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Projectile fragmentation of halo nuclei in a peripheral direct reaction model

H. Sagawa and N. Takigawa
Center for Mathematical Sciences, University of Aizu, Aizu Wakamatsu, Fukushima 985, Japan
Department of Physics, Faculty of Science, Tohoku University, Aoba, Sendai, Miyagi 980, Japan

(Received 7 March 1994)

The transverse and longitudinal momentum distributions of projectile fragmentation of unstable
nuclei are studied by using a peripheral direct reaction model. We found that the transverse mo-
mentum distribution is afFected by absorptive cutofF of the fragmentation process, and the width
becomes narrower than that of the longitudinal one which remains almost unaffected. The mo-
mentum distributions of fragments from unstable projectiles Be and Li are studied for various
microscopic wave functions. Calculated results with halo wave functions show good agreement with
experimental data. We discuss also the difFerence among various models, the spectator model,
Friedman model, and Serber model, for predicting the momentum distribution.

PACS number(s): 25.70.Mn, 24.10.—i, 24.50.+g, 25.60.+v

I. INTRODUCTION

Experimental and theoretical study of unstable nuclei
is currently very popular, especially in connection with
developing facilities of radioactive heavy-ion beams [1].
Fragmentation reactions with secondary beams of nuclei
near the drip lines are studied as a useful tool to obtain
precise information of wave functions of halo nucleons

[2—5]. Kobayashi et al. [2] extracted the separation en-

ergy and the size of halo neutrons &om the transverse
momentum distribution of projectile &agments without
considering any absorptive effect. However, it has been
argued that the momentum distributions might be af-
fected substantially by the reaction process which stresses
the outer region of the wave function due to the initial
and the final-state interaction [6—8]. It is an interest-
ing question to see how much the reaction mechanism
affects the width of the momentum distribution and to
see whether it is possible or not to draw any quantitative
information on the structure of halo wave functions &om
these experimental data.

The momentum distributions of projectile fragments
were studied extensively two decades ago for well-bound
stable nuclei [9]. It is known that the momentum distri-
butions of the &agments are well-described phenomeno-
logically by the Gaussian shape with the width parameter
o, exp( —k2/2o2), regardless of the fragment mass. The
width parameter o was related by Goldhaber [10] to the
Fermi momentum of nucleus ky by

o = /As(A —As)/(A —1)op (1)

where A (Aq) is the mass of the projectile (fragment)
and o'p ——(k )/3 = sk&. Later, using a simple model,
Friedman [6] related the width to the separation energy of
removed nucleons and the absorptive cutofF, rather than
the Fermi momentum. His model is based on the assump-
tion of peripheral collision for the reaction, which works
reasonably well for describing both high- and medium-
energy experimental data.

Recently, a peripheral direct reaction model [11] was

II. PERIPHERAL DIRECT REACTION MODEL

The reaction process concerned is written symbolically

a+A m 6+I, (2)

proposed to calculate the momentum distributions of the
&agments of halo nuclei, and applied successfully to the
study of the transverse momentum distributions of the re-
action Be~ Be+X using microscopic wave functions.
The basic assumption of the model is a sudden approx-
imation for the breakup process which will be realistic
when the absorption is strong between projectile and tar-
get. This model resembles the Serber model [12] concern-
ing the geometry of the reaction, while the fragmentation
process is treated in a more realistic way. Very recently, a
spectator model [8] was also used for the study of projec-
tile &agmentation of halo nuclei. In the spectator model,
complex optical potentials play the essential role to give
the cross sections. As will be seen in Sec. II, the pe-
ripheral model in Ref. [11] has a close similarity to the
spectator model in the basic reaction mechanism.

