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Relativistic Hartree calculations of nuclear compressional properties
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Using the scaling model, we calculate within the framework of relativistic Hartree theory the nu-
clear breathing-mode energies corresponding to the NL1 and NL-SH parameter sets of the nonlinear
o-~-p model. Both of these sets are found to be in disagreement with experiment and there is a clear
need for an improved Gt. However, as far as the nuclear-matter incompressibility K„ is concerned,
neither the NL1 value, 212 MeV, nor the NL-SH value, 356 MeV, can be excluded.

PACS number(s): 21.60.Jz, 21.10.Re, 21.30.+y, 21.65.+f

From the phenomenological point of view the most highly developed form of relativistic mean-field (RMF) theory
is the nonlinear o'-u-p model, with Lagrangian density:
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where I"„„:—8„(u„—8„(u„and G„„:—B„b„—B„b„i in

which b„denotes an isovector. Two different realistic
parameter sets have been presented, both having been
obtained by Gtting to the masses of several 6nite nuclei
(Table I).

The first of these sets, labeled NL1 [1], suffers f'rom

a volume-symmetry coeKcient J with the high value of
43.5 MeV, higher than anything that has emerged &om
any mass 6t that we are aware of. It was later found

[2] that this parameter set gave neutron-skin thicknesses
that were much larger than experiment. This can be
attributed [3] to the small value of the surface-stiffness
coefficient Q, an inevitable consequence of a large value
of J, once masses are Gtted. In an attempt to remove
this defect of NL1, Sharma et al. [4] introduced a new
parameter set, NL-SH, in which J is reduced to the much
more reasonable value of 36.1 MeV.

However, the value of the incompressibility coefFicient
K„corresponding to parameter set NL-SH is 356 MeV,
as opposed to 212 MeV for NL1, and no correctly ana-
lyzed experiment has ever given such a high value. Re-
cent heavy-ion experiments [5], for example, give K„as
lying between 165 and 220 MeV, which strongly favors
the NL1 set. The objective of the present paper is to
see to what extent this preference for NL1 is supported
by the measured energies Eb, of the nuclear breathing
mode, the giant isoscalar monopole resonance.

To extract a value of K„&om the breathing-mode data
one takes a variety of interaction schemes, i.e., eQective
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TABLE I. Parameter sets NL1 and NL-SH. Nucleon
and meson masses are given in MeV. C, = g; (M/m, ),
X = CT) 4J) p.

ma

mp

NLl
938

492.250
795.36
763.00

NL-SH
939

526.059
783.00
763.00

Q2
Q2
Q2

6

373.176
245.458
37.4175

0.0024578
-0.0034334

347.533
240.997
29.0954

0.0012747
-0.0013308

forces in the case of nonrelativistic approaches and effec-
tive Lagrangians in the case of RMF approaches, each
characterized by different values of K„. Then for each
of these interaction schemes one calculates Eb, for the
measured nuclei, using some appropriate model, e.g. , the
random phase approximation (RPA) or scaling, for the
breathing mode. The 6rst such analysis was performed
in 1976 by Blaizot, Gogny, and Grammaticos [6] (BGG),
who considered a number of nonrelativistic Hartree-Fock
effective forces, and &om the limited data available at the
time extracted the value of 210+30 MeV. However, since
then much more precise data have been obtained by the
Groningen group [7—9]. Nevertheless, adopting the same
general approach as BGG [6], and taking a highly gen-
eralized and very flexible Skyrme force, it was found in
Ref. [10] that fits to these new data can be obtained only
if K„ lies in the interval determined by BGG [6].

This provides a further strong indication that param-
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K(A, I) = —z(r )Eb, (2)

where (rz) denotes the rms matter radius. Next we make
the leptodermous expansion

K(A, I) = K„+K,zA '~s+K„,I2

+Kg „iZ A

where, in the scaling-model approximation,

K'l
K,y

—— 22 —2 a, y + 36vrro poooK„)

(3)

(4)

eter set NL1 has much better compressibility properties
than NL-SH. However, it must be realized that the anal-
ysis in Ref. [10] of the Groningen breathing-mode data is
strictly nonrelativistic, and that with a relativistic treat-
ment of the saturation mechanism a quite different range
of values of K might emerge. Actually, a constrained
relativistic Hartree calculation [11] with the linear cr-w

model [12] shows that the value K„= 545 MeV given
by this model leads to Eb, 's that are much too high, and
these authors suggest that a value of K„ in the range 200—
250 MeV is indicated. However, the nonlinear model
has quite different compressional properties, and merits
a separate study. Thus in the present paper we attempt
to estimate the Eb, of the measured nuclei for the RMF
parameter sets NL1 and NL-SH.

