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Nuclear level densities play an important role in nuclear reactions such as the formation of the
compound nucleus. We develop a microscopic calculation of the level density based on a combina-
torial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast
Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated
previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be ap-
plied to exotic nuclei with more confidence than the commonly used semiphenomenological formulas.
An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental

data for a wide range of nuclei is presented.

PACS number(s): 21.10.Ma, 21.60.Ka, 02.70.—c

I. INTRODUCTION

Nuclear level densities for application to the calcula-
tion of nuclear reactions are traditionally described in the
framework of the Fermi-gas statistical model [1-3]. Ex-
perimental data (especially on neutron resonances) pro-
vide a considerable amount of information on level den-
sities, shedding some light on various failures of the sta-
tistical model. For example, the experimental determi-
nation of the variation of temperature with excitation
energy indicates that the apparent level density param-
eter ¢ depends on the excitation energy [4-6]. Also,
some accurate measurements give evidence of a strong
parity dependence of the level density at excitation ener-
gies around the neutron binding energy [7,8], in contrast
with the classical assumption of parity equipartition [1].
As a matter of fact, many uncertainties still remain in
the level density global parametrization systematics, due
to the fact that most of the experimental knowledge is
confined to narrow regions of excitation energy and an-
gular momentum (see, e.g., [9]). In that context, one is
still limited to a semiempirical description of various ef-
fects such as the shell corrections (especially, the thermal
damping of shell effects) [9-12], the collective enhance-
ment (rotational and vibrational increase) [13-15], the
evolution of the spin distribution (spin cutoff parame-
ter), or the pairing correlations [16].

In a previous paper [17], we have shown how a Monte
Carlo method can be used to provide a computation-
ally fast estimate of the level density that reproduces
very closely the microscopic combinatorial evaluation for
heavy nuclei and/or at high excitation energy, when a
direct counting is impracticable. In this paper, we com-
pute the combinatorial level densities of a wide range
of nuclei by means of this Monte Carlo algorithm. We
show that our microscopic calculation of the level den-
sity based on a realistic (Hartree-Fock with a Skyrme
force) single-particle level scheme is an alternative to the
current statistical estimates. With the Monte Carlo sam-
pling procedure, we are able to consider large shell model
spaces which could not be previously treated in combina-
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torial approaches. This model reliably accounts for shell
and pairing effects. Moreover, since it relies on a mi-
croscopic foundation, it can be applied to exotic nuclei
with more confidence than the commonly used semiphe-
nomenological formulas. In this paper, we restrict our-
selves to the case of spherical nuclei, but the method
could be extended to deformed nuclei.

In Sec. II, we first outline the basis of the Monte Carlo
method for calculating microscopic level densities and
present some illustrative results. This method exhibits
various failures of the statistical model such as the prob-
lem of the spin-parity distribution or the thermal damp-
ing of shell effects. An exhaustive comparison of our pre-
dicted neutron s-wave resonance spacings with the avail-
able experimental data for a large set of nuclei is then
presented in Sec. III. The evidence of a collective en-
hancement of level densities is discussed in the light of
this comparison. Finally, we conclude in Sec. IV.

II. MICROSCOPIC LEVEL DENSITIES

The statistical model of nuclear reactions traditionally
makes use of a statistical description of the nuclear level
density (e.g., the back-shifted Fermi-gas model [18-21]),
although such a description is known to provide an ap-
proximate estimate which does not describe very reli-
ably shell and pairing effects. Alternatively, a micro-
scopic combinatorial determination of the level density
(see, e.g., [22-24]) based on an exhaustive counting of
the excited levels can be considered, but it is known to
require an exceedingly long computation time, especially
for large nuclear mass number A. This is the reason
why this method is often dismissed. However, we have
shown in a previous work [17,25] that a Monte Carlo
technique can be used to avoid this direct counting pro-
cedure, and makes thus possible a fast microscopic cal-
culation of level densities. Indeed, it is well known that
Monte Carlo methods generally provide very efficient al-
gorithms for solving combinatorial problems. Moreover,
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a direct counting procedure cannot easily treat the resid-
ual interaction in nuclei because it is then prohibitively
time consuming, so that it is natural to resort to a Monte
Carlo technique.