In this paper, we report the study of the projectile
&agmentation of halo nuclei Be and Li using mainly
the peripheral direct reaction model. Special focus will
be on the difference between the longitudinal and trans-
verse momentum distributions, and also the difference
between the momentum distributions and a straightfor-
ward Fourier transform of the internal wave function.
Furthermore, we will discuss the difference among various
models for the prediction of the width of the momentum
distribution. This paper is organized as follows. Section
II is devoted to the formulas of the peripheral direct reac-
tion model. Calculated results of the &agmentation cross
sections are shown in Sec. III for ~Be and I i projec-
tiles and compared with experimental data. In Sec. III,
we will discuss also the Friedman model and the Serber
model in comparison with the present calculations. A
summary is given in Sec. IV.
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where a (A) is the projectile (target) and b is the observed
fragment. The residue of the reaction is denoted as Xe
The transition matrix element for this process is given in
the peripheral direct reaction inodel [11]by

case of heavy target where the long-range Coulomb in-
teraction contributes significantly to the breakup cross
section, and whether the phase of the S matrix plays an
important role or not.

T(b„,kb) = drb exp( —ikb rb)g (rb —r„)
x exp(ik r )8(bb —Rb —Rg),

where 1b (rb —r„)is the wave function between the frag-
ment b and the nucleons x in the projectile. The cylin-
drical coordinate r = (b, z) is used hereafter taking the
incident beam direction as the z direction. The impact
parameter b is measured &om the z axis passing the cen-
ter of mass of the target. The value Rb (Rt) is the radius
of the fragment (target). This formula is derived based
on a sudden approximation similar to the Serber model
[12]. Equation (3) can be rewritten as

III. RESULTS AND DISCUSSION

We study first the reaction Be~ Be+X on tar-
gets i2C and 2osPb. As the wave function @ in iiBe,
two kinds of 2szy2 wave functions, i.e., the halo wave
function and the harmonic-oscillator wave function, are
adopted. The halo wave function is calculated using a
modi6ed Hartree-Fock potential, which is adjusted to re-
produce the experimental neutron separation energy in

T(b, ke) = f dre exp(iri re)ri (re —r„)
x8(bb —Rb —R ), (4) 0.2

11 10Be-& Be
on C

halo 1s„,
where q—:(Ab//A )k —kb. The differential cross section
for the stripping reaction is given by

db„~T(b„,kb)
~

8(R + R, —b ),
b

where the e function ensures the breakup reaction to
take place. The form of the absorptive cutoff de-
pends on observables of the breakup reaction. Equa-
tions (4) and (5) correspond to the inclusive process like
iiBe~ioBe+X, since the cutoff 8(bb —Rb —Rt) repre-
sents the survival probability of the b &agment Rom the
collision with target, while the function 8(R + Rt —b )
describes the process that X &agrnent interacts with the
target.

In Refs. [7,8], the fragmentation cross section was for-
mulated in the spectator model to be

(x db„(P (q, b„)['[1—[S ~(b )['],
b

E
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where

ii (ri, b„)= f dre exp(iri re)P (re —r„)S (b )e.xe(7)

E

Qe5

S,~(b, ) is the S matrix for the elastic scattering of the
cluster i (i = b, x) from the target A. The S matrix
changes fI'om 0 to 1 in the surface region and the func-
tional form will be determined by both the nature of the
interaction and the surface thickness of nuclei. It is ex-
pected that the short-range character of nuclear interac-
tion leads to a rapid change of the S matrix at the surface
so that the replacement of S matrix by the 6 function
is reasonable in the limit of thin surface thickness and
strong absorption. Substituting the 8 functions for the
S matrices, formulas (6) and (7) become identical to the
corresponding ones (5) and (4) of the present peripheral
model. It is an open and interesting question whether
the replacement by the 8 function is still valid in the

0.0
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FIG. 1. Momentum distributions of the fragment ' Be
from the reaction of Be with targets C (a) and Pb
(b). The solid curve shows the result without any absorptive
cutoff in Eqs. (3) and (4), while dotted and dashed curves
correspond to the transverse and longitudinal cross sections
obtained with the absorptive effects of both the target and the
core of the projectile. The halo single-particle wave function
is used for the calculation.
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FIG. 2. Momentum distributions of the fragment Be
from the reaction of 'Be with targets C (a) aud Pb
(b). The solid curve shows the result without any absorptive
cutofF in Eqs. (3) and (4), while dotted and dashed curves
correspond to the transverse and longitudinal cross sections
obtained with the absorptive efFects of both the target and the
core of the projectile. The harmonic oscillator single-particle
wave function with the oscillator length b = 1.52 fm is used
for the calculation.

