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The multicluster generator coordinate method is applied to a microscopic study of the *°Ne
spectroscopy and of the **O(a, 7)?°Ne capture cross section. The *®O nucleus is described by four «
clusters located on the apexes of a tetrahedron. The good quantum numbers of the *0 and a+%0
wave functions are restored by a multiple angular-momentum projection. With respect to the usual
two-center approach, where %0 is described by a closed p shell, the five-a model improves different
2Ne spectroscopic properties. The **O(a,v)?°Ne S factor is reduced by about 30% at astrophysical

energies.

PACS number(s): 21.60.Gx, 25.55.Ci, 27.30.+t

I. INTRODUCTION

The microscopic a model, introduced many years ago
[1], has been applied to several 4N systems (see a review
in Ref. [2]). Owing to its large binding energy, the a
particle plays an important role in the structure of these
systems. In addition to the simple 8Be nucleus, a fairly
good description of 2C and !0 nuclei can be obtained
in the o model. This model has also been applied to 2°Ne
and 2*Mg, and predicts highly excited states, presenting
a linear a-chain structure [3].

The application of the @ model to reactions is more
recent. If more than two a clusters are involved in the
system, a correct treatment of boundary conditions re-
quires the restoration of good quantum numbers in each
colliding nuclei. In this case, angular momentum pro-
jection must be performed not only on the total spin of
the system, but also on the individual spins of the nu-
clei. In 1987, we used the generator-coordinate method
(GCM) to investigate the ®Be(a,y)'2C capture reaction
in a three-a model [4]. In that study, the ®Be nucleus
is described by a quasibound a + a structure, which
provides a realistic description of the ground and first
excited states. The microscopic 12-nucleon wave func-
tions are antisymmetrized, and projected on the ®Be and
12C good quantum numbers. We have shown that, in
the three-cluster approach, GCM matrix elements be-
tween projected wave functions are obtained from five-
dimensional integrals of nonprojected matrix elements
[4]. If the calculation of these nonprojected matrix el-
ements is fairly simple in the o model, the projection on
good quantum numbers leads to large computer times.

The o model has been then extended to the a+!2C
system [5], where the 12C nucleus is described by three
a particles located on the apexes of an equilateral trian-
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gle. It is shown in Ref. [5] that the a+'2C phase shifts
and the 2C(a,v)'%O capture cross section are sensitive
to clustering effects in 12C. In that system, the calcula-
tion of GCM matrix elements involves seven-dimensional
integrals. However, the occurrence of only a particles
allows an efficient vectorization of the codes, and makes
that calculation feasible.

In the present paper, we aim at investigating the
a+1%0 system in a five-a model. The 60 wave func-
tions are described by four a particles in a tetrahedral
structure. Our goal for the future is to extend this five-
cluster approach to systems involving three o particles
and two 0s clusters, such as 3N+p or 10+« for exam-
ple. In a one-center description of ®0, the a+%0 sys-
tem has been investigated by several authors [2,6]. This
two-center model will be used here as a starting point for
a comparison between different microscopic approaches.
The advantages of the o multicluster model are an im-
provement of the 10 ground-state energy with respect to
the one-center description (i.e., a better account of satu-
ration), and a straightforward inclusion of some a+60*
excited channels.

The %0(c,v)?°Ne capture cross section is expected
to be negligible for helium burning in stars [7]. How-
ever, this reaction is one of the best tests for microscopic
models, since realistic wave functions of %0 and o are
available. It is therefore a suitable case for comparing
different approaches.

In Secs. II and III, we briefly present the model, and
the conditions of the calculation. Section IV is devoted
to the 2Ne spectroscopy; a+!60 elastic phase shifts
and '%O(a,v)?°Ne cross sections are presented in Sec.
V. Concluding remarks and possible extensions are dis-
cussed in Sec. VL.