A. Monte Carlo method

The Monte Carlo simulation makes use of the Metropo-
lis sampling scheme [26], which has been widely applied
in statistical mechanics (see, e.g., [27,28]). It is based
on a random sampling of a very small fraction of the ex-
cited levels in the range of excitation energy under con-
sideration [17,25]. The resulting sample is assumed to
be representative of the whole configuration space, anal-
ogous with what is done when estimating a multidimen-
sional integral by a Monte Carlo procedure (see, e.g.,
(27]). Thus, the properties of the whole spectrum of ex-
cited states (i.e., energy, spin, parity, or other quantities)
can be simply derived by extrapolating from the sample
and applying the appropriate scale factor. Of course,
although the method is asymptotically exact, the result-
ing level density is inherently affected by a statistical er-
ror scaling as N~1/2, where N is the size of the sample.
However, this means that the accuracy can be imposed
by choosing an appropriate size N for the sample, and
does not depend on the actual number of levels in the
considered energy range. (For instance, a rough estimate
may be obtained within a very short computation time
by sampling only a few configurations.) The Metropolis
sampling scheme consists in following a guided random
walk which proceeds through configuration space (see
[17]). At each step, a new (trial) configuration is cho-
sen at random according to a given distribution, and this
(trial) move is either accepted or rejected with a given
probability. The limit distribution of this random walk
is adjusted to ensure a more or less equal accuracy in the
whole considered energy interval (i.e., the configuration
space is uniformly explored in energy). The reliability
of this Monte Carlo procedure is ascertained by the fact
that the computed total level density is in perfect agree-
ment with a direct counting (when workable), as shown
in [17]. The same conclusion holds for the spin and parity
distributions of the excited levels.

This Monte Carlo method can also be easily extended
in order to account for the pairing interaction in the stan-
dard BCS approximation at essentially no cpu cost. In
analogy to what is done in combinatorial methods (see
[22,24]), the total energy of each sampled (proton or neu-
tron) configuration C is given by
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where G is the pairing strength parameter, €, are the
single-particle state energies, and 'U,%,C are calculated
from
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Ac and A¢ being obtained by solving the pair of BCS
equations
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Here, A¢c and A¢ are the gap parameter and Fermi en-
ergy, respectively, while nc stands for the number of
paired nucleons. Following the notation of Ref. [22], the
summation ¥’ is made over orbitals containing unpaired
nucleons, while Z” is made over orbital pairs in which
there is not an unpaired nucleon. Thus, we use the so-
called blocking method [22,29], that is the orbits occupied
by unpaired nucleons are blocked (i.e., unavailable for
pair diffusion). More precisely, we restrict ourselves to an
approximate inclusion of pairing, close to what is done in
Ref. [24], where the excitations involving promoted pairs
are neglected. All the excited particles are thus taken as
noninteracting excitons, and the orbitals in which they
are placed are excluded from the BCS consideration even
if two particles occupy time-reversed orbitals. This ap-
proximation can be justified by arguing that the number
of such configurations involving promoted pairs is very
small (see [17]). When the excitation energy increases,
more and more orbital pairs are blocked, so that only
the trivial solution A = 0 can exist, in general, above a
certain energy. This behavior is in qualitative agreement
with the result of the temperature-dependent BCS the-
ory [30]. The investigation of the level density problem
including the pairing force via a Monte Carlo procedure
is the subject of a future work.