Be, S„=0.51 MeV [13,14]. For the harmonic-oscillator
wave functions, the oscillator length b is taken as 1.52 fm
which gives the exnpirical rms radius of Be. The cross
sections of the fragment Be are calculated using Eq. (5)
for three different cases; no cutofF, and longitudinal and
transverse cross sections with the absorptive cutoff. The
no cutoff cross section is obtained without 8 functions
in Eqs. (4) and (5), i.e. , no limit for the integrations of
b„and rb. In this case, the cross section (4) becomes
identical to the straightforward Fourier transform of the
internal wave function Q . The calculations with the
cutoff are performed by taking phenoxnenological radii
for targets (Rq ——2.47 fm for ~ C and 5.50 fm for sosPb)
and the core of the projectile (Rs = 2.28 fm for ~oBe).
The 6nite size of neutron R is ignored. The e function

TABLE I. The full width at half maximum I F~HM and the
width o' (in units of MeV/c) of the momentum distributions
of the inclusive reaction Be—+ Be+X with the targets C
and Pb. The radii of targets are taken to be R~ ——2.47 fm
for C and R~ ——5.50 fm for Pb. The value cr is calculated
by using a formula o = I'FwHM/2. 37 which is derived by
assuming Gaussian momentum distribution.

Halo
Target

No cutoff
Longitudinal
Transverse

wave function with g(r~) = 5.16 fm
12C 208Pb

I FWHM (&) PFWHM

62.8 (26.5) 62.8
62.1 (26.2) 62.3
56.1 (23.7) 55.7

(~)
(26.5)
(26.3)
(23.5)

Harmonic-oscillator wave function with V (r~) = 2.54 fm
Target C 208pb

I FWHM (&) PFWHM (~)
180.1 (76.0) 180.1 (76.0)
181.8 (76.7) 176.7 (74.6)
166.3 (70.1) 170.2 (71.8)

No cutoff
Longitudinal
Transverse

acts on the transverse direction to the beam. direction
because of the geometry of the cutoff.

The calculated results are shown in Fig. 1 for halo wave
function, and in Fig. 2 for harmonic-oscillator one with
targets C and sosPb. The obtained widths are tabulated
in Table I. The full width at half maximum I'F~HM
is obtained &om the calculated distributions, while the
width o in Eq. (1) is obtained from the formula [2]

& = I FWHM/2 37

assuming the Gaussian shape for the cross section around
the peak.

In general, the width of the momentum distribution is
not much afFected by the cutoff while the absolute magni-
tude changes substantially. The width of the transverse
momentum distribution is narrower than the longitudi-
nal one by about 10% as is shown in Table I. As is
expected, the halo wave function gives a very narrow
width for the cross section compared with that for the
harmonic-oscillator wave function shown in Fig. 2. The
momentum distribution for the harmonic-oscillator wave
function has a large tail in the region of the momen-
turn transfer k = 100—200) MeV/c, while the cross sec-
tion in high-k region is completely suppressed in the case
of halo wave function. The momentum distributions of
harxnonic-oscillator wave functions are thus characterized
not only in the peak region but also in the tail.

