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Dependence of nuclear shape transformations on the nuclear volume
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The dependence of nuclear shape transition on changes in the nuclear volume in Mg has been
studied within the framework of the constrained Snite temperature Hartree-Fock approximation.
The deformation parameters P and p are very sensitive to changes in the nuclear volume. A first-
order shape transition in Mg takes place at the temperature of 1 MeU and at the volume of
V, = 1.025 Vo, where Vo is the zero temperature unconstrained volume of the system. Previously we
have shown that a 2.570 compression of the system yields a downward shift in the critical temperature
of 0.7 MeV. Similarly a 2.5% expansion of the system also yields a decrease in the critical temperature
of 0.3 MeV. Finally a compression of the system leads to a corresponding reduction in the magnitude
of the level density, while an expansion increases its value only slightly.

PACS number(s): 21.60.Jz, 05.30.—d, 27.30.+t

I. INTRODUCTION

Nuclear shape transitions have been discussed exten-
sively in the literature within the framework of finite
temperature mean field (FTMF) approximation [1—22].
It has been shown, in unconstrained finite temperature
Hartree-Fock (FTHF) calculations, that the finite nu-
clear systems undergo deformed-to-spherical shape tran-
sitions [1—13]. Furthermore in cranked finite temperature
Hartree-Fock-Bogoliubov (CFTHFB) and finite temper-
ature Hartree-Fock (CFTHF) calculations, shape transi-
tions from prolate collective to oblate noncollective rota-
tion take place for fixed nonzero values of the average an-
gular momentum [14—24]. Clearly deformed-to-spherical
transitions cannot occur in cranked mean field calcula-
tions as the equation of constraint must be satisfied for
each value of angular momentum [23]. Despite large fluc-
tuations in the order parameters, which tend to obscure
these transitions [16—18], they can be identified by peaked
structures in the specific heat. In canonical ensemble cal-
culations, using either the exact shell model or the ex-
perimental nuclear energy eigenspectrum, similar struc-
tures are seen in the specific heat which confirms that
such shape transitions do occur [21,22,24,25]. Further-
more the critical temperature is predicted remarkably
well in FTMF calculations even in small model spaces
[26]. Such transitions have been interpreted as thermal
excitations &om collective to noncollective portions of
the nuclear spectrum [24,25]. The peaks in the specific
heat in all cases are the result of a sudden increase in the
many-body level density around the critical temperature
[24,25). Since this level density is also an experimentally
measurable quantity, it is believed to be the relevant or-
der parameter for shape transitions in deformed nuclei
[25].

In FTMF calculations, as the system heats up, it is
usually allowed to expand freely. Therefore the specific

heat calculated, strictly speaking, is not C~~), but C~~)
since only the average number of particles is held con-
stant. In order to calculate C(~) in the FTMF approx-
imation one has also to constrain the average volume of
the system to a fixed value. Such calculations enable one
to investigate how structures in the specific heat, which
are indicative of a shape transition in a deformed nuclear
system, respond to changes in the nuclear volume. This
is of particular interest in high energy heavy ion collisions
as it may provide a means of determining the density of
a compressed system and ultimately provide information
about the nuclear equation of state. Previously [27] we
performed a FTHF calculation at fixed volume in z4Mg
at different temperatures. We found that a 2.5% com-
pression on the system causes the critical temperature of
the deformed-to-spherical shape transition to shift down-
ward by about 0.7 MeV. The density of states of the
compressed system is also decreased considerably. In the
present work we present the results at different volumes
for fixed temperatures of 1.0 and 2.6 MeV and for differ-
ent temperatures at a fixed volume V = 1.025VO where
Vo is the unconstrained volume. The general formalism is
given in Sec. II. We then present and discuss our results
in Sec. III. Finally, in Sec. IV, we draw our conclusions.

