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We introduce boson mappings of the fermion dynamical symmetry model (FDSM) to investigate
and clarify the relation between the FDSM and the proton-neutron interacting boson model (IBM).
The Dyson boson mapping is employed in a dual role —it is 6rst used to obtain exact FDSM results
and then as the starting point to obtain some hermitized mappings. By hermitizing the Dyson
boson image of the FDSM Hamiltonian through a seniority dictated similarity transformation or
by using a Belyaev-Zelevinsky mapping and retaining in both instances one- and two-body terms
only, one obtains an IBM type Hamiltonian. FDSM and boson mapped results are then compared
for a few typical cases. We reexamine, from the boson point of view, recent statements about
an effective SO(6) symmetry when Pt is analyzed in the FDSM and about the appearance of
normal (maximal F-spin) and exotic states in an application of the FDSM to Ba. Throughout
our analysis possible spurious states, which may appear as a result of an e8'ective overcompleteness
in the (linearly independent) boson basis, are properly identified. We discuss when and where these
states appear in the spectra, and the possible implications these considerations may have for allowed

representations in the IBM and FDSM.

PACS number(s): 21.60.Ev, 21.60.Cs, 21.60.Fw

I. INTRODUCTION

A shell-model description of collective states in
medium-heavy and heavy nuclei remains a formidable
task. It is thus almost unavoidable to resort to mod-
els in which the link to the original shell-model problem
is only tenuous. In the interacting boson model (IBM),
[1] boson degrees of freedom are introduced which are
believed and, at least in some cases, have been shown,
to be related to collective shell-model fermion pairs. The
IBM with 8 and d bosons has proven to be very eKcient
and useful in phenomenologically describing and corre-
lating extensive pieces of experimental data. Moreover,
the IBM, which can be analyzed in terms of an SU(6)
group structure, has stimulated considerable activity in
the study of collective modes in nuclei from the point of
view of dynamical symmetries.

Another model which aims at a description of collec-
tive states and relies on algebraic symmetry concepts, is
the fermion dynamical symmetry model (FDSM) [2]. In
this model, the Ginocchio model [3] is reinterpreted and
extended, while the formulation is directly related to the
shell structure. The building blocks of the FDSM are
namely correlated fermion pairs S, S', and D chosen in
a way such that the pair creation and annihilation op-
erators together with a set of multipole operators close
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an Sp(6) or SO(8) algebra (for S and D) and an SU(2)
algebra (for S'). In the FDSM similar symmetry limits
as in the IBM are found, though not all of them in a par-
ticular valence shell. However, some states of the bosonic
IBM are not present in the fermionic FDSM due to the
Pauli principle restriction unless a large shell degeneracy
is assumed. In this sense the IBM is sometimes regarded
as a limit of the FDSM [2], although this seems to be too
restrictive an interpretation of the possible relationship.

In the present paper we investigate boson mappings
relevant to the fermionic FDSM. This enables us to study
some aspects of the relation between the FDSM and
IBM rather directly. In doing so, the FDSM situation of
no broken pairs and no scattering of pairs between nor-
mal and abnormal parity levels (i.e., the proton-neutron
Ginocchio model) is considered, but we do not restrict the
analysis to dynamical symmetry limits only. We discuss
several boson mapping procedures which transcribe an
FDSM Hamiltonian into a boson one and compare the
results. In this analysis possible spurious states which
may appear as a result of an effective overcompleteness
in the (linearly independent) boson basis, are properly

identified.

Several studies already exist in which the Ginocchio
model is bosonized through different boson mappings.
Hereby IBM-type Hamiltonians are constructed with an
aim to test the applicability of different boson mapping
procedures [4,5]. These analyses have been restricted to
situations with one kind nucleon only and to a schematic
SO(8) Hamiltonian not directly related to any specific
nucleus. In the present study, we consider the proton-
neutron case and employ Hamiltonians used in actual
FDSM calculations [6,7]. The generic Hamiltonian can,
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e.g. , display a transition &om vibrational-type spectra
to spectra with a rotational character when the number
of active nucleons is increased. We mostly focus on the
SO (8)xSp"(6) limit, but in Sec. VI the SO (8) xSO"
(8) case is also discussed.

In Sec. II several boson mappings of the Ginocchio
model are discussed. In particular, we deal with the
Dyson mapping, seniority mapping, and the Belyaev-
Zelevinsky mapping. Apart Rom the possible appearance
of spurious states already referred to, the finite Dyson
mapping yields exact results. Its nonunitary nature,
however, makes a direct comparison with the standard
phenomenological IBM diKcult. The other two map-
pings, on the other hand, lead to Hermitian structures
for which comparison becomes possible once the associ-
ated infinite series expansions have been truncated. In
Sec. III the results of the various xnapping procedures are
compared in difFerent regions of the Z = 50—82, N = 82—
126 shell. Pt is analyzed extensively and the concept
of an efFective SO(6) symmetry in the FDSM [6] is ex-
amined. The possible appearance of spurious states in
the boson xnapped FDSM is addressed in Sec. IV. In
Sec. V splitting between normal and exotic states in the
SO(8) x SO(8) FDSM [7] is discussed and conclusions are
drawn in Sec. VI.

It should be noted that the correspondence between
the IBM and FDSM has also been studied from a group
theoretical point of view [8]. Although it is possible to
extract some association on the operator level, this anal-
ysis divers in spirit from the present mapping analysis
and operator association in Ref. [8] is restricted to some
multipole operators.