The results of the widths listed in Table I can be un-
derstood in general from the phase-space argument; the
wider (narrower) distribution in the coordinate space
gives the narrower (wider) distribution in the momen-
tum space. One can say alternatively this efFect as
the result of the uncertainty principle. This physi-
cal efFect gives a qualitative explanation of the differ-
ence between the transverse and longitudinal momentuxn
distributions, and also that between the halo and the
harmonic-oscillator wave functions. In the former com-
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parison, the absorptive cutoff of the transverse direction
suppresses the inner part of the wave function and gives
efFectively a larger mean-square radius for the removed
particles than that of the original wave function; conse-
quently, a smaller width for the transverse momentum
distribution is achieved. In the latter comparison, it is
obvious that the halo wave function has much larger ra-
dius than that of harmonic-oscillator one. This gives rise
to a substantial difFerence in the width.

The halo wave function is simulated often by a Yukawa-
type wave function

&ar
@(r) = /2n

Dineutron halo wave function with g(c2) = 4.97 fm
Target 'Be 181T

WHM l Fw'HM

49.9 49.9
46.3 47.0
43.4 42.3

(o)
{21.0)
(19.8)
(17.9)

(o)
(21.0)
(19.5)
(18.3)

No cutofF
Longitudinal
Transverse

TABLE II. The full width at half maximum l F~HM and
the width o. (in units of MeV/c) of the momentum distribu-
tions of the inclusive reaction Li~ Li+I with the targets
Be and Ta. The radii of targets are taken to be Rg ——2.38

fm for Be and Rq ——5.48 fm for Ta. The value cr is calcu-
lated by using a formula cr = I'FwHM/2. 37.

with

n = /2pS„/h2, (10)

where p, is the reduced mass and S„is the separation en-

ergy of halo neutrons. The quantity o can then be related
to the separation energy assuming the Gaussian momen-
tum dependence for the Fourier transform of Yukawa
wave function [2]:

o. —QpS

0.2

E

ID 01

Li -& Li+X on Be
halo cluster
wave function

(a)

With the value SN ——0.51 MeV for the neutron separa-
tion energy in ~~Be, formula (11) gives o = 20.9 MeV,
i.e. , I'F~HM = 49.5 MeV/c from Eq. (8), which is some-
what smaller than the prediction of the peripheral model
in the case of t~Be~toBe+X. This relation (ll) should,
however, be considered as a rough estimate, since the
exact momentum dependence is the Lorenzian for the
Yukawa wave function. The experimental width of the
transverse momentum distributions of Be is reported
as I'FTHM = 59.3 MeV/c for C target in Ref. [2], and
also 63 MeV for Be target in Ref. [3]. These experimen-
tal values are consistent with the calculated ones in Table
I. The longitudinal results are also reported in Ref. [15]
to be I'FvvHM = 43 MeV/c, independent of targets. This
data shows a somewhat smaller width than the values in
Table I, while the target independence is the same with
our prediction.

We show the results of our calculations for the reaction
Li~ Li+X with targets Be and Ta in Fig. 3 and

Table II. Several sophisticated microscopic wave func-
tions are now available in the literature [16] for ttLi.
However, we adopt a simple pointlike dineutron clus-
ter wave function (9) [17] which gives a transparent pic-
ture for the reaction mechanism than the complicated
wave functions. The separation energy of the neutron
halo is taken to be the empirical value S = 0.31 MeV

[2]. We found a sharp peak for the longitudinal mo-
mentum distributions of the Li kagment with the width
I'FwHM = 46.3 (47.0) MeV for Be ( Ta) target. The
transverse momentum distributions are even narrower
than the longitudinal ones similarly to those of Be.

