowed experimentalists, in 1980, to separate the
two channels by exploiting their different angular distribu-
tions [2]. A marked disagreement was discovered between
the experimental results and the theoretical predictions even
though the theoretical models could account quite well for
the unseparated cross section. What Altemus et al. first dem-
onstrated was that the strength in the longitudinal channel
was up to 50% lower than predicted whereas the strength in
the transverse channel was in good agreement with theoreti-
cal predictions with only slight discrepancies in the shape
and position of the peak.

A we11 known sum rule predicts that the integrated cross
section in the longitudinal channel should be proportional to
the total charge of the nucleus [3].Thus if the longitudinal
cross section is quenched, the reduction in the integrated
cross section indicates a lowering of the effective charge of

the nucleus. As more experiments confirmed a quenching of
the response in the longitudinal channel for a wide variety of
target nuclei [4—8], the discrepancy between theory and ex-
periment became known as the missing charge problem. A
great deal of attention has been devoted to the physics of the
longitudinal channel [9—23] and, while this work did dem-
onstrate that there are a number of physical processes ca-
pable of generating some quenching of the longitudinal re-
sponse, it did at the same time reveal some more subtle
difficulties in our understanding of the transverse response.
Virtually all mechanisms that were invoked to improve the
theoretical situation in the longitudinal channel were found
also to produce quenching in the transverse thus creating a
discrepancy where none before had existed. If we wish to
claim a full understanding of this scattering process it is vital
that effects of all physical processes that are determined to
affect the longitudinal response also be considered for calcu-
lations of the transverse.

One of the most fruitful avenues in attacking the missing
charge problem has been to consider the effects of nucleon-
nucleon correlations that go beyond the usual random phase
approximation (RPA); including nucleon-nucleon correla-
tions up to RPA order generally produces too much strength
in the longitudinal channel and underestimates the strength
in the transverse. Many investigators have found that ac-
counting for many-particle —many-hole correlations does in-
deed produce significant quenching in the longitudinal chan-
nel. Addressing the transverse response, Alberico et al.
introduced the effects of 2p-2h correlations into an RPA cal-
culation based upon a Fermi gas description of the nuclear
structure and did find significant improvement in the agree-
ment with experiment [24]. They found that in Ca(e, e')
scattering at a momentum transfer of 2.08 fm ', there was
an almost linear increase in the transverse response up to an
energy of 200 MeV. In fact, above 160 MeV the 2p-2h ef-
fects were found to be the dominant mechanism for produc-
ing strength, a result that is at least a little troubling.

The present work has been undertaken to reexamine these
conclusions. Our aim was to first complete a calculation of
the RPA response using a more realistic description of the
ground state wave functions to clarify more exactly the na-
ture of the discrepancy and investigate any possible finite
size effects. We then focused on an explicit calculation of the
effect of including virtual 2p-2h states in the description of
the target nucleus.
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Our paper is organized so as to describe first the RPA
calculation of the trans~™rse response function, RT, using a
fully self-consistent Hartree-Fock basis. The results obtained
for Ca clearly demonstrate the importance of including
RPA correlations if one wants to correctly predict the posi-
tion and shape of the quasielastic peak. Also, our results find
significantly more strength in the dip region than similar cal-
culations performed using a Fermi gas basis [24]. Building
upon our RPA results, we then present a calculation of the
2p-2h background, which confirms itself to be the dominant
mechanism responsible for achieving agreement between
theory and experiment both in the region of the peak and at
slightly higher energies. Our calculation also suggests that
much of the strength in the higher energy region should be
ascribed to higher order correlations together with more ex-
otic mechanisms like 5-hole and meson exchange currents.
Finally, we conclude our work with a critical evaluation of
our results together with some recommendations for future
experimental and theoretical work.

The fundamental quantity in the method applied here is
the particle-hole Green's function g(r, r', co). The response
function RT, defined in Ref. [3], can be calculated in a co-
ordinate space formalism as
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where g(r, r', co) is the particle-hole Green's function. Also,
Oz denotes the transverse scattering operator, which can be
written explicitly as

P

OT=(o.xq)r3e' ',
if only the dominant isovector part of the magnetization cur-
rent is considered.

The calculation of the transverse response was carried out
at three different values of momentum transfer q. This was
done in order to cover the range over which most experi-
ments have been carried out. It was necessary to expand the
transverse operator in terms of spherical harmonics each car-
rying a specific angular momentum fiX. The total response
comprises the sum of these terms, which we found to con-
verge by including terms up to X. =15 with the dominant
contributions coming from values of X between 5 and 7 de-
pending on the momentum transfer.