II. THE MICROSCOPIC a MODEL

Details on microscopic models and on the GCM can
be found in Refs. [8-10] for example. Here, we restrict
ourselves to the peculiarities of the five-a description of
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the a+%0 system. Let ®, (S) be a Slater determinant
for the o particle, involving 0s harmonic oscillator wave
functions with parameter b, and centered at S. We then
consider four a particles located at S;, S,, Sz, and Sy,
where S; represents the ith apex of a tetrahedron (see
Fig. 1). The basis of this tetrahedron, which corresponds

#5% (Ro Fa) = 92k

to a '2C nucleus, is assumed to be equilateral with a side
Rc; the height is denoted as Rp.

An %0 wave function ¢I v7 with spin I, parity =, pro-
jection v, and intrinsic pro_]ectlon K (the z axis of the
intrinsic 16O frame is along the height of the tetrahedron)
reads

30+7P) [0 DI (®) R(®) A 8a(S1)%a(S2)8a(S0)a(S4) )

where the S; depend on R¢ and Rp, and @c.m. is a center-of-mass (c.m.) Gaussian function. In (1), 2 represents the

Euler angles, DI

(R2) is a Wigner function, and R(Q2) and P are the rotation and parity operators with respect to

the tetrahedron c.m. Some remarkable properties arise from the equilateral triangle assumption. (i) The symmetry

reduces the integration domain by a factor of 3, and makes the parity projection very simple.
3n, where n is a positive integer number.

K values is limited by the relationship K =

(ii) The number of
(iii) If the tetrahedron is

symmetric (R, = 1/2/3Rc¢), I values different from I = 3n are forbidden.
Let us now turn to the 2°Ne wave functions, and consider a further a particle located at a distance R from the 6O
c.am. A five-a Slater determinant can be written as (see Fig. 1)

q)SQ(Ra R07 Rh’ Q)

X ®,[—1R +S3(Q

= A B[~ 1R +5,(Q)] o[- LR + Sy(0)]

)] 2a[-3R + S4(2)] 2a(3R), (2)

where S;(f2) represents the vector S; after the rotation Q2. This intrinsic wave function must be projected on the *¢O
spin I, and then on the total angular momentum J and parity 7 of the 20-nucleon system. One obtains, using (1)

and (2):

;M7 (R,Rc, Ry) =

14

+m(=)*ED]_g

% S M-y |JM)/ dR dQ YM"(R) [Dlx (@)

(Q)] QSG(R’ RCthvﬂ)’ (3)

where /£ is the relative orbital momentum between a and 160. These basis functions will be used for 2°Ne bound states

or resonances, as well as for a+160 scattering states. The total wave functions ¥/M™ are given by
M = Z / dR dRc dRp fu (R, Rc, Rh) ‘I’u % (R,Rc, Ry) (4)
UK

where the generator functions f;;" [k are determined in the microscopic R-matrix method (MRM) (see Refs. [11,12]).
In practice, Eq. (4) is discretized over a finite set of (R, Rc, Rp) values, and the generator functions are derived
from matrix elements of the 20-body Hamiltonian between basis functions (3). Using (2) and (3), the reduced matrix
element of an irreducible tensor operator O, reads

(@77 (R, R, B) [10Al] @77 i (R, R, B)) = 20 37 (' Av — pupa| Jv) (00| Jo) (£ T'w — v/ — o '|J'w — 1)

vv'p

/Yl (0,0) [DLL(Q) +

m(=) K DI (Q)] Yy~ 7#(6,0)

X[DL g () + 7' (=) K DL _ ()
x(<1>50(R, Rc,Rh,Q) IOM| @sa(R',R'C.,R;L,Q'))dCOSO dQ2 dQ’, (5)

where R is along the z axis, and R’ makes an angle 6
with respect to R, and is located in the z-z plane. This
calculation is similar to that of the a+'2C system [5].
The main characteristic of GCM matrix elements is to
involve seven-dimensional integrals which, for reaching a
good accuracy, need very long computer times. Our ef-

f

forts were therefore concentrated on the optimization of
the matrix elements of the nucleon-nucleon interaction
between Slater determinants (2). These matrix elements
involve quadruple sums which can be efficiently vector-
ized when the number of centers is larger than three. A
significant reduction of computer times arises from the
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FIG. 1. Cluster structure of °0 and ?°Ne, and definitions
of the generator coordinates Rc, Rn, and R. a particles are
represented by circles.

equilateral-triangle assumption for the tetrahedron ba-
sis. This symmetry reduces the integration domain in
(5) by a factor of 9.