There are several experimental data available for the
Inornentum distributions of Li from the breakup of Li.
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cay ~ aaa ~~~

-100.0 0.0 100.0
transfer momentum (MeV/c}
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FIG. 3. Momentum distributions of the fragment Li from
the reaction of Li with targets Be (a) and Ta (b). The
solid curve shows the result without any absorptive cutoK in
Eqs. (3) and (4), while dotted and dashed curves correspond
to the transverse and longitudinal cross sections obtained with
the absorptive effects of the target and the core of the pro-
jectile. The point-cluster halo wave function is used for the
calculation.
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The observed width I'F~HM of the longitudinal distribu-
tions are 46 MeV/c for Be and 39 MeV/c for Ta targets
[4]. The former value is surprisingly close to our calcu-
lated values in Table II although we adopted the sim-
ple dineutron cluster wave function for the halo. This
agreement suggests that the asymptotic behavior of the
halo neutrons in Li is crucial to describe the momen-
tum distributions and the cluster wave function has a
realistic asymptotic behavior at large distance, at least
for the study of the width of the fragmentation. The
correlation between two halo neutrons changes apprecia-
bly the momentum distributions [18]. Nevertheless, it is
rather dificult to observe this correlation effect clearly in
the experimental data because of the poor statistics. The
transverse momentum distributions of Li were also mea-
sured in various targets at various projectile energies. In
Ref. [19],the width I'FwHM is observed as 37 MeV/c for
C and 30 MeV/c for Pb targets at the projectile energy
280 MeV/nucleon. These values are somewhat smaller
than the observed widths for the longitudinal ones, and
consistent with our predictions. In the high energy case
at Ei b = 790 MeV/nucleon [20], the transverse widths
are observed being somewhat larger than those of the
intermediate energy at Ei b ——280 MeV/nucleon.

Our calculations predict a slightly larger width of the
momentum distribution than the experimental data for
heavy targets. This can be understood as the effect of the
Coulomb breakup, which we ignored in our calculations.
The Coulomb breakup cross section of Li through a soft
dipole state was studied in Refs. [21,18]. Coinpared with
our results, one can observe that the width of the mo-
mentum distribution in the Coulomb breakup process is
smaller than that in the nuclear breakup reactions. Con-
sequently, one can expect that the width of the momen-
tum distribution becomes smaller if one adds the contri-
bution of the Coulomb breakup to the nuclear breakup
in the present calculations. It is thus important to in-
clude the effect of Coulomb breakup for the study of the
width, especially in heavy nuclei. In the context of the
present study, the effect of the Coulomb breakup can be
included by a modification of the absorptive cutoff based
on S-matrix theory. This study is under progress and
will be published elsewhere [22].

Friedman [6] proposed a simple model to discuss the
connection of the width of the projectile fragmentation
to both the separation energy and the absorptive cutoff
radius of projectile, rather than the Fermi momentum.
His model introduced the absorptive cutoff only between
the observed fragment and the residue, while the cutoff
due to the target is also taken into account in the present
model through the step function in Eqs. (4) and (5). An-
other difference is that Friedman introduced a cutoff also
parallel to be beam direction. The transition amplitude
of the Friedman model can be obtained from Eq. (4) by
assuming a head-on collision of the fragment x with the
target, i.e., r~ = 0. Furthermore, his choice of the cutoff
parameter xo in Ref. [6) corresponds to ignoring the size
of the target R& in Eq. (4). Despite these differences, it
will be illustrative to use his model for obtaining analytic
formulas of the momentum distributions. In his model,
the momentum distribution is evaluated by

P(k) = f dr exp(ik. r)F(rz, z)g (r), (12)

where F is the absorptive cutoff perpendicular and par-
allel to the beam direction z. We take a Gaussian form
for the absorption,

F(r~, z) = 1 —exp — rz— exp
~

——z
(

2 ( 2
(13)

( nr25
Q (r)=Nexp~— (14)

with the normalization factor N. The integration (12)
can then be performed analytically, and the integrand is
separated into two parts:

P(k~~) oc exp
2(n+ &'))

k2 n+

& 2(n+~)&

n——exp k~
&2n(n+~) ').