Note that the inclusion of BCS equations in a combina-
torial computation is well known to be generally exceed-
ingly time consuming, so that the Monte Carlo approach
becomes invaluable in that case. Indeed, we have found
that the additional amount of cpu time needed for the
inclusion of pairing in our Monte Carlo procedure is only
about 30-40 %, even if the BCS equations are solved re-
peatedly (for each sampled configuration). This surpris-
ingly small increase originates from the fact that only
about 1% of the Metropolis (trial) moves are accepted
on average along our random walk, so that the extra cpu
time needed to compute the pairing energy (by solving
BCS equations) only concerns about 1% of the configu-
rations. Accordingly, the energy of the remaining (99%)
configurations does not need to be calculated, allowing a
significant gain of computing time. The latter configura-
tions are necessary, however, to associate the appropriate
statistical weights to the former 1% configurations that
are actually sampled.

B. Comparison with a Fermi-gas model

In order to illustrate the accuracy gained by using
the microscopic Monte Carlo calculation, we compare
our results with the predictions of a Fermi-gas statistical
model. In the following, we consider a traditional level
density model which is based on the conventional meth-
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ods of statistical mechanics [3]. The total state density
w(U) for a two-components system as a function of the
excitation energy U is expressed by

exp[S(U)]
“ = Grpp@)7 “

where S(U) denotes the entropy and D(U) is the deter-
minant related to the saddle-point approximation. For
the Fermi-gas model, assuming equidistant single-particle
states with a density g (for both neutrons and protons)
and an empirical shift A (accounting for pairing and shell
corrections), the following relations hold:

7I'2

a = Eg ’ (6)
U-A=at®—t, (7
S(U) = 2+/(at)? — at , (8)
D) = ga:‘ts , (9)

where t is the thermodynamic temperature (in the Lang
and Le Couteur [31] definition). The resulting expression
for the state density is

J7 €XP [2 a(U - A)]
12 al/4(U — A +t)5/4

w(U) = (10)

Assuming a Gaussian distribution for the angular mo-
mentum projection, the corresponding expression for the
total level density is clearly

wU) 1 e [2v/al - 4)]
V2mo? 122 cal/4(U — A +1)5/4 7

where o2 is the spin cutoff parameter. In the compari-
son, we use the values of the parameters a, A, and o2,
tabulated for many nuclei from the compilation by Dilg
et al. [20]. Note that those parameters slightly depend on
the adopted value for the inertia moment of the nucleus
(see Sec. IID), so that we consider in the following the
range 50-100 % of the rigid-body value, as in Ref. [20].
Concerning the microscopic Monte Carlo calculation,
we use the spherical single-particle level scheme result-
ing from a Hartree-Fock + BCS calculation based on a
Skyrme interaction from Ref. [32]. In order to be con-
sistent, we solve the BCS equations for all the excited
configurations with the values for the pairing strength
parameters G, = 2.25/N%7 MeV (for neutrons) and
G, = 2.00/Z%7 MeV (for protons) derived in Ref. [32]
for the ground state. For illustrative purposes, we con-
sider the cases of 5 nuclei, 88Sr, 1°2Ru, '°La, %6Ho, and
196pt In Fig. 1, we plot the total level density p(U) ver-
sus excitation energy U. The solid histogram represents
the microscopic Monte Carlo calculation, while the dot-
ted and the dashed lines show the statistical predictions
from Ref. [20] with a moment of inertia equal to 50% and
100% of the rigid-body value, respectively. Note that a
basis of spherical single-particle states is used here for all

p(U) = (11)

nuclei, even if it is clearly not a realistic choice especially
for 1%6Ho. Moreover, we ignore the enhancement factor
due to the contribution of rotational bands in this de-
formed nucleus [14]. However, our purpose is simply to
compare our Monte Carlo method with a simple statisti-
cal model, and to exhibit the discrepancies. Notice that
the total number of states up to 30 MeV for a heavy odd-
odd nucleus such as *¢Ho becomes as high as ~ 1018, a
number obviously out of reach of any combinatorial pro-
cedure. One could a priori think that, with such a num-
ber of excited levels, the conventional statistical model
would be sufficiently accurate (one has rapidly entered
into the statistical regime), but it appears that this is
not necessarily the case.