III. FOUR-a DESCRIPTION OF €0

Our previous investigation of the a+!%0 system [6]
will be used as a starting point for a comparison between
different microscopic approaches. We therefore employ
the same nucleon-nucleon interaction V2 [13]; in the a
model also, the spin-orbit and tensor components exactly
vanish. The oscillator parameter is chosen as b = 1.36
fm, which minimizes the a binding energy with the V2
force.

In Fig. 2, we present the 80 binding energies as a
function of Rc and Rj. For given spin I, parity = and
intrinsic projection K, it is defined as

Bl (Ro, Ry) = (®5%(Ro, Rh) |H| 5% (Rc, Ra))
(@8 % (Rc, Rr) | ®5% (Rc, Rn))

(6)

where H is the 16-nucleon Hamiltonian, and
5% (Rc, Ry) is given by (1). The Majorana parameter
is taken as M = 0.6326; this choice will be explained in
Sec. IV. The 60 ground-state energy is found at R¢c =
1.88 fm, and R}, = 2.22 fm, yielding EJ = —127.3 MeV.
This structure is rather far from a symmetric tetrahe-
dron, where R, = \/2/3Rc. With the symmetric con-
figuration, i.e., with a single degree of freedom in the
16 description, the minimum energy is found for R¢ =
2.39 fm, giving EJ = —127.0 MeV. The small energy
difference between both geometries indicates that a sym-
metric configuration would provide a fair description of
the ground state. Since the use of any R}, value does not
need additional computer times, we have kept this degree

Re (fm)

- N W > L

(] 1 2 3 4 5 6 0O 1 2 3 4 5 6 7
Rh (fm)

FIG. 2. Energy surfaces of different '°O states, character-
ized by I,7, and K [see Eq. (6)]. The contour lines are
plotted in steps of 2.5 MeV.

of freedom. However, as stated in Sec. II, removing the
equilateral-triangle assumption for the tetrahedron basis
would strongly increase computer times. The R value
is smaller than for the 2C nucleus (Rc ~ 2.8 fm; see
Ref. [5]), which means that the fourth a particle brings
the other three o particles closer to each other. At the
minimum, the rms radius of 180 in the four-a model with
pointlike nucleons is /(r2) = 2.25 fm, which is smaller

than the experimental value /(r2) = 2.59 + 0.02 fm,
deduced from the charge radius [14]. It is interesting to
compare the binding energy and the radius with the cor-
responding values obtained in the one-center shell model,
where €0 is described by a filled p shell. With the same
V2 force, the minimum is found at —116.8 MeV for an
oscillator parameter b =1.55 fm and the rms radius is
2.28 fm. If the rms radii are similar, the improvement
of the ®0O binding energy in the four-a model is better
than 10 MeV.

This model also gives rise to excited states. The min-
ima of the binding energies are obtained at (Rc, Rp) =
(1.40 fm, 2.46 fm) for I = 17, (2.41 fm, 2.24 fm) for
I =3, K=0, and (1.91 fm, 2.46 fm) for I = 3=, K=3.
An approximation of the ZT state can be found, but this
state is well known to have a marked a+'2C structure
and therefore its description in the four-a model is very
poor. Figure 2 shows that the 1~ and 3~ excitation en-
ergies are much larger than the experimental values (7.12
MeV and 6.03 MeV, respectively). This result is partly
explained by the lack of spin-orbit effects in the o model,
where the intrinsic spin S is zero.

IV. THE ?°NE SPECTROSCOPY
A. Conditions of the calculation

For computer-time reasons, the O description is re-
stricted to a single set of (R¢, Ry) values, which we
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choose as Rc = 1.8 fm and R = 2.5 fm for the a+1%0
wave functions (3). These generator coordinates repre-
sent a compromise between the values obtained for the
minima in the I = 0%, 1~ and 3~ 180 states, which are
included in the GCM basis. For I = 37, the K = 3 com-
ponent is small and requires methods of higher-accuracy
for the numerical calculation of matrix elements; it has
not been taken into account in (3). The 60 energies
are —126.6 MeV, —99.6 MeV, and —110.5 MeV for the
0%, 17, and 3™ states, respectively. It is obvious that the
too-high *0(17) and 0(37) energies do not allow a re-
alistic investigation of a+160 scattering near the inelas-
tic thresholds. However, as long as we are interested in
low energies, such as astrophysical energies, the o +1¢ O*
channels are closed, and their role is restricted to distor-
tion effects in the wave functions. At those energies, the
threshold problem is less important, but an enlargement
of the GCM basis improves the wave functions.