II. BOSON MAPPING OF THE GINOCCHIO
MODEL

In the Ginocchio model creation and annihilation op-
erators of S and D fermion pairs are introduced which,
together with some multipole operators P, close an alge-
bra. According to whether either the pseudo-orbital an-
gular momentum k = 1 or pseudospin i = 3/2 is treated
as active [2,3], an Sp(6) or SO(8) algebra is, respectively,
realized. (See Ref. [2] for definitions and terminology
adopted. ) The fermion Hamiltonian is written in terms
of the pair and xnultipole operators and should gener-
ally be diagonalized in the fermion space constructed by
successive action of the pair creation operators onto the
fermion vacuum, as, e.g. , implemented in the FDSM com-
puter code FnUo [9].

A. Dyson mapping

When a ferxnion Hamiltonian is expressed in terms of
the generators of a given algebra, as in the case of the
Ginocchio or FDSM models, one may obtain an equiva-
lent boson Hamiltonian froxn the generalized Dyson bo-
son mapping (DBM) in a straightforward way. For the
Sp(6) and SO(8) algebras, the Dyson boson realization
is written in terxns of 8 and d boson operators, as ap-

pears, e.g., in Refs. [10,11]. In particular, the monopole
pair operators and the quadrupole, dipole, and octupole
operators of the FDSM map as follows:

St ~ V A{st ~tat~ ~ d . d0 0
——d dts ——y(dtdt) d, (2.1)0 0

S m v/As, (2.2)

P' m (d s+ s d)~'l + y(d d)~ l, (2 3)

P ~ ~2(d d), P -+ ~2(dtd) [SO(8) case],

(2.4)

P' -i/15(dtd)~' [S (6) ]. (2.5)

The pair degeneracy of the fermion space is denoted by
0, while y = i/7/2 or 0 for the Sp(6) and SO(8) algebras,
respectively.

When the mapped Dyson Haxniltonian is to be diag-
onalized a proper basis has to be chosen. The boson
mapping formalism is constructed to yield results identi-
cal to those obtained in the fermion space if the physical
basis is used, namely, the set of boson states obtained
by simultaneously replacing in any fermion basis state
each generator by its boson image and switching &om
the fermion to boson vacuum. Not only is this a cuxnber-
some operation, but it may also obscure the relationship
to boson phenomenology where the natural ideal boson
basis is used. This basis is constructed by successive
action of the boson creation operators (not the mapped
generators) onto the boson vacuum and it is well known
that the eigenvalues and eigenstates emerging &om this
choice will include those obtained by diagonalization of
the fermion Hamiltonian or, equivalently, diagonalization
of the mapped boson Hamiltonian in the physical basis.

For the number of fermion pairs N ) 0/3 [Sp(6)] or
N ) 0/2 [SO(8)], the dimension of the ideal boson basis
is, however, larger than the original fermion space, due
to the presence of states which correspond to Pauli for-
bidden fermion states. Unphysical (spurious) solutions
of the boson Hamiltonian then appear together with the
exact physical ones. They are, however, separated &om
the physical solutions [12] and methods exist which allow
their identification [12,13].

We discuss the role of possible spurious solutions in
more detail in Sec. IV. Here we only note that the
Dyson Hamiltonian has a two-body structure, though
it generally is non-Hermitian. The existing computing
machinery of the IBM, as, e.g. , in Ref. [14] could thus
be adopted easily to develop an alternative FDSM com-
puter program. Some earlier calculations in Ref. [15] are
carried out similarly, although spurious states need not
be considered there. Recent calculations for SO(12) and
Sp(10) models have likewise capitalized on the simpler
calculational options in the boson space [16]. In fact,
this boson space approach has often been used for exact
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calculations in SO(5)-type fermion models where one ad-
ditionally profits &om the fact that only three types of
scalar bosons appear [12,17,18].

The non-Hermiticity of the Dyson boson Hamiltonian
makes it different from the traditional Hamiltonian of
the IBM. To obtain a Hermitian Hamiltonian, equiva-
lent to the Dyson one at least in the physical sector, a
similarity transformation naturally comes to mind. Two
practical procedures are considered for its construction.
In the first, referred to as the seniority mapping, the
SU(2) aspects of the original algebras of the Ginocchio
model are stressed. The second procedure, called the
Belyaev-Zelevinsky (BZ) mapping hereafter, aims at an
exact treatment of the SU(3) and SO(6) chains of the
Sp(6) and SO(8) algebras, respectively.

ing Hamiltonian resulting &om the mappings (2.1) and
(2.8), respectively, are related by a similarity transfor-
mation [19]. This transformation then enables one to
construct the seniority images of the fermion operators
from their original Dyson forms. Although a closed form
of the similarity transformation exists for the SO(8) case,
it is generally only known in infinite series form [19]. In
actual construction, only the lowest-order terms are used
to find seniority images of the non-SU(2) generators. For
the quadrupole operator this yields (the relevant tech-
niques are discussed in Refs. [19—21])

8

(2.10)

B. Seniority mapping

iN, v = 0) m in, = N),

iN, v = 2) ~ in, = N —1, ng ——1).

(2.6)

(2 7)

To achieve this, one could impose the conditions that the
seniority images of the St and. S operators are given by
the Dyson mapping

St -s Wn(s' ——s&sts — d~ ds,—0 0 (2 8)

(2.9)

The seniority mapping starts &om the observation
that in the Dyson mapped boson ket states there is
no straightforward relation between the seniority v of
fermion states and the number of non-s bosons (equiva-
lently d bosons here). The Dyson image of the v = 0 state
(St) i0) in fact contains coinponents with two or more
d bosons. In contrast one aims in the seniority mapping
to establish simple relations between fermion states with
good seniority and boson states with a fixed number of
d bosons, such as

The images of the dipole and octupole operators P and
P are invariant under the similarity transformation, as
follows kom arguments about angular momentum and
boson seniority conservation in the similarity transfor-
mation. The seniority image for the D pair operator
is discussed in Refs. [19,22]. Here, we do not consider
it further, as in the FDSM Hamiltonian the quadrupole
pairing term can be replaced by redefining the other pa-
rameters [2].