II. THE VOLUME-CONSTRAINED FINITE
TEMPERATURE HARTREE-FOCK

APPROXIMATION

We expand the Hartree-Fock (HF) orbitals in a har-
monic oscillator basis with oscillator frequency Ru = 14
MeV, consisting of the Os, Op, 1s —Od shells [28]. A real-
istic effective Hamiltonian, including folded diagram cor-
rections, was used [29—31]. Since we enforce degeneracy
of the neutron and proton orbitals our solutions auto-
matically have isospin zero.
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Minimizing the &ee energy, III. RESULTS AND DISCUSSIONS

F = (H) —TS,

subject to following constraints,

(N) =) f =N,

with

(V) =
3

(R)'= V,

1
2

(4)

where T is the temperature, 8 = —P [f ln f + (1—
f ) ln(1 —f )] is the entropy, f is the thermal occu-
pation probability in the o.th HF orbit, and d; is the
expansion coeKcient of the o.th orbit in the ith oscillator
state, yields the FTHF equations. The volume constraint
here is actually simply a constraint on the mean squared
radius of the system and has been introduced in this way
so that we can extract the "eR'ective pressure" from the
Lagrange multiplier of this constraint. Furthermore we
approximate the volume of the system at all tempera-
tures with the spherical form and V, is the prescribed
volume for the system. This approximation is reasonable
in the vicinity of the shape transition since here the de-
formations are in any case small. Even in the region far
away from the critical points, the maximum deformation
of P 0.3 only introduces a maximum error of 2%
[32]. In our calculation we have taken V, to lie between
0.975 to 1.026 times Vo, where Vo (= s (R)s = 90.58
fms) is the volume of the system at zero temperature.
The FTHF equations are given by

) lHF dA dA

A. Results at Bxed temperature

The Hill-Wheeler deformation parameters [33] P and

p as functions of V obtained at T = 1.0 and 2.6 MeV
are given in Figs. 1 and 2. At T = 2.6 MeV the sys-
tem becomes spherical at Vq

——88.4 and V2 ——92.8
fm . The system reaches its maximal deformation at
Vo(2.6) = 90.89 fms, its unconstrained (P = 0) volume.
As soon as we begin to compress or to expand the system,
it becomes less deformed. Between Vj and Vq, the sys-
tem remains prolate. At T = 1.0 Me V, the system also
reaches its maximal deformation at its unconstrained vol-
ume Vo(1.0) = 90.60 fm . It is very interesting to note
that the system remains triaxial for most of the volumes
considered, except at V, = 92.84 fm, when it suddenly
becomes oblate. Generally speaking the system becomes
less deformed at all volumes with increasing temperature.
The discontinuities in P and p as well as other properties
of the system, as we shall show, seem to suggest that at
T = 1.0 MeV the Mg system undergoes a 6rst-order
transition at V, .

The ensemble averages of the energy at both tempera-
tures as functions of volume V are shown in Fig. 3. It is
clearly seen that both the curves exhibit minima at the
unconstrained volumes Vo(1.0) and Vo(2.6). For T = 2.6
MeV, a change of slope at Vj and V2 occurs when the
system changes its shape &om prolate to spherical. At
T = 1.0 MeV, a discontinuity at V, occurs as the system
suddenly changes its shape from triaxial to oblate.

In the FT mean field approximation the many-body
level density is given by [1,2,34]

(9)

The result of these level density calculations are given in

lt; = ) f dp'dI (ik, lHjll) + (Ilr lj), (7)

and

0.5

T = 1.0 MeV
T = 2. 6 MeV

(8)
b.3-

ep, p, and P are lagrange multipliers associated with
the equations of constraint and are determined self-
consistently. If we had simply constrained the mean
squared radius, the Lagrange multiplier A would have
been given by

A = 27rP(R ).
The subscript A in Eq. (7) indicates the two-body state
ljl) is antisymmetrized. Note that the HF Hamiltonian
6,-- possesses an extra term due to the volume con-
straint.
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FIG. 1. The Hill-Wheeler parameter P of Mg systems as
a function of V at T = 1.0 and 2.6 MeV.
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FIG. 2. The Hill-Wheeler parameter p of Mg systems as
a function of V at T = 1.0. The system has a prolate shape,
i.e,. p = 0' at T = 2.6 MeV for Vj ( V & Vq. io
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Fig. 4. Again, the level density at each temperature has
a minimum at the volume corresponding to the uncon-
strained volume. For T = 2.6 MeV, two discontinuities
in the slope of p can be seen where shape transformations
occur. For T = 1.0 MeV the discontinuity of p at V, is
also an indication of a first-order shape transition of the
system from triaxial to oblate.