For the a+1%0 relative motion, the generator coordi-
nates R (see Fig. 1) are chosen from 2.2 fm to 8.6 fm with
a step of 0.8 fm. The bound-state, resonance, and scat-
tering wave functions are calculated in the microscopic
R-matrix method, described in Refs. [11,12].

In this paper, we mainly aim at investigating differ-
ent microscopic approaches of the a+!%0 system. Our
starting point is the two-center a+®0 description [6]
which will be compared to the single-channel five-a de-
scription, involving the a+#0(0%) configuration only;
this comparison will provide an estimate of clustering
effects. It will be further extended to a multichannel
study involving the a+'%0(0%, 37, 17) configurations.
This step will illustrate the importance of the distortion
due to excited channels in the 2°Ne spectroscopy, and
in the @+%0 scattering. If we use the standard Ma-
jorana parameter M=0.6, we find for the ground-state
absolute energy —169.2, —184.8, and —187.1 MeV in the
three models respectively. In the following, in order to
make the comparison as meaningful as possible, the Ma-
jorana parameter has been fitted with the experimen-
tal 2Ne(2%) binding energy for each calculation (M =
0.6245, 0.6275, and 0.6326). This state plays a dominant
role in the %0(a, v)2°Ne capture reaction.

B. The O'f and 0~ bands

Energy spectra of the K = 0] and K = 0~ bands of
20Ne are displayed in Fig. 3. The rotational constant

50
20
Ne

7= 7"
7" _
15¢ 7

< 6* -

() 5° 2+
= 10t s —
N~— b 6+ 6+
W 3= 3" > 3"
_ 4* 1T

5 v T 1T T 4t ot a+'%0

2t 2% 2+ 2+
o* + ot +
Ot 0 0

(o) (b) (c) exp

FIG. 3. Energy spectra of *°Ne in the three models. The
a+'%0 thresholds are represented by dashed lines. (a);
two-center and (b), five-center a +'% O(0™); (c), five-center
a+'*0(0%,37,17).

of the 0 band is increased in the five-a model. This
yields a very good 2% ~ 0" energy difference, but reduces
the energies of the higher band members. In negative
parity, the band head of the 0~ band gets closer to the
experimental value.

Spectroscopic properties of 2°Ne are gathered in Ta-
ble I. Notice that the a width of a low-energy resonance
is very sensitive to its location; accordingly, the values
given in Table I have been obtained after a slight read-
justment of the Majorana parameter for each state. Ta-
ble I shows that o widths, which are significantly over-
estimated in the two-center approach, are all improved
when clustering effects are included in 0. For the 67
resonance, the importance of a+¢0* channels is higher
than for members of the 0~ band. The slightly larger
0% rms radius and 2% quadrupole moment obtained in
the two-center model partly arise from the larger oscil-
lator parameter used in that description (b = 1.62 fm).
The microscopic results remain too small with respect to
experiment. This problem might be due to missing com-
ponents in the nucleon-nucleon force, such as spin-orbit
or three-body terms.

In Table II, we show reduced E2 transition probabili-
ties in the different models. For the 2* — 0% and 4+ —
2% transitions, the B(E2) values are weakly sensitive to
the 2°Ne description. In agreement with the 0% rms ra-
dius and 2% quadrupole moment (see Table I), the 2+ —

TABLE 1. Spectroscopic properties of 2°Ne. Energies are expressed in keV and lengths in fm.