In expression (2.10) for the seniority quadrupole oper-
ator two-body terms which contain the number operator
n, for s bosons in a coeKcient are retained. The total
number of fermion pairs (or total number of bosons) is
denoted as N, a fixed number for a given configuration.
To approximate this structure as a one-body operator,
we employ two procedures. In the first, denoted in the
following as the seniority mapping A, the operator n, is
substituted by its value in a seniority v = 2 state, i.e. ,

by X —1. In actual FDSM calculations, the low-lying
states could, however, be quite different from the senior-

ity classification scheme. To take this into account more
accurately, we use alternatively a seniority mapping 8 in
which n, is replaced by N —1 —2(v), where (v) is the
mean value of the seniority in the FDSM ground state.
This mean value is calculated Rom the relation

of the SU(2) subalgebra, rather than Eq. (2.1). It is
simple to see that the above mapping is still a proper
realization of SU(2) and that it provides us with a Her-
mitian image of the fermion pairing Hamiltonian StS.
One could then continue to find the images of other op-
erators by, e.g. , inspecting the commutation relations.
In principle this construction has many solutions. One
of them is found by noticing that the images of the pair-

(StS) = 4(2N —(v))(20 —2N —(v) + 2). (2.11)

With either of these approximations the seniority image
of the quadrupole operator becomes a one-body operator,
although it is still not self-conjugate. To Hermitize it, we

apply the Hermitization procedure of Refs. [23,19,21] to
obtain the respective seniority images of the quadrupole
operator as

I".. s = 1 — (dss+ssd)I'~+y(1 — )(dsd)~'I, (2.12)
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The mapping A in expression (2.12) is the same as
obtained in the Otsuka-Arima-Iachello (OAI) procedure

[24] discussed in Ref. [4], whereas the mapping B (2.13)
is more in the spirit of the OAI-Talmi (OAIT) approach
[25].

C. Belyaev-Zelevinsky mapping

terms of Casimir operators or their eigenvalues. For the
SO(8) model such a mapping was given in Ref. [4] and for
the Sp(6) model, in a slightly modified version, in Ref.
[26]. As we want to construct an IBM-like Hamiltonian
with one- and two-body terms only, we retain in the im-

ages of the S-pair operators only those terms which can
contribute to such a Hamiltonian. For SO(8) this means
the approximation

In the BZ method, the boson images of the multipole
operators are the same as in the Dyson mapping. The
images of the pair operators are constructed to obey the
commutation relations of the algebra and to conserve the
self-conjugacy of the fermion operators. This generally
leads to in6nite series for the images of the pair opera-
tors which may, however, be expressed in a closed form in

I

St -+ t/Q —2N

QO + 4 —QO —2N
N+2 (2.14)

and its conjugate. It gives exact matrix elements between
the lowest SO(6) states ~N, o = N) and ~N + l, o
N 6 1). For the Sp(6) case we similarly have

0+ -', —QA —3N
St -+ st/0 —3N — dt d s —stns —2sts s+ ~~dt (d d)~ l

3N+ -',
(2.15)

which reproduces the matrix elements between the lowest

SU(3) states ]N, (A = 2N, p = 0)) and ~N + 1, (A
2N + 2, p = 0))) [N + 1, (A = 2N —2, p = 2)).

The IBM-like boson image of the pairing interaction
is then obtained by combining either of the above ex-
pressions with its conjugate and retaining the one- and
two- body terms only. To make contact with the FDSM
or IBM, an explicit N dependence of the strength pa-
rameters must then still be eliminated. To achieve this
the N dependence in the first terms of the images of St
and S is retained in their mutual product, whereas in all
the other products we set N=2. This ensures that we
recover the (correct) first three terms of the DBM im-

age (2.1) with coefficients modified but independent of
N, together with some additional two-body terms which
also have coefBcients independent of N. The resulting
Hermitian Hamiltonian is exact for total boson number
N=1andN=2.

Both the seniority mapping and the BZ mapping can
thus be approximated to map the FDSM Hamiltonian
into a Hermitian Hamiltonian of the IBM type with one-
and two-body terms only. In the seniority mapping B,
we use some knowledge of the FDSM solution via (v) [see
Eqs. (2.11) and (2.13)]. In principle an iteration proce-
dure might also be used to find a value for (n, ) solely
in the boson approach. One could start with seniority
mapping A calculations and substitute in subsequent it-
erative steps (n, ) by N —1 —(ng), where (ng) is obtained
from the 0~ state of the previous step.

As is common in the FDSM, we assume that a de-
scription with no broken pairs and no scattering of pairs
between the normal and abnormal parity levels is ap-
propriate for low-lying levels. The corresponding general
one- and two-body FDSM Hamiltonian then contains 11
parameters. A further reduction of parameters has been
employed (see Refs. [2,6]) in the simplified Hamiltonian

H = G0 S S +GovS Sv+B2mP 'P +B2vP P
+B2 vP' P'. (3.1)

where now only 6ve parameters appear. In the FDSM
the number Nq of pairs in the normal parity level are
expressed in terms of the total number N of nucleon pairs
by the semiempirical formula Ni ——0.75+ 0.5N, except
that Ny = N —00 if the abnormal parity level with the
pair degeneracy Op is completely filled (N ) 20p + 1.5)
[2].

The electromagnetic quadrupole operator is taken in
the one-body form

T(E2)=e P +e P„. (3 2)

We now employ the Hermitian boson mappings above
to map the fermion Hamiltonian (3.1) and operator
T(E2) onto a one- plus two-body boson Hamiltonian
and a one-body boson quadrupole operator of the IBM-2
type. Results from the ensuing diagonalization are com-
pared with exact FDSM results, obtained by employing
the Dyson boson images.