Unfortunately, we are not able to determine breathing-
mode energies within the &amework of RMF theories by
direct calculations on the finite nuclei concerned. In-
stead, following the scaling model and Blaizot [13], we
first define a finite-nucleus incompressibility for a nu-
cleus of mass number A and asymmetry I—:(N —Z)/A
through

b = 0. %e also define the charge-radius constant by
ro = (3/47rpoo)i~s.

The remaining quantities, a, y and e, refer to symmet-
ric semi-infinite nuclear matter (SINM). This is a one-
dimensional system with p„(z) = p„(z) for all z, and the
limiting behavior

lim p(z) = 0
Z~OO

(8)

lim p(z)—:p, = poo

That is, deep beneath the surface the local properties of
symmetric SINM tend towards those of saturated sym-
metric INM. A specific surface energy for symmetric
SINM is now defined according to

000= E' z —a„p z dz

where E(z) is the local energy density in SINM and a„ is
the energy per nucleon in symmetric INM at saturation,
as defined in Eq. (7). Then a,y

= 4xro2ooo. We note
that the relations given above are valid regardless of the
choice of theoretical methods; in particular they hold also
for RMF approaches.

As for u, the double derivative of o. is with respect to
the limiting internal density p„as defined in Eq. (9),
which means that one must in principle evaluate the spe-
cific surface energy o of SINM over a range of densities

p, . This poses a problem, since to have p, different from

poo in symmetric SINM requires the application of a con-
straint to the system, and Eq. (10) can be used only for

p = poo. One solution to this problem is to perform a
full scaling calculation, but in this paper we make use of
the siinple relation given by Stocker [15]:

fK'
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where e = (p —poo)/poo, in which we denote by poo the
equilibrium (saturation) density in the symmetric case,

The quantities K', K y~ L po and poo that we have
introduced here, like J and K, are defined with respect
to infinite nuclear matter (INM) as follows. If we express
the energy per nucleon, e, of INM as a function of the to-
tal baryon density p and the asymmetry b = (p„—p~)/p,
where p and p„refer to neutron and proton densities,
respectively, and p = p + p„, then the above coefFicients
appear in the expansion [14]

where t is the surface diffuseness, defined as the 90%—10%
falloff distance of the surface density. This expression
was obtained under the assumption of the existence of
a ground-state energy-density functional that could be
even relativistic. However, the ground-state density had
to be approximated, as a result of which a possible K'
dependence, believed to be weak, cannot be taken into
account.

The tendency of this expression is to give magnitudes
of o., which is always negative, that are too large by up
to 30%, as compared to the scaling value (see Refs. [16]
and [17] for the nonrelativistic and relativistic cases, re-
spectively).

This error in 6 is the largest source of error in our cal-
culation of K(A, I), compared to exact scaling calcula-
tions. Another source of error concerns the higher-order
terms that are neglected in Eq. (3). An analysis based
on Refs. [10] and [18] shows that the net contribution of
these terms to K(A, I) tends to be positive, of the order
of 10 MeV or less. Finally, there is the question of the
validity of the scaling model, which is implicit in Eq. (3)
itself, and in the calculation of its coefBcients according
to Eqs. (4)—(6). By comparing with RPA calculations it
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has been found [19] that the scaling model overestimates
K(A, I) slightly, but by not more than 10 MeV. Thus
these last two sources of error, each of which is small,
tend to cancel, and the error in o dominates, with the
tendency to leave K(A., I) underestimated.

In passing, one sees the possibility of fitting Eq. (3)
directly to the data, and extracting empirical values for

K„, along with all the other coefficients. However, it
is impossible to extract a unique value of K from the
measured Eb, in this way, all values over the range 100
—400 MeV (and maybe over an even wider range) being
compatible with the Groningen data [20]. Thus there is
no alternative to the general strategy pioneered by BGG
[6], i.e., to simply trying out different proposed interac-
tion schemes.

