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Fluctuation dynamics of fragmenting spherical nuclei
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We use the quasiclassical nuclear model and the recently proposed early cluster recognition
algorithm to investigate the dynamical evolution of the fragmentation pattern for suitably excited
finite spherical spin-isospin symmetric system of 80 nucleons. We find that the asymptotic fragment
structure (when clusters are far away from each other) is strongly related to the early most bound
density Huctuations (MBDF's) in phase space (when the system is dense). We focus on the evolution
of the microscopic structure of this MBDF, finding that the constituents of the MBDF are strongly
correlated in time. Our calculations indicate that not only the final fragment spectra but also the
microscopic structure of the final clusters carry information about the early stages of the evolution.

PACS number(s): 25.70.Pq

I. INTRODUCTION

In the past years much experimental and theoreti-
cal work has been devoted to the analysis of fragmen-
tation processes in nuclear systems. Many theoretical
models have been proposed to analyze this phenomenon
and they can be roughly classified in two major cate-
gories: first, those that assume that the &agmentation
takes place at the end of a more or less complicated ex-
pansion process when the system has attained a certain
degree of equilibration [1], and second, those that de-
scribe the full nonequilibrium dynamic evolution of the
system that eventually leads to the clusterization pro-
cess. Within this second class a further classification can
be established between models that use different schemes
to simulate the quantal Boltzmann kinetic equation [2]
and those that rely on classical [5] and semiclassical [6
microscopic descriptions in which the quantal effects are
sometimes taken into account. One of the relevant dif-
ferences between these two approaches is the degree to
which correlations are kept. In Boltzmann-like theories
the main outcome is the one body distribution function
and higher order correlations are systematically washed
away. Much effort has been devoted to overcome this
drawback by extending these theories to include Buctu-
ations through the addition of Langevin-like terms [3],
but recently it has been proved that these extra correla-
tions are of the kinetic kind, i.e., those characteristic of
the near-equilibrium regime [4]. In opposition the main
goal of microscopic classical and semiclassical models is
to keep correlations of all orders at all times.

In a previous paper [8] we have employed the so called
quasiclassical nuclear model (QCNM) [7] and an alterna-
tive definition of cluster to analyze f'ragment production
in simulations of intermediate energy nuclear collisions.
It was shown that some properties of the final &agment
spectra (mean total multiplicity, mean multiplicity for
selected bins, mean maximun fragment, etc.) are closely
related to the early formed most bound density Quctua-
tions in (MBDF's) phase space.

In this calculation we use the same microscopic model
and cluster recognition method to explore further the
properties of the MBDF's, in particular the evolution
of their microscopic structure for the case study of an
expanding spherical system.

In this section we brie8y review the properties of the
QCNM and the cluster recognition method. In Sec. II we
show the way in which the &agmenting system is built.
In Sec. III we investigate the early formation of frag-
ments and after showing some general properties of the
expanding system, we show the early formation of clus-
ters and focus on the time evolution of its microscopic
structure. Finally, in Sec. IV, conclusions are drawn.

Model

V=& +V +&a,

where

(po 9o)
(1.2)

is the term responsible for simulating the Pauli exclusion
principle,

&rz)"
+I —

I

ErV) ErV )
1

(1.3)
exp( Pr,, + ts)—

is the so called nuclear term, and

0!0
vc

rij
(1.4)

QCNM has already been described in a series of
publications (see [7] and references therein) and for the
sake of completeness we briefIy describe its main proper-
ties. In this model the nuclear system is simulated via a
classical interaction potential which reads
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is the Coulomb term. In Fig. 1 we show the way in which
different nuclear properties are reproduced according to
this scheme.

A special role in our analysis is played by the way
in which we define and, consequently, recognize clusters.
According to [8] a cluster is defined as that set of particles
that satisfies the following condition:

VieC, e, =T;. +) V;,-&0,

where T,, is the kinetic energy of particle i calculated
in the c.m. of the cluster and V~ is the interaction energy
between particles i and j belonging to the same cluster
C, i.e. , all particles must be bound.

For a system of particles we define the cluster decom-
position as a partition of the total system into subsets
such that for each subset condition (1.5) is satisfied, i.e. ,
each subset is a cluster. Because this condition can be
satisfied by more than one partition we introduce the
following additional condition: Cluster structure is that
cluster decomposition that maximizes the total binding
energy of the system when each cluster is considered to
be noninteracting with the others.

As can be easily seen, this is a very complicated task
because the binding energy is calculated in the center of
momentum of each subset of the partition, as a conse-
quence the problem is highly self-consistent. To solve it,
in R.ef. [8] an algorithm in the spirit of simulated anneal-
ing was developed [early cluster recognition algorithm
(EGRA)]. It is clear that this cluster definition is free
from arbitrary "clusterization parameters. " This method

is also statistical in nature, and although we can be con-
fident that we will be quite close to the maximizing parti-
tion, we cannot be sure that we have reached it. It should
be emphasized at this point that, to apply this method
at any point in the evolution of the system, there will
be a stage in which what we are recognizing as clusters
is the set of most bound density fluctuations in phase
space. During this stage particles are close together in

q space and no cluster structure can be recognized by
standard configuration (percolationlike) cluster recogni-
tion algorithms. At later, asymptotic, times clusters will
be well separated in space and then we can call them
fragments. In the following we apply this method to the
analysis of an exploding system and explore the relation
between the early recognized clusters (MBDF's) and the
asymptotic ones (fragments) .