III. COMPARISON OF FDSM AND MAPPED
BOSON APPROACH

In the present section we compare results of the FDSM
with those obtained by the boson mapping procedures de-
scribed above. Examples from the Z=50—82, N=82 —126
shell are discussed for which the coupled Sp"(6)x SO (8)
symmetry in the FDSM is indicated.

A. Pt nucleus

Within the IBM context, the Pt nucleus is consid-
ered to be a fine example of the O(6) dynamical sym-
metry limit. In the Sp"(6)xSO (8) FDSM, no coupled
neutron-proton O(6) syinmetry exists, however. Never-
theless, it was recently claimed in Ref. [6] that the FDSM
describes the Pt spectra and E2 transitions accurately
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FIG. 1. Calculated excitation energies for
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and that one can thus argue for the existence of an effec-
tive SO(6) symmetry in the FDSM.

In Fig. 1, the calculated energy levels as obtained by
the FDSM (via Dyson mapping) and the Hermitian bo-
son mappings are displayed. The FDSM parameters of
Ref. [6] are used wherein also experimental and FDSM
excitation energies are compared. The B(E2) values are
given in Table I and some B(E2) branching ratios are
found in Table I. The absolute value of the effective
fermion E2 charge is 6xed by matching the FDSM value
to the experimental B(E2,2i ~ 0+i) strengths. Note
that for Pt the counting rule for the number of pairs
in the FDSM agrees with that of the boson number for
IBM-2. All the boson mappings investigated give results
very similar to those of the FDSM, with the BZ mapping
being quantitatively most precise. The seniority map-
pings fail for some of the higher-lying states.

As compared to experiment and also to the IBM calcu-
lations [28,29], the FDSM B(E2) values for the ground-
state band cut off too rapidly with increasing spin. In-
clusion of Coriolis antipairing in a more complete scheme

could possibly remedy this defect. Then the calculated
energy of the 8z would, however, decrease and in the par-
ticular case of Pt the difference between the FDSM
(1.876 MeV) and experimental (2.253 MeV) excitation
energies of the 8~ state would in fact be enhanced.

The FDSM results for E2 transitions from some of the
higher-lying states are also not satisfactory. In the IBM
O(6) classification scheme these states are associated
with the O(6) representation 0 = N —2, which differs
from the representation 0. = N relevant to the ground-
state band. Actually, transitions &om these states are
considered to be an appropriate test for the realization
of an SO(6) symmetry [30]. For example, the Os+ -+ 22+

transition is forbidden in O(6) by both the O(6) (cr) and
SO(5) (w) selection rules and it is in fact very weak exper-
imentally. In contrast, the FDSM predicted B(E2) value
for this transition is comparable with values for inter-
band allowed transitions (cf. Table I). The E2 branching
ratios from the 24+ state, found in Table II, are also not
correctly given by the FDSM.

The above de6ciency suggests that when E2 transi-

TABLE I. The E2 properties for Pt. The E2 experimental values are from Refs. [27,28].
B(E2) probabilities are given in units of e b .

B(E2)
2+ w0+
4+ ~ 2+
6+ +4+
8+ ~ 6+

2,+ ~0+
2 M 2
4+ -+ 2+
4+ ~2+
4+ m4+
62 m 4~
62+ ~ 42+

+ ~6+
8+ ~6+2 2
0+ + 2+
0+ ~2+2 2
2+ ~ 2+
0+ + 2+

3 1
0+ -+ 2+

3 2

Expt.
0.3
0.443
0.494
0.577

2x10
0.262
0.0023
0.218
0.218
0.0037
0.350
0.085
0.375
0.033
0.142
0.0009

&0.034
(0.002

FDSM
0.300
0.397
0.355
0.265
0.0004
0.415
0.0036
0.189
0.202
0.0485
0.136
0.106
0.170
0.122
0.277
0.0003
0.0068
0.228

BZ
0.302
0.403
0.372
0.269
0.0010
0.403
0.0040
0.191
0.200
0.0405
0.139
0.105
0.170
0.128
0.310
0.0003
0.0081
0.206

sen A
0.280
0.379
0.383
0.332
0.0003
0.357
0.0025
0.189
0.168
0.0225
0.229
0.0816
0.177
0.116
0.213
0.00007
0.0038
0.232

sen B
0.295
0.398
0.400
0.344
0.0005
0.367
0.0034
0.195
0.170
0.0258
0.239
0.079
0.188
0.118
0.266
0.0009
0.0049
0.207
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TABLE II. E2 branching ratios from the level 24+ of Pt.

2+ m0+
4 1

2+
2+

2
4+

1
3+

1
0+

2
4+

2
2+
0+

3

Expt.
0.01
0.3
0.5
1.7
0.4

&0.3
&3.0

(15.0
100.0

FDSM
0.012
0.32
0.0008
5.64

384.0
55.7
27.3

105.1
100.0

BZ
0.077
0.209
0.069
6.88

417.0
71.3
25.7

109.3
100.0

sen A
0.035

18.4
6.72

15.44
1198.0
154.5
31.5

559.3
100.0

sen B
0.026

14.1
1.75
5.33

931.0
87.2
17.6

420.2
100.0

tions are also considered, no effective fermion SO(6) dy-
namical symmetry emerges in the FDSM calculations of
Ref. [6]. One could perhaps rather speak about a fermion
SO(5) symmetry which determines transitions within a
particular SO(6) representation. No coupled neutron-
proton SO(5) symmetry exists in the Sp"(6)xSO (8)
FDSM either, and the suggested SO(5) FDSM symmetry
should again be understood as an effective one.

In Table III we show overlaps of the boson wave func-
tions obtained &om the mapped Hamiltonians with the
corresponding SO +"(6) wave functions. The FDSM col-
umn in this table has been calculated &om the Dyson
mapping. The small overlaps again confirm the conclu-
sions of the preceding paragraph. The maximal F-spin
content of the individual states is also shown. We ob-
serve that F spin is not a good quantum number for the
low-lying states at all, which also suggests that the IBM
SO(6) symmetry is absent in the present Hamiltonian.