The bare Green's function g (r, r', co) used in computing
the free response was generated from Hartree-Fock ground
state wave functions calculated in a coordinate space formal-
ism using a Skyrme-like parametrization of the nucleon-
nucleon interaction (SGII). We should note that this is a to-
tally self-consistent calculation for noncorrelated nucleons.
Figure 1 shows the results for the free response calculated
using the bare Green's function; we observe qualitatively a
broad peak centered in energy at approximately q /2M as we
would expect for scattering from individual nucleons. How-
ever, in this range of momentum transfer, the effective
particle-hole interaction in the transverse channel is well
known to be repulsive in character [25] and thus including
the effects of correlations tends to quench the response and
push it up to higher energy.

FIG. 1. The transverse response function, RT, displayed as a
function of energy transfer for three values of momentum transfer.
The dashed line denotes the free response, the dot-dashed line in-
cludes the effects of RPA correlations, and the solid line includes
the effects of 2p-2h correlations. The experimental data at
q= 1.67 fm ' are taken from Ref. [6] and the data for
q=2.08 fm ' and q=2.53 fm ' are taken from Ref. [8].

The effect of RPA correlations was calculated by solving
the RPA Green's function equation [26,27],

gRPA go([1+ (Py(P )go] (3)

within the Hartree-Fock basis. The results, also displayed in
Fig. 1, clearly show the expected shift towards higher energy
and the overall quenching of the response. As we will see
later, the shift in peak position is required for agreement with
experiment but the effect of the RPA correlations is to reduce
the calculated strength to below the observed value. This is
similar to the trend found by Alberico et al. This result
serves as confirmation of the need to search for models that
go beyond the 1p-1h regime in an attempt to fully explain the
strength throughout this region. It is worth noticing that our
result produces significantly more strength at higher energies
than the result calculated in the Fermi gas model. This is
comforting because it reduces, to some extent, the need to
invoke other mechanisms to explain the missing strength in
the dip region.

We now examine the effects of including higher order
correlations that are not included in the RPA. The motivation
for this is twofold. First, it is a natural extension of any
calculation to try to estimate the magnitude of those terms
that have been ignored; the 2p-2h correlation terms are the
next simplest type of contribution that we can consider if we
limit ourselves to nuclear structure effects. Second, many
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authors [11,15,18,22] have invoked 2p-2h effects to explain
the apparent quenching of the experimental response relative
to model predictions in the longitudinal channel; it is natural
then to ask what is the effect of the same types of correla-
tions on the transverse response. In our investigations of the
longitudinal response [11] we have employed an operator
projection technique to account for the effects of many-
particle —many-hole correlations. However, because of the
more complicated form of the transverse scattering operator,
we are unable to exploit this technique for the current prob-
lem. We have chosen instead to perform an explicit calcula-
tion of the contributions to the transverse response arising
specifically from virtual 2p-2h states in the target nucleus.

We started our calculation by determining first the ampli-
tude of virtual 2p-2h states in the ground state of the target
nucleus using a harmonic oscillator basis including up to
10hcu excitations. These amplitudes are of the form

a; = ((p 'h ')I'M' T'Mz(ph) JMTMr~ V~0), (4)

which gives the strength for the excitation of a 2p-2h state
comprising two 1p-1h excitations labeled as (p'h') and

(ph). These amplitudes were calculated using first order per-
turbation theory with the residual interaction taken as the
pion and rho meson exchange interaction including a contact
term [28]. The expression for the matrix elements of this
interaction was determined by Oset, Toki, and Weise [29] in
their seminal paper on the pionic modes of excitation in nu-

clei. The exact form is given in the Appendix.
The amplitudes for excitations induced by the transverse

operator, OT, were then calculated by summing over all pos-
sible 2p-2h final states at a fixed excitation energy subject to
the constraints imposed by angular momentum conservation.
This procedure required performing an angular momentum

decomposition of the operator with the component of the
operator carrying angular momentum h k expressed as

where s is the spin operator (s—= o./2) and f(r) is given by

f(r) =i4+mq—p/21+ 1(l01p,~kg). (6)

The sum over i and k refers to all possible final states k
consistent with each of the virtual states i appearing with
amplitude a;. The explicit form of the matrix element be-
tween 2p-2h states is given in the Appendix. In the actual
calculations, the sum over angular momentum transfer was
truncated at X. =20, at which point the series had clearly
converged within the required accuracy of the calculation.