In particular, it is clear that the parameter a cannot
be considered as a constant, as it is assumed in the tra-
ditional statistical method (e.g., the back-shifted Fermi
gas model [20]). This discrepancy is well known to be a
consequence of shell effects (see, e.g., [10-12]). Ignatyuk
et al. [10] have noted that calculations based on realistic
single-particle states predict shell effects in the level den-
sity which may be pronounced at low excitation energy
and tend to disappear only at higher energies. They pro-
posed a simple semiempirical model which accounts for
such energy-dependent shell effects by relating them to
the ground-state shell correction Eshen = Mexp — Marop,
defined as the difference between the experimental mass
Mexp and the liquid drop mass Marop [33]. In this model,
they introduce an energy-dependent parameter a defined
by

1 —exp(—U)

a(U) =a|l+ Eshell U ) (12)

where a is the asymptotic a parameter which should ex-
hibit no shell effects, and + is a free parameter determined
by comparison with calculations using realistic single-
particle states. Given the fact that FEgpey is negative for
a nucleus close to a shell closure, the a parameter for,
e.g., 88Sr, 14%La, and %8Pt should monotonically increase
up to its asymptotic value, as confirmed qualitatively by
Figs. 1(a), (c), and (e). On the contrary, for a nucleus far
from shell closure (Eghen > 0), the a parameter should be
a decreasing function of U. However, this behavior does
not appear in Figs. 1(b) and 1(d), showing that the mi-
croscopic a(U) is certainly more complex than predicted
by Eq. (12). The case of **Ho exhibits a particularly
bad agreement, but this may be due to our choice of a
clearly unrealistic single-particle spectrum. Kataria et al.
[11] have established another model to account for shell
effects, based on a Fourier expansion of the shell fluc-
tuations of the single-particle state density. This model
is however closely related to the Ignatyuk et al. model.
More recently, Goriely [34] has proposed a more micro-
scopic model which uses a semiclassical approximation to
the single-particle state density to describe the influence
of the nuclear shell structure on the energy dependence as
well as on the spin distribution of the level density. This
model yields an analytical approximation to the spin-
dependent level density, obtained in the framework of a
microscopic statistical model. However, this model leaves
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FIG. 1. Total level density p(U) vs excitation energy U for (a) ®8Sr, (b) !°?Ru, (c) **°La, (d) '**Ho, and (e) '°°Pt. The
solid histogram represents the microscopic Monte Carlo calculation, while the dotted and the dashed lines show the statistical
predictions from Ref. [20] with a moment of inertia equal to 50% and 100% of the rigid-body value, respectively.
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undetermined some free parameters that need to be fixed
by recoursing to realistic calculations. In this respect, the
Monte Carlo method proves to be very useful because
it allows to check a semiphenomenological formula by a
comparison with exact counting results, especially in the
asymptotic region.

C. Spin-parity distribution

Let us turn now to the spin-parity dependence of the
level density. In the conventional statistical model, the
dependence of the state density upon the angular mo-
mentum projection M has the Gaussian form [1,3]

exp(—M?/20?)
V2no? ’
where o2 is the spin cutoff parameter, and w(U) stands

for the total state density [Eq. (5)]. The resulting spin-
dependent level density can be written as

w(U, M) = w(U) (13)

PO I) = = [a—}% (U M)] M=J+1/2
L 2041 (J +1/2)?
~ 3m)i/2es ex [——————-——202 ] w(U), (14)

where J denotes the total angular momentum of the lev-
els at excitation energy U. Concerning the parity depen-
dence, the statistical model predicts that both parities
contribute in equal amounts to the level density (see [1]).