B. Deformed nuclei

Using the set of the FDSM parameters from the Pt
analysis, a transition to the rotational regime is obtained
by changing only the number of valence pairs [6]. As an
illustration, we discuss calculations with the number of
FDSM pairs in the natural parity orbits being N„= 4
and N = 4. These numbers correspond to the deformed
isotopes Gd. As we only aim in this subsection at

a qualitative discussion of the FDSM and applicability
of its boson mapped versions, we do not perform a fi-

nal tuning of parameters with respect to experiment and
simply use the Pt set.

In Fig. 2 the spectra given by the FDSM and bo-
son mapped Hamiltonians are compared. In Table IV,
the calculated B(E2) values are displayed. The senior-
ity mapping procedures give results difFering appreciably
&om the exact FDSM results. This should be expected
as the seniority mapping is tailored mainly to the vibra-
tional SU(2) regime with prevailing importance of the
pairing components in the Hamiltonian. The BZ map-
ping treats the multipole-multipole part of the Hamilto-
nian exactly, which is crucial for the rotational character
of spectra. Indeed, the BZ mapped results agree reason-
ably well with the FDSM calculations.

C. Vibrational nuclei

As an example of a vibrational nucleus, we consider
N„= 2 and N = 4. The semiempirical FDSM counting
rule for active pairs indicates that these numbers corre-
spond to the Sm nucleus. The set of the FDSM param-
eters used in the Pt analysis does not yield vibrational-
type spectra. However, by slightly modifying the pair-
ing strengths to Gp„——Gp = —97 keV and retaining
the quadrupole-quadrupole strengths of Ref. [6], one re-
produces the experimental spectrum of Sm reasonably
well. Again, we do not attempt a parameter search for a
best fit to the experimental data.

In Fig. 3 the calculated and experimental spectra are
shown. The B(E2) strengths are given in Table V. Re-
sults of the seniority mapping procedures A and B are
very close so that only for the former one are displayed.
As expected, seniority mapping procedures agree reason-
ably well with the FDSM results. The BZ mapping even
more closely reproduces the FDSM calculations. Though
the BZ mapping introduced in Sec. II does not refiect the
pairing part of the FDSM Hamiltonian in all detail, it is
still exact up to two pairs and suKciently precise for small
numbers of pairs such as 3 or 4. These numbers are just
those relevant for vibrational nuclei.

TABLE III. Overlaps of the SO +"(6) wave functions with the wave functions of different boson
mapped Hamiltonians as well as their maximal E-spin content is shown. FDSM results are obtained
using the Dyson boson mapping.

0+
1

0+
2

2+
1

2+
2

4+
1

4+
2

6+
1

8+

FDSM
SO "(6) max
overlap F spin

0.37 0.68
0.04 0.66
0.46 0.70
0.58 0.70
0.59 0.72
0.59 0.64
0.63 0.67
0.28 0.43

BZ
SO-"(6)
overlap

0.37
0.08
0.45
0.56
0.56
0.54
0.59
0.28

max
F spin

0.68
0.66
0.70
0.70
0.72
0.62
0.67
0.44

sen A
SO "(6)
overlap

0.54
0.15
0.64
0.75
0.75
0.68
0.71
0.51

F spin
0.80
0.82
0.82
0.82
0.84
0.75
0.78
0.61

sen B
SO "(6)
overlap

0.56
0.17
0.65
0.76
0.76
0.68
0.70
0.52

max
F spin

0.80
0.82
0.82
0.83
0.84
0.76
0.78
0.62
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0 —""

FIG. 2. Calculated excitation energies
for the case of a deformed nucleus with
N = N„= 4. Results from the FDSM and
mapped boson approaches are compared.

o-
FDSM BZ senA senB FDSM BZ senA senB FDSM BZ senA senB

IV. SPURIOUS STATES IN BOSON SPACE

For the numbers of pairs N„& 0„/3 = 5 (82—126
shell) and N & 0 /2 = 5 (50—82 shell), spurious states
occur in the boson space when the ideal boson basis is
used [13]. Although the ideal boson basis states them-
selves are linearly independent, they correspond for the
pair numbers above to fermion states which are linearly
dependent. After diagonalization they thus give rise to
states which have no correspondent states in the origi-
nal FDSM space. In terms of the single-fermion labels,
the Pauli principle is violated in these states. For the
proton SO(8) part, the problem of spurious states is cir-
cumvented by resorting to fermion particle-hole symme-

TABLE IV. Reduced B(E2) matrix elements (in arbitrary
units) for N = N„= 4 calculations. The same Hamiltonian
parameters as for the Pt are used.

try and counting fermion hole pairs from the end of the
shell. This leads to a precise one-to-one correspondence
between fermion pair states and ideal boson basis states
[3]. For the neutron Sp(6) part, this loophole does not
save the day and spurious states would still appear. In
the FDSM scheme of counting pairs in normal parity lev-
els, such a situation occurs for N = 6 or 7 in the 82—126
shell.