Because the final states were treated as bound states our
results were necessarily on a discrete energy spectrum and
were therefore broadened by folding with a Lorentzian dis-
tribution, a procedure to which the final results were quite
insensitive.

The isospin operator ~ has been suppressed in this expression
since we are focusing on the angular momentum recoupling.
The transverse response function can then be written

1
Rr=g g a;((2p2h)zkp~~o ~~(2p2h);00) . (7)

The results obtained for the 2p-2h strength as a function
of excitation energy were then combined with the RPA cal-
culation described earlier to produce a final value for the

transverse response function, RT. Figure 1 now shows the
final results of our calculation at three different values of the
momentum transfer. We observe that the agreement with ex-
periment is very good in the region of the quasielastic peak
although at the lower momentum transfer value the calcu-
lated result still slightly underestimates the observed
strength. It is comforting that the results in the region of the
peak show such good agreement with experiment since this
is the energy range in which our model would be expected to
be the most reliable. Beyond the quasielastic peak our calcu-
lation begins to underestimate the total strength. This is to be
expected since this is the region in which the additional de-
grees of freedom such as the delta resonance and meson
exchange currents become important. Also, there is no rea-
son to limit ourselves to 2p-2h excitations and thus contribu-
tions from 3p-3h, 4p-4h, etc., might also be expected to con-
tribute at higher energy.

Two major differences now emerge from a comparison of
our results with those of Alberico et al. using the Fermi gas
model. First, the results using the Fermi gas model tend to
overestimate the strength in the low energy part of the spec-
trum where our results are in better agreement. Second, our
2p-2h results show convergence at higher energies and al-

ways contribute a relatively small background relative to the
dominant 1p-1h response. The 2p-2h "background" of Al-
berico et al. , in contrast, appears to be unbounded at higher
energies and, in fact, becomes dominant over the RPA results
above 160 MeV. This, in our opinion, leads to some theoreti-
cal difficulty since it is worrisome to be faced with
perturbation-type results that have acquired such amplitude.
Our results therefore indicate that, when calculations are per-
formed within the context of a realistic nuclear potential, the
2p-2h background is indeed small. This further suggests that
the higher energy experimental points in the dip region are
clearly indicative of effects beyond the nuclear structure me
dium and are consistent with the onset of 5-hole and meson
exchange excitations, which have been outside the domain of
our preoccupation.

In conclusion, one of the major results of our work has
been to demonstrate, we hope conclusively, that theoretical
calculations of the nuclear response in the quasielastic peak
region and beyond can only achieve agreement with experi-
rnent when 2p-2h effects are taken into account. The other
major result has been to elucidate the magnitude and struc-
ture of the quasielastic peak itself, which is, in our opinion,
mainly an RPA effect. It is also comforting to observe that
our results are consistent with those of an earlier approach
using the Fermi gas model. In the higher energy dip region
our calculation still comes below experiment which suggests
that extra-nuclear degrees of freedom are at play there.

Recently, Rost, Price, and Shepard [31]have presented an
interesting relativistic calculation of the transverse response
in the 6-resonance region. These authors obtain good agree-
ment with experiment in a relativistic Hartree approximation
in configuration space. In their model the delta is propagated
with its free mass and width —pion blocking and pion ab-
sorption being taken into account by a single pararnetrized
shift in the position of the delta. The results look promising;
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however, most of the improvement seen in the Ca case at
q= 2.78 fm is located in the dip region —the strength re-
maining below the measured value in the region of the quasi-
elastic peak. This fact is even more pronounced in C where
the calculated results underestimate markedly the peak cross
section. We believe this substantiates our claim that the en-
hancement in the peak is dominated by the nuclear structure
whereas extra-nuclear degrees of freedom contribute more
markedly to the strength in the dip region.

In the longitudinal context, an interesting development
has just unfolded with the recent presentation by Yates et al.
of experimental data on Ca from Bates [32].These authors
show that, contrary to previous results, their longitudinal re-
sponse functions show no more than 20% missing strength.
It will be of great interest to examine the transverse response
and the next few years should thus prove interesting for both
theoretical and experimental programs.

The authors are grateful to Hiroshi Sagawa, Yoshiyasu
Okuhara, and Satoshi Nozawa for their extensive collabora-
tion and to G. E. Brown for insightful comments. This work
was supported in part by the Natural Sciences and Engineer-
ing Research Council of Canada.

APPENDIX

The purpose of this Appendix is to give precise expres-
sions for the ground state amplitudes in Eq. (4) and for the
2p-2h matrix elements in Eq. (7).