In Fig. 2, we plot the spin distribution (for each parity)
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FIG. 2. Spin distribution of the excited levels for *?*Pr in
the energy interval [5.8-6.0 MeV] resulting from our Monte
Carlo calculation. The solid circles represent the total (with
both parities) distribution, while the positive- and nega-
tive-parity distributions are represented by open circles and
triangles, respectively. The dashed line shows the asymptotic
distribution from the statistical model [Eq. (14)]. The derived
value for the effective spin cutoff parameter is o* ~ 28.8.

of the levels of *2Pr in the energy interval [5.8-6.0 MeV]
around the neutron separation energy. Given the odd-
odd character of 4%2Pr, the number of excited levels in
this energy interval is as high as 1.7 x 10, Therefore, the
spin distribution calculated by the Monte Carlo method
is expected to be consistent with the asymptotic distri-
bution of the statistical model. In order to check that, we
estimate an effective spin cutoff parameter 02 by calcu-
lating the variance of the Monte Carlo derived M distri-
bution. This yields the value 02 ~ 28.8, corresponding to
a maximum in the J distribution at a spin around o ~ 5.
The corresponding spin distribution with this adopted
value for 0% is also plotted in Fig. 2. The agreement
with the microscopic calculation is evident. It illustrates
that one can be confident in the asymptotic result if one
is concerned with an energy interval containing a suffi-
ciently large number of levels (and provided that o2 is
sufficiently well known). Note that, in spite of this large
number of levels, the parity equipartition is not achieved
yet in the considered energy interval, illustrating the need
for an appropriate treatment of parity (see [35]).

In Fig. 3, we consider the spin distribution of 2°8Pb in
the energy interval [7.3-8.0 MeV] situated just above the
neutron separation energy. That interval corresponds to
the one used by Dilg et al. [20] in their analysis of exper-
imental average neutron s-wave resonance spacings. The
number of levels belonging to that interval is estimated
to be about 100 (see [25]), so that statistical results are
expected to be unreliable. This is indeed what appears
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FIG. 3. Spin distribution of the excited levels for ?°®Pb in
the energy interval [7.3-8.0 MeV]. The solid line corresponds
to p(U, J) resulting from our Monte Carlo calculation, while
the dashed line represents the asymptotic distribution from
the statistical model [Eq. (14)]. The derived value for the ef-
fective spin cutoff parameter is 02 ~ 15.5. The solid circles
represent the total (with both parities) Monte Carlo distri-
bution, while the positive- and negative-parity distributions
are represented by open circles and triangles, respectively.
Note that, for consistence, the number of levels of each spin
provided by the Monte Carlo simulation for ?°®Pb has been
rounded to the nearest integer.
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in Fig. 3 where we compare the Monte Carlo derived spin
distribution with the asymptotic result [Eq. (14)]. The
spin cutoff parameter is found to be 02 ~ 15.5. Even
with this “best-fitted” value of o2, the spin distribution
is badly reproduced by the statistical model. In par-
ticular, this model very poorly predicts the number of
low-spin levels (J = 0,1) that are generally needed to
compare the experimental neutron s-wave spacings with
theory (see Sec. III). Therefore, one should be very care-
ful when attempting to extrapolate total level densities
from the experimental densities of levels at given spin(s).
Since the compilations of experimental nuclear level den-
sities (see [12,20], or the recent Ref. [9]) always assume
the validity of the statistical spin distribution, that ex-
trapolation is a source of uncertainties. The same remark
applies to the parity equipartition commonly assumed in
all the compilations.

D. Spin cutoff parameter

Equally important is the evolution of the spin cut-
off with excitation energy. In the traditional Fermi gas
model assuming equidistant single-particle states with a
density g, the spin cutoff is related to the temperature ¢
by

o2(U) = g(m?)t , (15)

where (m?) is the average value of the squared angular
momentum projection of the single-particle states at the
Fermi energy. From theoretical arguments [1], o2 is ex-
pected to approach at high excitation the value

02gia = ﬁlge,igid t ~ 0.01504%3 ¢ , (16)
where O;igia = 2MR? is the rigid body moment of iner-
tia, and a nuclear radius R ~ 1.254'/3 fm is assumed.
However, experimental data [20] indicate that values be-
tween 50% and 100% of the rigid-body value are prefer-
able, so that one writes
2 1

g = ﬁ@eﬁ' t, (17)
where O.g can be regarded as an effective moment of
inertia of the nucleus under consideration, and is usually
chosen between ;©igia and Oigia (see [20]).