In principle, one could select the physical part of the
boson space by using the SU(6)DSU(3) classification
scheme for the construction of the neutron boson basis
and disregarding the Pauli forbidden SU(3) (A,p) repre-
sentations (12,0) for N„= 6 and (14,0) and (10,2) for
N„= 7. Alternatively, we use the SU(6) ZSU(5) classifi-
cation of the boson basis in which physical and spurious
components do mix. Hamiltonian diagonalization, how-

ever, separates physical and unphysical eigenstates and
we determine the respective character of an eigenstate by
the method of Ref. [12]. According to this analysis one
exploits the structure

2+(K.s.) m 0+(K.s.)
4+(K.s.) m 2+(K.s.)
6+(g.s.) -+ 4+(g.s.)
8+(K.s.) m 6+(K.s. )
2+(K.s.) m 2+(K.s.)
4+(g.s.) + 4+(g.s. )
6+(g.s.) m 6+(g.s.)
8+(g.s. ) + 8+(g.s. )

3+(p) —+ 2+(p)
4'(~) ~ 2'(~)
2'(~) ~ 2'h)
2+(P) ~0 (P)
4'(P) ~ 2'(P)
2'(P) ~ 2+(P)

2+(p) —+ 0+(g.s.)
3+(y) m 2+(K.s. )
2+(r) m 2+(K.s.)
2 (P) ~ 0 (K.s.)
2+(P) + 2+(g.s.)
2+(p) ~ 2+(P)
3+(p) —+ 2+(P)
2'(~l ~ o'(p)

FDSM
9.8

15.6
19.0
20.6
11.7
15.2
18.7
21.8
11.2
8.6
4.9
7.7

12.4
— 4.2
-1.3
2.6
1.0
1.2

- 3.3
9.0

- 6.1
4.2

Bz
9.8

15.6
19.0
20.6
11.6
15.1
18.6
21.7
10.6
8.6
6.3
7.3

11.9
— 5.6
— 1.3

2.7
0.7
1.3

— 3.5
8.1

— 7.1
4.8

sen A
8.0

12.8
15.9
17.8
7.5
9.3

10.8
11.9
9.0
9.2

- 6.3
5.3
7.6
6.3

- 1.5
2.2
6.2
0.5

— 0.02
1.9

— 4.9
4.0

sen B
8.8

14.1
17.3
19.2
9.8

12.3
14.6
16.5
9.2
9.9

- 7.8
5.8
8.4
7.8

— 1.7
2.6
4.8
0.7

- 0.1
3.1

— 6.8
4.9

(V spur ~eD ~4 phys)

(diphy ~esD
~ V spur) A 0-

(4.1)

(4 2)

where O~ is the Dyson boson image of any fermion test
operator 0 other than the Hamiltonian. Testing matrix
elements with an arbitrary combination of the proton and
neutron angular momentum operators P, one identi6es
the unphysical solutions easily. Of course, exact sepa-
ration works only for the exact boson mapping, namely,
for the Dyson mapping in our treatment. In the case
of approximate mappings, as the seniority and BZ map-
pings above are, the physical and unphysical components
would be mixed in Hamiltonian eigenstates and identifi-
cation then becomes more elaborate [31].

With the most symmetric (2N, O) SU(3) representa-
tion forbidden, together with whichever other represen-
tations are also implied, it seems that an unpleasant con-
sequence emerges which led Ginocchio to disregard the
Sp(6) fermion algebra in his seminal paper [3]. Namely,
the forbidden representations, when viewed from and in-
cluded in the IBM SU(6) DSU(3) limit, are related to the
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+
2

4

4

2

FIG. 3. Calculated excitation energies for
Sm. Experimental results and results cal-

culated from the FDSM and mapped boson
approaches are compared.

+
2

+0—
exp FDSM BZ senA exp FDSM BZ senA exp FDSM BZ senA

lowest-lying bands in deformed nuclei and are experimen-
tally well established. Without them one would have
difBculty in the description of experimental spectra. In
the FDSM, this dilemma is partly alleviated by consid-
ering only pairs in normal parity levels. This counting
excludes fewer nuclei for which forbidden representations
occur. Nevertheless, some species of deformed nuclei in
the rare earth region would still need neutron pair num-
bers of N„= 6 or 7 in an FDSM description, so that the
problem is not completely resolved.

In the FDSM studies [2] arguments have been collected
to the effect that the elimination of the forbidden repre-
sentations has favorable consequences for the description
of B(E2) systematics and ground-state binding energies.
Unless it is possible to address spectra successfully &om
the same point of view, some doubt about the situation
remains. So far the corresponding nuclei have not been
analyzed within the FDSM.

In Fig. 4 FDSM results are shown for the pair numbers
N„= 7 and N = 4. According to the FDSM counting
rule, these numbers are appropriate for the Yb or

Hf nuclei. These nuclei are intermediate between
the Gd and Pt isotopes discussed in the previous section.
For our purposes we therefore simply again adopt the
FDSM parameters &om the Pt analysis.

It is clear that the calculated FDSM spectrum does
not resemble the experimental one. The too small calcu-
lated moment of inertia may be improved perhaps by a
parameter variation and certainly by an inclusion of the
P - P term. The main deficiency of the FDSM results
appears to be in low-lying calculated K = 2+, 0+, and 4+
bands. This is a reHection of the fact that for N = 7 in
the SU(3) limit, the lowest-lying physical representation
(6,4) contains degenerate K = 0+, 2+, and 4+ bands.
Departing from the SU(3) limit, as well as including the

proton configuration, removes the degeneracy, but does
not prevent these three bands &om still lying close to-
gether. Note for example, that after subtraction of the
rotational contribution, the first excited band becomes
the K = 4+ band which is only about 0.3 MeV above
the ground-state band.

In Fig. 4 unphysical states which result from diag-
onalization of the Dyson mapped Hamiltonian are not
shown. Their positions are spread around the middle of
the physical states. Some of the unphysical eigenvalues of
the non-Hermitian Dyson Hamiltonian are complex con-
jugate pairs. The lowest Dyson Hamiltonian eigenvalue
corresponds to a physical state. This can be linked to the
repulsive quadrupole-quadrupole interaction between like
fermions in the Hamiltonian. When these repulsive con-
tributions are removed, the energies of the spurious states
shift down below the physical ones. This is in accordance
with our previous model calculations [22,32] where it was
found that for an attractive quadrupole-quadrupole in-
teraction, the lowest-lying states of the Dyson mapped
Hamiltonian are unphysical.