We calculate both INM and SINM (symmetric) for the
two parameter sets in the relativistic Hartree approach.
This method is well known (see Ref. [12] for INM and
Ref. [21] for symmetric SINM) and will not be discussed
here. However, we give now the analytic expressions that
we have used to calculate K„, K', I, and K,„,since
these do not seem to have been published before. We
have

1kF
sym

F
1 kF4+-

6F

1kF
6 a*3F

2 e~ 2 e~ e~ (e~ 3)
1k4

(M*M") —— (M")
6 eF3

M'M'"

Here M* is the Dirac efFective mass, given by numerically
solving the implicit equation

M'k~F
~ ~

+ G(M') = 0 (16)

and

m2
(M —M') —bM(M —M')

—c(M —M')

G(M') =—

where

=1 Ql+ z2+ 1
F(x) = —pl+ x2 —z ln (17)
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Also

kF+ M' (19)
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I dM M'
ykF

(20)

y = 1 ——gl + x2 3F(z) + 2
G'(M'), (21)

7r' 1 /

2 kF

with z = M'/ky . Finally,

dM' 3
dkF2 y2kF

7r2 x 2+ 3x G' M' „2 G"(M')+ 2 3F(x) —(1+2z ) + M" + (xM" —1 —2z ) + ' '(1+ z )M"
2y2ky /1+ x2 x k~~ ky

(22)

For completeness we recall also the expression for J [12]:

g 1k2
(23)2m 6~F

All these quantities are to be evaluated for p = poo, the
saturation density of symmetric INM. Also, we have kF ——

2 ~2)1/3
We show in Table II the values that we have calculated

for all these coefficients for both parameter sets, along
with the quantities a,y and t, derived &om SINM (all
these numbers are as in Ref. [3]). This table also shows
the value of 0 that we have calculated using Eq. (11),
and of the values of K,f, K„, and Kc „~ that we have
derived using Eqs. (4) to (6), respectively.

Table III shows for both parameter sets the calculated

values of K(A, I) for the measured nuclei, and compares
with the experimental values, extracted from Refs. [7—9],
using Eq. (2). Clearly, for both parameter sets these
predictions are in disagreement with the data. However,
in view of the tendency for the "pocket formula" (11)
to underestimate K(A, I), it would seem that a better
estimate of o might bring NL1 closer to the data, while
for NL-SH the situation could only become worse.

Nevertheless, a more careful study shows that no mat-
ter what value is chosen for o. the INM coefficients of
NL1, whose values are calculated unambiguously, do
not permit the A and I dependence of the data to
be correctly reproduced. In fact, the main problem
with NL1, as far as compressibility properties are con-
cerned, lies with the low value of its INM coefBcient
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TABLE II. CoefBcients of INM and SINM for RMF pa-
rameter sets NLl and NL-SH. (See text for quantities in
parentheses. )

poo (fm ')
vo (fm)

K„(MeV)
K' (MeV)
J (MeV)
I (MeV)

K,y (MeV)
a, y (MeV)

t (fm)
ooo (MeV fm )

o (MeVfm )
K,t (MeV)
K„, (MeV)

Kco„) (MeV)

NL1

0.1519
1.163
211.7

31.98 (1207)
43.49
140.2
143.0
18.56
2.30
1.092

-222.5 (-163.1)
-382.6 (-379.1)
-677.0 (101.5)
-5.831 (-1.706)

NL-SH

0.1460
1.178
355.8

-600.9 (345.0)
36.13
113.7
79.82
18.96
1.83
1.087

-309.? (-401.0)
-554.9 (-961.1)
-794.4 (-492.1)
-7.106 (-5.156)

K':——27Psoo(dse/dPs) p„: If we drastically increase this
coeKcient and at the same time make a small change in
o., as indicated in parentheses in the NL1 column of Table
II, then without changing any of the other INM or SINM
coefficients of NLI the corresponding values of K(A, I),
shown in parentheses in the NL1 column of Table III, will
improve dramatically.