In contrast with such a simple description, our calcu-
lations for 2°8Pb indicate that the spin cutoff parameter
exhibits shell effects [36]. In Fig. 4, we show the evolu-
tion of the spin cutoff parameter for 2°8Pb as a function
of excitation energy U. As it asymptotically occurs like
02 ~ /U, we rather plot the quantity o2 / VU which
should asymptotically behave like a constant (according
to the statistical model predictions). The solid line rep-
resents the result of the Monte Carlo method (each point
corresponding to a Monte Carlo simulation), while both
dashed lines stand for the prediction of the statistical
model with O.g = %O,igid and Oyigiq. In that calculation,
we took the values for a and A from the compilation by
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FIG. 4. Evolution of ¢2/+/U as a function of excitation
energy U for 2°®Pb, with o® denoting the spin cut-off pa-
rameter. The solid line represents the result of our Monte
Carlo method (each point corresponding to a Monte Carlo
simulation), while both dashed lines stand for the prediction
of the statistical model [20] with a moment of inertia equal
to 50% and 100% of the rigid-body value, respectively. We
took a = 8.53 MeV ™!, A = 1.52 MeV for the 50% case, and
a = 10.02 MeV~!, A = 1.80 MeV for the 100% case, as in
Ref. [20].

Dilg et al. [20]. Note that, in order to check the asymp-
totic behavior, we had to go to an excitation energy as
high as 100 MeV, which is possible only with the Monte
Carlo method. The 02/+/U curve is another evidence of
shell effects: for this doubly magic nucleus, the ¢2/v/U
slowly increases towards its asymptotic value (which is
compatible with the predicted value from the traditional
statistical model). Thus, the spin cutoff is clearly over-
estimated in that model, at least in an intermediate en-
ergy range (around the neutron separation energy). One
should observe the opposite behavior for nuclei far from
shell closures. Note that, as far as spin distribution is
concerned, the Monte Carlo method is the only method
able to provide a realistic—microscopically calculated—
spin cutoff in a broad energy range, up to high excitation
energies. (It gives the spin cutoff that an exact counting
would have provided, if feasible.) Therefore, it could also
be useful to predict parameters of semiphenomenological
formulas for the spin distribution.

III. COMPARISON WITH EXPERIMENTAL
DATA

Neutron resonance data constitute the most detailed
source of knowledge concerning the level density of highly
excited nuclei. A large body of experimental data about
neutron resonances is currently available, and we have
carried out a systematic confrontation of our results with
the neutron resonance spacings from the most recent
compilation by Iljinov et al. [9].
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The excited levels that are revealed by neutron reso-
nance spectroscopy have narrowly selected values of an-
gular momentum and parity quantum numbers. In par-
ticular, the resonances which are excited by s-wave neu-
trons (i.e., those which are expected to have a much
greater strength than other resonances) are those with
a spin |J; + 1/2| and a parity m;, where J; and 7, are
the ground state spin and parity of the target nucleus,
respectively. Thus, the neutron resonance experiments
yield the number of s-wave resonances having the appro-
priate spin and parity within a given interval around the
neutron separation energy S,, from which the average
spacing D is deduced. In this section, we compare the
experimental values of the s-wave resonance spacings at
neutron separation energy taken from [9], Dexp, with the
spacings derived from the Monte Carlo calculation, Dyc
(see also [36]). Note that this direct comparison of D is
preferable to what is done in the compilations of experi-
mental nuclear level densities, which assume the validity
of the statistical spin distribution along with the parity
equipartition. Indeed, the usual procedure (see, e.g., [2])
that provides the level density parameter a from experi-
ments is to write the level density of the observed s-wave
resonances as