II. CALCULATIONS

In order to work on a rather simple problem we focus
on the analysis of suitably excited spherical systems. To
perform this we take as an initial condition a spin-isospin
symmetric system of 80 particles built via a Monte Carlo

(MG) calculation in phase space at a temperature of 0.4
MeV. From the MC run, configurations well separated in
"time" were kept in order to be sure that they are uncor-
related in both q and p space. An ECRA calculation was

performed with each of them to confirm that they were
stable bound systems. In order to build excited systems
the following procedure was adopted: The cold nucleus
was compressed in q space and consequently expanded in

p space according to the following scale transformation:
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with A ) 1. Also explored was the effect associated with
an excitation procedure given by
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lution was attained by solving the Hamilton equations
of motion of the system using a standard self-adjusting
Runge-Kut ta scheme.

A set of values of A ranging Rom 1.2 to 2.0 was taken
and it was observed that as this parameter is increased,
different behaviors of the system are encountered, from
gentle oscillations plus some evaporation to total frag-
mentation in almost free nucleons.

We focus our analysis on the value A = 1.8, which
gives a total energy of —0.9 MeV per nucleon (the ground
state of the system under consideration has a binding
energy around —8 MeV/per nucleon). This excitation
leads to a typical multif'ragmentation process in which

light fragments up to mass 15 are found in the final mass
spectra.

FIG. 1. The kinetic energy of a gas of nucleons that in-

teract only via the Pauli potential (top), the binding energy
of nuclear matter as a function of the density (middle), and
the binding energy of finite nuclei as a function of their mass
number (bottom).

III. RESULTS

The following analysis was performed over 60 configu-

rations built according to the above mentioned prescrip-
tion. Some global properties of the evolution were cal-
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culated as, for example, the time evolution of the radial
density and radial flux. In Fig. 2(a) we show a time evo-
lution of the radial projection of the mean density and
it is seen that the system performs a monotonous expan-
sion process. In Fig. 2(b) the evolution of the radial flux
is displayed for difFerent A values.

We now focus on the relation between the early MBDF
spectra and the 6nal kagment espectra of the exploding
system. In Fig. 3 we show the total multiplicity of clus-
ters larger than 3 (dotted line) and the multiplicities for
selected bins as a function of time. All these curves are
remarkably constant. To have an idea of the relevant
time scales, the same quantities calculated using a sim-
ple percolationlike cluster recognition algorithm, with a
clusterization distance R,~

——6.0 fm corresponding to the
cutoff distance of the V„(r;~), Eq. (1.3), are displayed
(thin lines). From this it can be realized that constancy
of the number of clusters is attained long before spatial
separation is reached. This result is similar to what was
obtained in a previous work in which intermediate energy
collisions were analyzed [8].
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FIG. 3. Time evolution of the multiplicity. Thick lines re-
sult from the ECRA method; dots denote total multiplicity;
crosses represent clusters of A = 6 —8; squares represent clus-

ter of A = 12 —15; and no symbol denotes clusters of A = 9—
11. Simple lines denote the time evolution of the multiplicity
but resulting from a percolationlike method.
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Our main objective is to get information about the
time evolution of the microscopic structure of the MBDF
and its relation to the 6nal fragments. To get a glimpse of
the complexity of the process under analysis we show in
Fig. 4 the trajectories of these objects for a typical &ag-
menting process (see figure caption for details). Under

c4

O
qf

0-

20.00—

10.00—

Vl

C

0

0.04

0.02-

I 5
~ 0 ~ 0 ~

j l

j

I
~ ~~

j
j /'y

I

5 - .10
time 10 ~~sec

t = 6.6 x 5.6
t =10.2 x 8
t =13.2 x I1.2
t=18 x16

'-10.00—

-20.00—

+8

8- — ":P".1g(
~ ~ o 4 $444444 e I a ~ ~ ~ ~ ~4 4 ~

00
0
00

4
4
4

I
g/'
Ir

000 "
0 25 50

R[fm]

FIG. 2. (a) Time evolution of the radial flux for difFerent
initial energies Ep of the excited system: a, Ep ———7.3 MeV;
b, Ep = —60 MeV; c, Ep = —39 MeV; d Ep = —25 MeV,
e, Ep = —0.9 MeV. (b) Radial density vs distance for the
Ep ———0.9 MeV system for different times t.