Finally in Fig. 5, we give the "effective pressure" as
a function of V. At both temperatures the pressure de-
creases with increasing volume. For V ( 89.6 fm, the
pressure of system decreases with increasing temperature
as we have shown in our previous work [27]. The trend
reverses for V & 89.8 fm .

FIG. 4. The many-body level density p of Mg systems as
a function of V at T = 1.0 and 2.6 MeV. Note that the scale
for p is logarithmic.

B. Results at 6xed volume

The results for a compressed volume have been given
previously [27]. Here we would like to show the result of
an expansion of the system. The Hill-Wheeler deforma-
tion parameters P and p as functions of T at V = 1.025 Vo

are shown in Fig. 6. The value of P jumps from 0.21 to
0.29 at around T = 1.0 MeV, then decreases monoton-
ically to 0 at T = 2.6 MeV when the system becomes
spherical. p also shows a discontinuity at T = 1.0 MeV
where its value drops suddenly to 21' from 60'. It then
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FIG. 3. The ensemble average of the energy E of Mg
systems as a function of V at T = 1.0 and 2.6 MeV.

FIG. 5. The "effective pressure" P of Mg systems as a
function of V at T = 1.0 and 2.6 MeV.
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FIG. 6. The Hill-Wheeler parameters P and p of Mg sys-
tems as a function of T at V = 1.025 Vp (solid curves). The
dotted curves designate the unconstrained results.

FIG. 8. The many-body level density p of Mg systems as
a function of T at V = 1.025 Vp (solid curve). The dotted
curve represents the unconstrained results.
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FIG. 7. The specific heat of Mg systems as a function of
T at V = 1.025 Vp (solid curve). The dotted curve denotes
the unconstrained results.

decreases monotonically to 0' at T = 1.9 MeV. Again
the first-order transition from oblate shape to triaxial
at T = 1.0 MeV and at V = 1.025 V0 ——V is clearly
seen. When the system expands the critical temperature
of the triaxial-to-prolate shape transition increases from
1.8 to 1.9 MeV, while it decreases to 1.6 MeV for the com-
pressed case (V = 0.975 Vo). The critical temperature of
the prolate-to-spherical shape transition decreases from

2.9 to 2.6 MeV when the system expands by 2.5%%up. For
the same amount of compression the critical temperature
decreases to 2.2 MeV. This is somewhat unexpected, but
not too surprising, as the system starts with the minimal
deformation at low temperatures in the compressed case.

In Fig. 7 the specific heat as a function of T is given.
The two peaks in the specific heat at T = 1.9 and 2.6
MeV indicate the aforementioned triaxial-to-prolate and
prolate-to-spherical transitions, respectively. Finally, we

give the many-body level density p as a function of T
in Fig. 8. The expansion in volume appears to cause p
to increase slightly from the unconstrained case, while a
similar compression drastically reduces its value.

IV. CONCLUSIONS

From these results it is easily seen that the critical tem-
perature for the deformed-to-spherical shape transition
responds in a very sensitive manner to the small changes
in the nuclear volume. The deformation parameters P
and p are very sensitive to changes in the nuclear vol-
ume. A erst-order shape transition in Mg takes place
at the temperature of 1 MeV and at V = V. Previously
we have shown that a 2.5%%up compression of the system
yields a downward shift in the critical temperature of 0.7
Mev [27j. Similarly a 2.5% expansion of the system also
yields a decrease in the critical temperature of 0.3 MeV.
As we have already noted the critical temperature is de-
termined remarkably well in the FTMF approximation in
the uncompressed system. Varying the amount of com-
pression or expansion will yield a corresponding shift in
the critical temperature. A compression of the system
leads to a corresponding reduction in the magnitude of
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the level density, while an expansion increases its value
only slightly.