1 1 [Je+1/2]
=3 ex; Sn,J, 18
53 2 peslSud) (18)

J=|J—1/2|

that is as a summation over observable spins, where

1,2
pexp(U7 J) = pexp(U) 2741 exp ('_(_Ji) . (19)

202 202

The value of a is obtained by a fit of pexp(U) with a Fermi-
gas expression such as Eq. (11). This procedure has to
be used with care since (i) it involves the assumption
that the spins are distributed according to the statistical
distribution; (ii) the spin cutoff factor is unknown exper-
imentally; and (iii) the factor 1/2 in Eq. (18) holds only
if both parities are equidistributed. The assumptions (i)
and (iii) are clearly not valid in some cases, and (ii) is a
source of uncertainties, as shown in Secs. IIC and IID.
Figure 5 shows the experimental [9] spacing Dexp as a
function of the mass number A for about 200 nuclei along
the stability valley (with 20 < A < 208). The most
represented nuclei in this set are even Z-odd N (solid
circles), since they come from experiments on even-even
targets. There is almost the same number of even-even
(open circles) and odd-odd (open triangles) nuclei, cor-
responding both to odd-A targets, while there are only a
few data concerning odd Z-even N nuclei (crosses) since
they come from experiments on odd-odd targets. Shell
and even-odd effects are clearly visible in Fig. 5. The
odd-A nuclei (which are essentially even Z-odd N) are
systematically shifted to larger spacings than their even-
even neighbor nuclei, as a consequence of the lower neu-
tron separation energy S,, for odd neutron number nuclei.
For the odd-odd nuclei, however, this effect is counter-
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FIG. 5. Experimental spacing Dexp from [9] as a function of
the mass number A for about 200 stable nuclei. The even-even
and odd-odd nuclei are represented by open circles and trian-
gles, respectively, while the even Z-odd N and odd Z-even N
nuclei correspond to solid circles and crosses, respectively.

balanced by a lower pairing shift which tends to increase
the level density, thus decreasing the average spacing.
Figure 6 shows the ratio R = Dyc/Dexp for the same
set of nuclei, Dyc being averaged into a 900 keV inter-
val around the neutron separation energy S, in order to
suppress small-scale oscillations in the level density [17].
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FIG. 6. Ratio R of the Monte Carlo to experimental [9]
spacing as a function of the mass number A for about 200
stable nuclei. The Monte Carlo spacing is averaged into a
900 keV interval around the neutron separation energy. The
even-even and odd-odd nuclei are represented by open cir-
cles and triangles, respectively, while the even Z-odd N and
odd Z-even N nuclei correspond to solid circles and crosses,
respectively. The region with 1 < R < 10 is delimited by
dotted lines.
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Note that, for a very small number of nuclei, the Monte
Carlo calculation provides a zero level density in this in-
terval, so that these nuclei were excluded from the com-
parison. Such a comparison of experimental data with a
combinatorial-like calculation for a large sample of nuclei
is only possible thanks to the Monte Carlo method. The
conclusions of this comparison are the following. First,
the even—odd effects visible in Fig. 5 have vanished, sug-
gesting that pairing has been reasonably taken into ac-
count. Second, it is clear that the overall fluctuation of R
is satisfactory, given the fact that Deyp spans more than
six decades. In fact, the ratio R is found to lie between
1 and 10 for a large amount of the nuclei. The regions
where this ratio exceeds about 10 correspond clearly to
regions of nuclear deformation. This is understandable
since our model in its present state of development re-
lies on a spherical single-particle spectrum and does not
account for the rotational enhancement factor. Indeed,
realistic calculations of the collective (vibrational or rota-
tional) enhancement of level densities based on the inter-
acting boson model [37,38] suggest that the magnitude of
this effect typically lies between 10 and 100. Moreover,
Fig. 6 shows evidence for neutron shell effects: the ratio
R exhibits dips at A ~ 50, 90, 140, and 210, correspond-
ing approximately to the neutron shell closures at N =
28, 50, 82, and 126. Finally, the weak systematic bias
(the averaged ratio being larger than unity) might be re-
lated to the fact that practically all nuclei have a nonzero
equilibrium deformation in the ground state, suggesting a
collective enhancement of the level density in general (see
[9] and reference therein). Figure 7 represents the same
data in the N — Z plane. The regions of nuclear defor-
mation (especially the rare earth region) appear clearly.