(16)

One can see in Eqs. (15) and (16) that both the trans-
verse and the longitudinal momentum distributions are
affected by the cutoff in the coordinate space and the
width becomes narrower than those without the cutoff.
The magnitude of the efFect depends on the relative mag-
nitude of the two parameters n and p (or p'). These fea-
tures are exactly the same as those found in the present
calculations for the transverse momentum distributions.

The Serber model was first introduced to study the
breakup of the deuteron [12], and modified later to ana-
lyze the cross sections of projectile fragmentation of var-
ious nuclei [23]. This model is based on the sudden ap-
proximation similar to the present peripheral direct re-
action model. In the Serber model, only the absorption
effect due to the target was taken into consideration and
the core effect is discarded because of the deuteron pro-
jectile. A more important aspect of the Serber model is
that it introduces a cutoff only in the x axis along which
the neutron and the proton are aligned. The integra-
tion is cut off unless x ) 0 and x„(0 measuring x
from the surface of the target. For this circumstances,

where p is determined by the radius of core of the pro-
jectile due to the peripheral nature of the reaction, while
p' is related to the size of reaction zone. The reaction
zone itself is again determined by the peripheral nature
of the reaction, and also the surface thickness. In Ref.
[6], the integrand (12) is expanded around r~ ——Rq and
z = 0 to take into account the peripheral absorptive ef-
fect as well as the finite extension of reaction zone, and
the parameter p' is described by the cutoff parameter xo
and the radius parameter p of the wave function. The ra-
dius parameter p, is related to the separation energy and
governs the surface diffuseness of the wave function. The
Gaussian form of the cutoff (13) thus includes the same
effects as the expansion method in Ref. [6]. We take the
wave function )I() (r) also as a Gaussian form:



990 H. SAGAWA AND N. TAKIGAWA 50

the neutron misses and the proton hits the target. This
is geometrically very different &om our model and also
from the Friedman model in which the curvature of the
edge of nucleus is treated in a three-dimensional coordi-
nate. The one-dimensional cutoff makes the fluctuation
in the coordinate space smaller contrary to our way of
introducing the cutoff. Consequently, the width of the
momentum distribution is increased due to the cutofF in
the Serber model.

IV. SUMMARY

In summary, we studied the transverse and longitu-
dinal momentum distributions of projectile &agments of
unstable nuclei Be and Li by using a peripheral direct
reaction model. It is found that the transverse momen-
tum distribution of the fragment is affected by absorp-
tive cutoff of the &agmentation process, and the width
becomes 10%%uo narrower than that of no cutoff cross sec-
tion. The longitudinal momentum distribution remains
almost unaffected by the absorption as far as the width
is concerned. The analytical formulas derived &om the
Friedman model show qualitatively the same features as
those of the present calculations for the transverse mo-
mentum distribution. The calculated results for the re-
actions Be~ Be+X and Li~ Li+X with the halo
wave functions show good agreement with experimental
data at intermediate and high energies.

The momentum distributions of projectile fragments
from well-bound nuclei were studied systematically 2
decades ago. Through these analyses [9], it was con-

eluded that the momentum distribution is well simulated
by the Gaussian shape oc exp( —k /2o2) with a constant
reduced width ao 80 MeV/c irrespective of fragment
mass. This constant reduced width 00 reflects simply the
fact that the separation energy of stable nuclei are always
close to 7 MeV as one can derive from Eqs. (1) and (11).
For halo nuclei, the most important ingredient for the
width is the asymptotic behavior of the wave function
which is governed again by the separation energy. Thus,
it is quite general in both stable and unstable nuclei that
the width of the momentum distribution is a measure
of the separation energy of the removed nucleons. How-
ever, one should carefully examine the momentum distri-
butions of fragments using a reaction model which takes
a realistic reaction mechanism into account, before mak-
ing any quantitative statement on the structure of halo
nucleus. This is because the separation energy of halo nu-
cleus is one order of magnitude smaller than that of sta-
ble nucleus, and the reaction mechanism afFects the mo-
mentum distribution, especially, for its transverse com-
ponent.
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