It has been conjectured that inclusion of the pair scat-
tering between normal and abnormal parity levels might
be important for a description of nuclei for which for-
bidden SU(3) representations occur [2]. Indeed, the pair
scattering could effectively decrease the number of ac-
tive pairs and remedy some of the unpleasant features
described above. One might then wonder whether such
a mechanism would not act differently for nuclei with
neutrons considered as particles or holes and what the
modification will be to the FDSM semiempirical formula
for the numbers of pairs in the normal parity levels (see
Sec. III). In any case, the FDSM analysis of nuclear spec-
tra in regions with eliminated forbidden representations
remains to be carried out.

TABLE V. B(E2) probabilities for the Sm in units of e b . Effective nucleon charges e = e„
are chosen to normalize the FDSM value to the 2~ ~ 0~ experimental value.

B(E2)
2~+ ~ 0+,

4+ -+ 2~
22+ ~ 0+

Expt.
0.151(10)
0.25(7)
0.0069(11)

FDSM
0.151
0.249
0.0039

BZ
0.156
0.250
0.0034

sen A
0.135
0.201
0.0014
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2 .— TABLE VI. Energies in MeV and maximal F-spin content
of some low-lying states of Ba calculated in the FDSM
using Dyson boson mapping (first two columns), BZ mapping
of the FDSM (second two columns), aud seniority mapping A
of the FDSM (the last two columns). The parameters of the
Hamiltonian are taken from Ref. [7]. For details see the text.

0—

+2—
+0—

N =4 N =7

V. SO (8) x SO"(8) MODEL: NORMAL AND
EXOTIC STATES

FIG. 4. FDSM calculated excitation energies for the case
with N„= 7 and N = 4. These numbers should correspond
to a deformed nucleus in the 4=180 region. Unphysical states
appear in the Dyson boson mapped version of the FDSM.
These are not shown in the 6gure.

0+ 0.0000
02 1.7201
03 1.7938
04 2.5380
2i 0.5559
2+ 1.1362
23 1.9619
24 2.5176
3i 1.8857
4+ 1.3303
42 1.9998
43 2.5288
5+ 2.8823
6+, 2.3136
6+ 3.0621

FDSM
Energy max

I' spin
0.93
0.99
0.77
0.09
0.95
0.97
0.08
0.08
0.98
0.97
0.98
0.06
0.97
0.96
0.98

BZ
Energy

0.0000
1.7284
1.8471
2.5561
0.5563
1.1401
1.9759
2.5292
1.8943
1.3350
2.0085
2.5400
2.8941
2.3228
3.07/9

max
I" spin

0.93
0.99
0.77
0.09
0.95
0.97
0.07
0.08
0.98
0.97
0.98
0.06
0.97
0.97
0.98

max
I" spin

0.97
0.99
0.79
0.03
0.99
0.98
0.03
0.03
0.99
0.98
0.99
0.02
0.97
0.97
0.97

0.0000
1.7937
2.0234
2.4820
0.6069
1.2174
1.9398
2.4692
1.9596
1.4102
2.0741
2.4689
2.8903
2.3869
3.0706

sen A

Energy

In the proton-neutron version of the IBM (IBM-2),
a so-called F-spin operator is introduced to address a
possible proton-neutron boson symmetry [33]. The F-
spin number is connected with the classification of the
U( +")(6) subgroup of the IBM-2 space. It is observed
that states of maximal F spin (maximal proton-neutron
symmetry) lie in the lower part of the spectra, while
states with lower F-spin values (mixed symmetry states)
have been identified at higher excitation energies.

Since the U( +")(6) subgroup does not appear in the
FDSM, it is not possible to define the corresponding F-
spin operator there. Nevertheless, it has recently been
argued that in the FDSM the proton-neutron symme-
try can be followed and that the splitting between nor-
mal (maximal F-spin) states and exotic (lower F-spin)
states emerges naturally [7]. The spectrum and electro-
magnetic properties of Ba were examined in detail.
It was also argued in Ref. [7] that there are difFerent
mechanisms responsible for the splitting in the IBM-2
and in the FDSM—the Majorana interaction pushes up
the mixed symmetry states in the IBM-2, whereas the
proton-neutron interaction causes the splitting of normal
and exotic states in the FDSM.

In this section, we repeat the Ba calculation of Ref.
[7] using the boson mapped versions of the FDSM. Work-
ing within the boson space enables us to evaluate the
maximal F-spin content of individual states. Note that
the bosonic F-spin operator is not an image of any FDSM
operator. The boson mapping procedure, however, gives
us a mechanism to quantify the notion of FDSM proton-
neutron symmetry.

The FDSM Hamiltonian used for Ba calculations
is taken from Ref. [7]. It is given by Eq. (3.1) with
the quadrupole-quadrupole interaction between like nu-
cleons omitted. To improve the fit, the octupole-octupole
proton-neutron interaction AP„- P is added. In Table
VI, we present results of exact FDSM (DBM) calcula-

tions and the BZ approximation. Note that N = 3 and
N = 2 for Ba, which means that the BZ mapping
treats the neutron part exactly. Consequently, the IBM-
2 calculations with the BZ Hamiltonian are expected to
approximate the FDSM ones very well. This is confirmed
in Table VI where energies of some low-lying states and
their maximal F-spin content are given. We observe that
the normal states indeed have a high degree of F-spin
purity. The 23+ state is an exotic state, in accordance
with the conclusions of in Ref. [7]. In Table VI senior-
ity mapping A results are also shown for completeness.
These results are less accurate in the reproduction of the
FDSM calculations. Nevertheless, the F-spin purity is
also confirmed.