J" Two centers Five centers (01) Five centers (017,37,17) Expt. [15]
r(6") 0.53 0.50 0.30 0.11 + 0.02
r( ) 0.042 0.032 0.031 0.028 + 0.003
r'(37) 13.0 10.8 10.6 8.2 + 0.3
') 200 173 169 145 + 40
(77) 700 570 530 310 £ 30
(r2)(0™) 2.76 2.66 2.65 2.91°
Q(2%) —14.3 —14.1 -14.3 —-27+3

®From the charge radius [16].
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TABLE II. E2 transition probabilities (in e*fm*) in >*°Ne.

I — J;rf Two centers Five centers (07) Five centers (0%,37,17) Expt. [15]
2T S5 of 49.3 49.6 50.0 68 + 4

4t 2t 64.4 63.0 64.4 71+ 7

6t — 47t 56.0 68.7 55.3 65 + 10
3" 5 1” 178 157 155 164 + 26
57 — 3~ 208 178 206

0% transition probability is too small in the GCM. This
result suggests that the deformation in 2°Ne low-lying
states should be stronger.

C. Additional bands

The five-a model gives rise to high-energy narrow res-
onances, known as “Pauli resonances” or “almost forbid-
den states” [9,17]. These resonances are model depen-
dent, and are characteristic of microscopic calculations
where the colliding nuclei are not described by the same
set of orbitals. This situation is met in two-cluster cal-
culations with different oscillator parameters [18], or in
multicluster calculations where one of the colliding nuclei
itself is described by a cluster structure [5]. The number
of Pauli resonances is equal to the number of forbidden
states in two-cluster models with identical oscillator pa-
rameters. Their physical meaning is usually not simple.
They are poor approximations of states which have a
more complicated cluster structure than those included
in the model (see Ref. [18]). Here, we do not aim to
investigate these resonances in detail since they appear
above 10 MeV, where many inelastic and reaction chan-
nels should be introduced for a realistic description of
a+1%0 scattering. For example, the lowest Pauli reso-
nance in the 0% partial wave is located at E. ,, = 14.3
MeV with a width of 5.9 keV.

When the a+%0(3~) channel is taken into account,
the model provides a band which can be assigned to
the experimental 2~ band, starting at E, = 4.97 MeV
in 2°Ne. The states of this band have a dominant
a+1%0(37) structure [2] and, consequently, are located
too high in the GCM spectrum. It is therefore more
realistic to compare their energies with respect to the
a+1%0(37) threshold, overestimated in the GCM (16.15
MeV in place of 6.13 MeV experimentally). In this way,
we obtain 27,37,47, 57,67, and 7~ resonances located
at —2.56, —3.19, —2.10, —0.26, 1.77, and 4.95 MeV with
respect to the a+!®0(37) threshold. The correspond-
ing experimental values are —5.90, —5.24, —3.86, —2.41,
—0.25, and 2.48 MeV, respectively [15]. The theoreti-
cal E2 transition probabilities are 29.3, 35.5, and 58.5
e? fm* for the 4— —2~, 5~ —3~, and 6~ —4~ transi-
tions, whereas the experimental counterparts are 3.2, 87
+ 19, and 55 + 19 2 fm* respectively.

The multicluster approach was partly motivated by an
investigation of the 0f and 0F bands in ?°Ne; the 07
and 27 members of these bands [E,(0]) = 6.73 MeV,
E.(0f) = 7.19 MeV, E.(2]) = 7.42 MeV, and E(27)
= 7.83 MeV] strongly affect the *0O(a,~)2°Ne capture

cross section in the energy range covered by experiments
[19]. These bands have been described by Fujiwara et
al. [20] in the orthogonality condition model (OCM) in-
volving a+1%0 and 2C+8Be configurations. The OCM
includes antisymmetrization effects but its application
requires some parameters which are difficult to evalu-
ate. The present five-a GCM approach does not repro-
duce the 0f and 0 bands. We have performed a few
simplified calculations (i.e., with a single generator co-
ordinate R between o and ®0) with different *O con-
figurations. However, none of these investigations gives
any evidence for excited 07 or 07 bands. Two reasons
can be considered: (i) the states of these bands present
a dominant 12C+8Be structure and therefore require an
explicit treatment of this channel; (ii) their S=1 compo-
nent, which is missing in an @ model, might be important.
The inclusion of the 2C+8Be channel in the present basis
does not raise any theoretical problem, but the projec-
tion over good quantum numbers of 12C and ®Be would
require 11-dimensional integrals for the GCM matrix ele-
ments! An S=1 component might be taken into account
through °F+p and '°Ne+n configurations for example,
but this extension is far beyond the a model.