-30.00

-40.00
I

-20.00

x fm

I

0.00
I

20.00
I

40.00

FIG. 4. Typical fragmentation process projected onto an
arbitrary x-y plane as seen by the ECRA method. Crosses de-
note particle position at t = 17.4, open circles denote cluster
position at t = 17.4 (circles radius is the mean rms radius of
the clusters), triangles denote cluster position at 0 & t & 4.2
(initial stage), rectangles idem at 4.8 & t & 10.8 (intermedi-
ate stage), and dots idem at 11.4 & t & 17.4 (final stage).
Some free particles lay out of scope at the final stage.
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detailed inspection it can be seen that early recognized
clusters (MBDF's) persist nearly unaltered after a short
consolidation-stabilization stage (i.e. , smooth trajecto-
ries are seen because just a few particles are lost or gained
along the path) up to the time at which, due to the expan-
sion, they become spatially separated. This simple anal-
ysis suggests that the microscopic structure of the early
formed clusters reaches constancy before spatial separa-
tion takes place. This result excludes another possible,
opposite, scenario compatible with the constancy of the
number of cluster, one in which, while the macroscopic
pattern of fluctuations remains constant, constituent par-
ticles are exchanged until expansion &eezes the micro-
scopic structure.

In order to quantitatively explore this efFect we find it
convenient to define the following magnitudes.

(a) The persistence coeQcient (P). Let b(t)
0.5X(K—1) be the number of pairs of particles in cluster
C at time t. Let a(t —At) = +0.5[n(n —1)j, the sum
over all clusters present, at time t —At, of the number
of pairs of particles present in each cluster and originally
belonging to cluster C, in this way

coe%cient P for difFerent cluster sizes. It is apparent that
it reaches a value close to one very early in the evolution
of the system, and from a comparison with the results
displayed in Fig. (3), we see that this happens long before
the spatial separation of the clusters takes place.

In Fig. 6(b) the coeKcient E is displayed for the same
set of expansions as in Fig. 6(a). Once again the strong
correlation between cluster composition at difFerent times
before the spatial separation is inferred.

From the results presented in Figs. 3 and 6 it is clear
that the asymptotic fragment spectra is strongly related
in both the number of fragments and its microscopic
structure with the clusters (MBDF's) that are formed
in the early dense stage of the explosive evolution of the
excited system.
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P will be equal to 1 if all particles remain together and
0 if the cluster breaks up completely. It then measures
the tendency of the members of a given cluster to remain
together. To have an idea of the behavior of this quan-
tity, in Fig. 5 we show the value of this coeKcient when
1,2,3,... particles are removed from clusters of 12, 10, and
8 particles. It is seen that this coefBcient is highly sensi-
tive to variations in mass number reaching a value around
0.8 when just one particle is removed for this range.

(b) The pre existence coe-gPcient (E) In this ca.se E is
defined as follows. Let there be a cluster C of size N at
time t We search . for the cluster at time (t —b, t) which
contains the maximum number of particles belonging to
O'. Let its mass be I; then

E(N, t) = (I,). (3.2)

In Fig. 6(a) we show the results of calculating the
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FIG. 6. (a) Time evolution of the persistence coefBcient P
Solid line indicates clusters of A = 4 at the final stage, dashed

line idem for A = 5, dotted line idem for A = 6 —8, and
dash-dotted line idem for A = 9 —11. (b) Time evolution of
the precoexistence coefficient E. a, solid line indicates clusters
of A = 5 at the final stage; b, dashed line idem for A = 6 —8,
c, dash-dotted line idem for A = 9 —11; d, full squares idem
for A = 12 —15; and e, dotted line idem for A = 16 —20.
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IV. CONCLUSIONS

From our calculations we conclude that the fragmenta-
tion process of excited spherical nuclei can be described
as follows. As soon as the system is excited, a set of
density fluctuations in phase space is built. From the in-
finite modes that can be considered, a very peculiar one
is extremely relevant for the analysis of the subsequent
evolution of the system, i.e., one that maximizes the to-
tal binding energy as described previously. This set of
fluctuations evolves in time in such a way that after a
short time most of its constituent particles remain to-
gether for the rest of the time evolution, as can be seen
&om the behavior of the P and E coefBcients. As time
evolves the system reaches a volume such that clusters
become physically separated, but in this stage what we
see as &agments are basically the time propagation of
the already present MBDF's. In this way the fragments,
in both its number and microscopic composition, carry
information about the initial, highly excited stage of the
evolution of the system. In this way we feel that a much
clearer, although unexpected, picture of the fragmenta-

tion process has been detected. It must be noted at this
point that a recent analysis of experimental data con-
firms this picture of the time evolution of fragmenting
excited systems [9], at least at the level of the constancy
of the number of fragments.

It is then clear that models based on the assumption of
the existence of an intermediate regime in which the sys-
tems equilibrates and subsequently fragments are built

up should be critically reanalyzed (according to our mi-

croscopical calculations there is no such equilibrated pre-
fragmentation stage). Moreover, it is clear that the dy-

namics of &agmentation is driven by many-body corre-
lations in phase space. As a consequence Boltzmann-
Uehling-Uhlenbeck-like approaches should be refined fur-

ther to include these effects.
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