One may ask whether the above observed feature of
F-spin purity of the FDSM mapped states is an inher-
ent property of the model or just a consequence of the
particular SO (8) xSO"(8) model case. For a compari-
son, maximal F-spin content from Pt calculations in
the SO (8)xSp"(6) limit is given in Table III. In the
latter case, the F spin is not a good quantum number
at all. This is rather transparent in terms of the boson
mapping analysis. In the SO (8) xSO"(8) calculations,
the diR'erences in the quadrupole-quadrupole strengths
between like and unlike nucleons are responsible for the
F-spin breaking (Ar breaking). In the SO (8) xSp (6)
limit, the different ratios of the d-boson-conserving to
the d-boson-changing parts in the proton and neutron
quadrupole operators also cause the F-spin mixing (Ay
breaking). It is indeed known that the effect of Ay break-
ing is much more important for F-spin impurity than
that coming from Er breaking [34].

Note that in the boson Hamiltonian mapped from the
FDSM one, no Majorana interaction is present (the BZ
calculations are completely equivalent to IBM-2). The
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mechanism of splitting between normal and exotic states
due to the proton-neutron quadrupole-quadrupole inter-
action is also effective in the IBM-2. In fact, this was
observed earlier in some analyses [35].

Finally, one should inspect whether the p-n Q Q split-
ting mechanism could solely explain the observed nuclear
features. For the Ba nucleus, this is indeed the case.
For Pt, however, the above calculated F-spin mixing
is larger than that obtained from phenomenological anal-
ysis [36]. Here one would probably need some Majorana
term in the IBM-2 to restore the F-spin breaking. Also
the excitation energies of 2.1 MeV and 2.6 MeV for the
mixed symmetry 1+~ state found &om sample calculations
for deformed nuclei in Sec. IIIA and &orn calculations
for Sm in Sec. IIIC, respectively, seem to be lower
than the experimental values [37).

VI. DISCUSSION

For several examples, we have shown that for a given
FDSM Hamiltonian one can construct &om boson map-
pings an IBM-type boson Hamiltonian which yields sim-
ilar results. The Dyson mapping reproduces the FDSM
results exactly. This mapping is nonunitary and leads
to non-Hermitian boson operators which somewhat ob-
scures the relation between the FDSM and the phe-
nomenological boson description. The unitary map-
pings, truncated to two-body terms in the boson Hamil-
tonian, approximate the exact results quite satisfactorily.
Among these mappings the BZ mapping showed more
universal applicability.

Note, however, that no degrees of freedom have been
truncated in the boson space. In situations where, e.g. ,
practical considerations force one to resort to this kind of
truncation, the nontransformed Dyson and BZ mappings
may not be reliable as the truncated space can represent
a large component of the low-lying states in the mapped
boson space. Here the seniority mapping approach often
seems to be better equipped to capture the essence of a
collective subspace [22,32].

We conclude that, apart &om some differences clearly
pointed out, a relation between the FDSM Harniltonian
and operators and those of the IBM-2 type have been
satisfactorily demonstrated.

This does not, however, cover all aspects of the rela-
tion between the FDSM and IBM models. There remain
different counting rules for the number of active normal
parity fermion pairs in the FDSM and the number of
valence-shell bosons in the IBM. When these differences
are not too large, one might change the number of bosons
in the IBM &om N to N, while not varying the results
drastically. In the IBM this may, e.g. , be accommodated
by modifying operators according to the substitution [38]

nucleus, one can find a very similar explanation within
the phenomenological IBM context. Of course, an ac-
count of a chain of nuclei in the FDSM with a constant
set of parameters might require a varying parameter in
the IBM. This is not unexpected in view of the natu-
ral N dependence of parameters which emerges in boson
mappings.

A backward relation between the models is much less
straightforward. The phenomenological IBM seems to
offer wider possibilities and flexibility than the FDSM.
For example, as follows &om the FDSM to IBM mapping
procedure, the quadrupole boson operators are restricted
to be close to the O(6) or SU(3) limits for the SO(8)
or Sp(6) fermion algebras, respectively. Analysis of real
data might require departures from those IBM limits. An
equivalent description within the FDSM could then only
be achieved by including a two-body term of the type
(DtD) 2 in the fermion quadrupole operator [15]. Such a
term maps in the lowest order onto (Dt D)2 -+ (dtd) 2 and
allows a greater flexibility in the mapped boson operator.
Similarly, as discussion in Sec. V suggests, the Majorana
term in the IBM might be needed in some cases for a
correct description of the E-spin mixing and mixed sym-
metry states. In the lowest order, this term could be
mapped from a four-body term in the FDSM Hamilto-
nian.

It seems appropriate at this stage to comment on a
point of view often expressed about the relationship be-
tween the FDSM and IBM, namely, that the IBM derives
&om the FDSM when the Pauli principle is systemati-
cally neglected or, equivalently, that the IBM represents
the 0 ~ oo limit of the FDSM [2]. This interpretation
usually follows &om a comparison of transition matrix
elements based on a one-to-one correspondence between
basis states and a simultaneously assumed simple corre-
spondence between operators [2,8]. From the discussion
in Sec. II we conclude that this is too restrictive an in-
terpretation. When properly mapped operators are Her-
mitized and approximated to have coefBcients depending
on 0 and N only (no n, or n~ dependence), then for
fixed N the Pauli principle is clearly incorporated within
an IBM &amework, albeit in an approximate way. The
crucial way in which Pauli principle differences will show
up is in connection with spurious states (or allowed rep-
resentations), as already discussed.

Apart &om the previous paragraph, the discussion in
this section pertains to the situation with only physical
states in the mapped boson space. In those regions where
spurious states appear, the FDSM and IBM descriptions
differ essentially. It is thus imperative to look further into
this aspect especially and FDSM analyses of the spectra
of the relevant nuclei are really called for.

N —ng N —N —(n, )
(6.1)

where (n, ) can be calculated as in Sec. IIB. We thus
deduce that for a particular FDSM description of a given
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