V. a+'%0 ELASTIC PHASE SHIFTS AND
THE '®O(a,v)?°NE CROSS SECTION

Elastic phase shifts are presented in Fig. 4 for the dif-
ferent models; the Majorana parameters are identical to
those of Sec. IV. The general shape of the phase shifts
does not change significantly from one description to an-
other. However, as we pointed out in Sec. IV A, Pauli
resonances appear beyond 10 MeV and introduce changes
of 180° in the phase shifts. In the o model, the broad
resonances of the 0] band have slightly larger energies
than in the a+%0 two-center model. The sensitivity to
excited channels has been shown in a+'2C scattering [5]
to decrease when the 2C binding energy reaches its max-
imum with respect to Rc. This saturation effect is con-
firmed in the present a+0 investigation, where the role
of the a+1%0(37, 17) excited channels is rather small. In
negative parity, the differences between the phase shifts
are mainly around the resonances, whose energies slightly
differ in the three models.

The %0(a,~)?°Ne S-factors are presented in Fig. 5,
where we display the contributions of the initial partial
waves £ = 0 and 2. They are computed in the MRM
framework, from matrix elements of the E2 operator
between a+160 scattering states and 2°Ne bound-state
wave functions. The £ = 0 transitions are enhanced by
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FIG. 4. a+'%0 elastic phase shifts. The dotted, dashed,
and solid lines correspond to the two-center and five-center
o+ 0(0%), and five-center o +'® O(0%,37,17) models re-
spectively.

Coulomb effects, whereas the £ = 2 component is favored
by larger photon energies for transitions to the ground
state. Let us recall that, at the long wavelength approx-
imation, E1 transitions between T' = 0 states are forbid-
den, and odd £ values are therefore missing in the total
cross section. The energy dependences are similar in the
different approaches. The slope of the £ = 0 S factor
at zero energy is mainly given [21] by the binding en-
ergy of the final state and by the scattering length a, for
which we have a = —3.10 x 108 fm, —2.45 x 10® fm, and
—2.45 x 10° fm in the two-center, five-center (07), and
five-center (0%, 17, 37) models respectively. On the con-
trary, the amplitude of the S-factor is more dependent on
the 160 description.

VI. CONCLUSION

This work aims at investigating an extension of the «
model to a+%0 scattering, where 150 wave functions
are described by a four-a tetrahedral structure. This
procedure significantly improves the 180 description with
respect to the one-center shell model. The multicluster
model requires the calculation of 7 dimensional integrals
for the GCM matrix elements, but this problem can be
overcome with the current computer facilities and with

L 160(0"7) ZONe

S (MeV b)

Ecm. (MeV)

FIG. 5. '%O(a,)?*°Ne S-factors, with the £ = 0 and £ = 2
contributions. The dotted, dashed, and solid lines correspond
to the two-center and five-center o +'® O(0%), and five-center
a+'%0(0%,37,17) models, respectively.

an efficient vectorization of the codes.

In addition to the improvement of the 10 binding en-
ergy, a multicluster description allows a straightforward
inclusion of some excited states. At low energies, the
present study shows that distortion effects, due to excited
channels, are small provided that the *0(0%) binding
energy is minimum. However, the role of excited configu-
rations might be underestimated here because of the too-
high theoretical thresholds. In addition, it might be more
important in other systems, where a similar multicluster
model can be applied. The need for accurate low-energy
cross sections in astrophysical applications deserves an
extension of the model to other systems, involving a Os
particle and a four-center nucleus described by o and 0s
clusters. However, in order to keep realistic computer
times, the tetrahedral nucleus should contain an equi-
lateral structure of three a particles. The symmetry of
this configuration is currently important for the feasibil-
ity of multicluster studies. This model might be applied
to reactions such as 13N(p,y)*O or *0O(a, v)'°Ne for ex-
ample.
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