However, within the context of the RMF theory de-
scribed by the Lagrangian (I) no physical meaning can
be attached to this rnodified set of INM and SINM coef-
Gcients if no modified set of meson parameters can be
found to correspond to them. Actually, the required
change in 8 may not be significant, especially in view
of the fact that the "pocket formula" (11) tends to give
too negative a value for this quantity anyway. As for
the coefFicients relating to symmetric INM, we have to
fit not only the prescribed values of K„and K', but
also the values of a„, ppp, and M' that are imposed by
the fit to masses. But with the Lagrangian (I) symrnet-
ric INM is determined by just four meson parameters:
g~/m~, g~/m2, b, and c. Thus it might be difficult to
find a set of meson parameters that will allow us to fit si-
multaneously masses and the required incompressibility
coefEcients K and K'.

A similar improvement in the fit to the breathing-mode
data is also possible in the case of parameter set NL-SH,
as we again indicate in parentheses in Tables II and III.
(The fact that good fits to the breathing-mode data are
possible with such widely difFerent values of K„as 212
and 356 MeV is consistent with Ref. [20].) However, not
only is a drastic modification in K' now required, but
also 0 has to be made much more negative, making it
still more unlikely that any corresponding set of meson
parameters could be found.

To summarize, despite the uncertainty in our calcula-
tion of o, we are able to conclude quite firmly that neither
of the RMF parameter sets NL1 and NL-SH is compatible
with the measured breathing-mode energies. Neverthe-
less, we have seen that as far as the incompressibility K„
is concerned, neither the NL1 value, 212 MeV, nor the

TABLE III. Finite-nucleus incompressibilities K(A, I)
(MeV). (See text for quantities in parentheses. )

90Z
112S
114S
116S
120S
124S
144S

208pb

Expt.
112.8 + 5.6
126.4 + 2.2
126.8 + 2.2
126.7 + 2.6
126.7 + 2.4
126.6 + 2.6
134.2 6 2.5
143.0 6 6.2

NL1

94.8 (121.5)
97.4 (126.2)
96.1 (127.2)
94.5 (128.3)
90.7 (130.4)
86.0 (132.5)
95.8 (132.5)
84.9 (142.8)

NL-SH

194.0 (114.9)
198.6 (126.8)
197.3 (126.9)
195.5 (126.6)
191.2 (125.5)
186.1 (123.8)
198.4 (136.7)
187.8 (143.4)
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NL-SH value, 356 MeV, can be excluded. However, it
seems that it might be easier to fit the breathing-mode
data with the lower value of K„, in the sense that the re-
quired modification of NL1 would be much less extensive
than that of NL-SH; this would be in agreement with all
other indications on the correct value of K„[5,6, 10, 11].
In either case, one of the essential modifications would
be a much higher value of K'. This means that even if
NL1 should turn out to have close to the correct value
for K„, it predicts too stiR' an equation of state beyond
saturation. A further problem with NL1 concerns its in-
correct symmetry properties, as pointed out in Refs. [2]
and [4]. The discussion in Ref. [3] of this problem raises
the question that a RMF theory with a Lagrangian of
the simple form (I) might be incapable of fitting all the
available data; the present paper does nothing to dispel
this concern, but before any definitive statement could be
made it would be necessary to do a lot more work on the
fits. It should be noted that the breathing-mode energies
obtained within the scaling approach [Eqs. (4)—(6)] are
very sensitive to special quantities such as, e.g. , K'.

An improvement might be obtained by going beyond
the RMF theory and introducing exchange (Fock) terms
and relativistic RPA correlations. However, so far no
relativistic Hartree-Fock (RHF) parametrization compa-
rable with the RMF parameter sets NI 1 and NL-SH, i.e. ,

fitted to the masses of several finite nuclei, is available.
Moreover, it was only very recently that the first RHF
calculations including cr self-interactions for finite nuclei,
which are extremely involved, have been performed at all

[22]. Concerning SINM, no RHF calculations are avail-
able yet. On the other hand, relativistic RPA correla-
tions have been performed only within the linear RMF
model so far [23]. For these reasons, it seems that it
will be impossible for some time to come to investigate
nuclear compressional properties within a self-consistent
RHF framework including relativistic RPA correlations.

Finally, despite our somewhat negative conclusions, we

have made it clear that in making parameter fits of RMF
theories to nuclear data one should take account not only
of masses and radii but also breathing-raode energies.
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