The matrix element for the meson exchange interaction

that excites virtual 2p-2h states has been determined by Oset,
Toki, and Weise [29] to be

a, =((p'h') J'M T Mr(ph) JMTMriViO)

dq
~JJ'~MM'~TT'~M M'X 2 3 F g (q)

go 7r)

x[WJ(cu, q)]LI F „(q) (A1)

X r drR„(r)j L(qr)Rq(r),
Jo

(A2)

with the 9j factor a result of the usual LS—jj transforma-
tion. One of the great advantages of using a harmonic oscil-
lator basis for the wave functions is that, in that particular
basis, the radial overlap integral in Eq. (A2) can be expressed
analytically thus eliminating the requirement to perform a
numerical integration. This has enormous time saving ben-
efits as well as improving the numerical accuracy. This ex-
pression can be found in Ref. [30] and is presented here for
completeness:

The F~& factors are proportional to radial particle-hole tran-
sition densities and are given by

(i,
F l,

=i + I '"$48mLj jhll, 1/2 U2 1 (LOliOil 0)

t
oo

r drR„ i (r)j i(qr)R„ I„(r)=
3o

(2l~+ 2n~+ 1)!!(2lz+ 2nl, + 1)!!
nz. nI, . k=o It,

" =0

(l+l +lh+2k+2k'+1)!!, M 2m+ I
q'/4v m

(21 + 2k+ 1)!!(2l~+ k'+ 1)!! m (2m+ 2l+ 1)!!(2 v)
(A3)

where M=(l„+li, —l)/2+k+k' is an integer. The constant
v is defined in terms of the oscillator frequency co (using
co=41A 'i ) and the nucleon mass m„ to be

v= m„co/A, ,

and, in the usual notation,

n!

V~(cu, q)= (f /m )I' q /(~ q m), — —(A8)

where the values of the cutoff masses, coupling constants,
and the Landau parameter g' were taken from Ref. [29].The
aJL and bJL coefficients are a result of the angular momen-
tum recoupling. For p-h states that individually couple to
unnatural parity they have the form

k k!(n —k)!
' (A5)

aJL=/J/(2J+1) for L=J—1,

[W~(ao, q)]L, 1.]=aJIV(co, q)aJ—I + b.JI V (ru, q)b~i

+(f /m )I g'811 . (A6)

The term W(co, q) in Eq. (A1) contains the information on
the particle-hole interaction and takes the form

= —g(J+ 1)/(2J+ 1) for L =J+ 1,

bJL = g(J+ 1)/(2J+ 1) for L =J—1,

= gJ/(2J+ 1) for L =J+ 1.

(A9)

The interaction strengths V and V~ are given by

V (co,q)= (f /m )I q /(o) q m), — —(A7)
For p-h states that couple separately to natural parity (i.e.,
L =J), we have a=O and b=1.
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With the transverse operator expanded in terms of its mul-

tipoles, the bulk of the calculation consists of computing the
matrix elements between the ground state and the possible
excited states. In this case the initial state is a 2p-2h state

coupled to spin 0 and the final state is also a 2p-2h state but
with arbitrary spin Jf and projection Mf.

After a good deal of angular momentum recoupling alge-
bra, we arrive at the expression

((2p2h)k)t pllo'll(2p2h) 00)=(((j' jh )Jt(J~ Jtl )Jz)~~pllo"ll((J& Jt, )&t(J&,Ja, )J2) oo)

(j„
J&g I ( )J~+J +Jh +k

Jt Jh)1, !Jt Ja, Jp)1

p) p) h h)(j,', llo'llj„»a;a, +(-)'""""'", , (ja, llo"lljh, »,;„'
I jt, , J,'

(Jt2 Jt Ja2t
+J ~ (-)'"" (-)' ', '"" . , (j'llo"llj», .J'Jl

J~2 ) )
P2 t'2 "2"2

(1,
+( )Jt, +J2+Jp +k,

Jh, J,l

(jl,llo"llja, ) ~,;„'
2

(A10)

where we have introduced the notation J=(2J+1. The
large parentheses indicate 6j symbols. The single particle
reduced matrix elements of the operator 0" are given by

where the symbol (j t(rq)) is used to represent the radial

overlap integral given by

(j2llo"lljt)=X t" " '+'qp/~i it~jtj2(lt0i0llz0)
l

(j t(rq)) = rdrR—2(r)j t(qr)R, (r),
Jo

(A12)

( l2 I/2 J2

&&(l01pl)t.p) lt U2 jt (j t(rq)), (A11)

~)
where j t(qr) is a spherical Bessel function and the parenthe-

ses indicate a 9j symbol.
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