ACKNOWLEDGMENTS

We acknowledge the support of the Foundation for Re-
search Development of South A&ica. The support of

the Scienti6c Exchange Program between Taiwan and
South A&ica is also gratefully acknowledged. In addi-
tion, GDY would also like to acknowledge the support
of the National Science Council of Taiwan under Grant
Nos. NSC 82-0115-M-001-164-T and 83-0501-I-001-037-
B12. Finally GDY thanks the Department of Physics,
University of Pretoria for the kind hospitality.

[1] A. L. Goodman, Phys. Rev. C 33, 2212 (1986).
[2] A. L. Goodman, Phys. Rev. C 34, 1942 (1986).
[3] U. Mosel, P. G. Zint, and K. H. Passler, Nucl. Phys. A

23B, 252 (1974).
[4] M. Brack and P. Quentin, Phys. Scr. A 10, 163 (1974).
[5] M. Brack and P. Quentin, Phys. Lett. 52B, 159 (1974).
[6] K. Sugawara-Tanabe, K. Tanabe, and H. J. Mang, Nucl.

Phys. A 357, 145 (1981).
[7] S. Levit and Y. Alhassid, NucL Phys. A 413, 439 (1984).
[8] H. G. Miller and J. P. Vary, Phys. Lett. 150B, 11 (1985).
[9] J. L. Egido, P. Ring, and H. J. Mang, Nucl. Phys. A 451,

77 (1986).
[10] J.L. Egido, C. Dorso, J. O. Ramussen, and P. Ring, Nucl.

Phys. A 357, 145 (1981).
[11] H. G. Miller, R. M. Quick, G. Bozzolo, and J. P. Vary,

Phys. Lett. 168, 13B (1986).
[12] E. D. Davis and H. G. Miller, Phys. Lett. B 196, 277

(1987).
[13] B.J. Cole, R. M. Quick, and H. G. Miller, Phys. Rev. C

40, 456 (1989).
[14) A. L. Goodman, Phys. Rev. C 35, 2338 (1987).
[15] A. L. Goodman, Phys. Rev. C $8, 977 (1988).
[16] A. L. Goodman, Phys. Rev. C 37, 2162 (1988).
[17] A. L. Goodman, Phys. Rev. C 38, 1092 (1988).
[18] A. L. Goodman, Phys. Rev. C 39, 2008 (1989).
[19] Y. Alhassid, S. Levit, and J. Zingman, Phys. Rev. Lett.

57, 539 (1986).

[20] Y. Alhassid, J. Zingman, and S. Levit, Nucl. Phys. A

469, 205 (1987).
[21] H. G. Miller, R. M. Quick, and B. J. Cole, Phys. Rev. C

39, 1599 (1989).
[22] H. G. Miller, B. Cole, and R. M. Quick, Phys. Rev. Lett.

6$, 1922 (1989).
[23] H. G. Miller, R. M. Quick, and B. J. Cole, Phys. Rev. C

34, 1458 (1986).
[24] R. M. Quick, N. J. Davidson, B. Cole, and H. G. Miller,

Phys. Lett. B 254, 303 (1991).
[25] G. D. Yen, H. G. Miller, and R. M. Quick, Mod. Phys.

Lett. A 8, 1185 (1993).
[26] R. M. Quick, B.J. Cole, and H. G. Miller, Nuovo Cimento

A 105, 913 (1992).
[27] G. D. Yen and H. G. Miller, Phys. Lett. B 289, 1 (1992).
[28] R. M. Quick and H. G. Miller, Z. Phys. A 33B, 279

(1990).
[29] J. P. Vary and S. N. Yang, Phys. Rev. C 15, 1545 (1977).
[30] G. Bozzolo and J. P. Vary, Phys. Rev. Lett. 53, 903

(1984).
[31] G. Bozzolo and J. P. Vary, Phys. Rev. C 31, 1909 (1985).
[32] J. M. Eisenberg and W. Greiner, NucLear Theory Volume

Nuclear Models (North-Holland, Amsterdam, 1970),
Chap. 2.

[33] D. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
[34] K. Tanabe, K. Sugawara-Tanabe, and H. J. Mang, Nucl.

Phys. A 357, 20 (1981).