In order to give a quantitative estimate of the quality of
the overall agreement between the Monte Carlo calcula-
tion and experimental data, we use the so-called f factor
(see [2,9,39]) measuring the dispersion of the ratios, and
defined as the rms value

f =exp4/(In®R) (20)
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FIG. 7. Ratio R of the Monte Carlo to experimental spac-
ing in the N — Z plane. The symbols represent the following
values: R < 3 (dots), 3 < R < 10 (crosses), 10 < R < 100
(open circles), and R > 100 (solid circles). The magic proton
and neutron numbers are represented by dotted lines.

TABLE I. Average ratio R and (rescaled) f factor for
the whole set of nuclei, and separately for each class of nu-
clei. Note that the highly deformed nuclei in the range
150 < A < 190 are omitted here. The second column gives
the number of nuclei in each class, along with the total num-
ber of nuclei (between parentheses) including those deformed
nuclei.

Number R f
All classes 169 (208) 5.3 4.3
Even Z-even N 41 (51) 5.5 4.7
0dd Z-odd N 40 (50) 3.4 3.1
Even Z-odd N 81 (96) 6.5 4.6
Odd Z-even N 7 (11) 4.6 2.9

where the symbol () stands for an average over the ex-
perimental points. Not considering the highly deformed
rare earth nuclei in this comparison, the resulting f fac-
tor (after rescaling the ratios) has a value of about 4.
(This means that the Monte Carlo method predicts the
level density within a factor of about 4.) This value has
to be compared with the corresponding value f ~ 2 for
the phenomenological systematics of Ref. [9]. The higher
quality of the latter approach is expected, as it results
from fit to stable nuclei. In contrast, our computed level
density has a microscopic basis (it is obtained from a re-
alistic single-particle level scheme), and does not involve
any fit to the experimental level density. We thus think
that it is more reliable for exotic nuclei than the semiphe-
nomenological formulas of common use in reaction rate
calculations. The value of the (rescaled) f factor along
with the average ratio

R = exp(ln R) (21)

for the different classes of nuclei (omitting the nuclei in
the range 150 < A < 190) is summarized in Table I,
illustrating the absence of any significant residual even-
odd effect.

IV. CONCLUSION

The nuclear level density is a quantity of fundamental
importance in nuclear reactions such as the formation
of the compound nucleus. However, most current esti-
mates of level densities for application to the calculation
of nuclear reactions are based on the Fermi-gas statisti-
cal model. We present an alternative technique for esti-
mating level densities on a more microscopic foundation,
based on a Monte Carlo algorithm. This method pro-
vides a very accurate combinatorial estimate of the level
density, namely when a direct counting is intractable.
Our Monte Carlo determination sheds light on some in-
adequacies of the statistical model (e.g., the failure to
predict a correct spin-parity distribution, or to describe
reliably shell effects). The direct confrontation of our mi-
croscopically derived neutron s-wave resonance spacings
with the available experimental data for a large body
of nuclei also presents evidence for a collective enhance-
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ment of level densities. This comparison is unique in
that it does not rely on the traditionally used statisti-
cal assumptions. One really calculates the density of the
levels with the observed spins and parities. It must be
stressed that the discrepancies between both statistical
and microscopic methods could be significant when cal-
culating nuclear reaction cross sections. Also, since our
computed level density is obtained from a microscopic
basis—i.e., from a realistic single-particle level scheme—
we think that it can be used for exotic nuclei with more
confidence than the semiphenomenological formulas of
common use in nuclear reaction calculations.
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