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A new calculation of the predominantly isoscalar PNC matrix element between the J T 0+1,0 1

(E 8.7 MeV) states in N has been carried out in a (0+1+2+3+4)hw model space with the
Warburton-Brown interaction. The magnitude of the PNC matrix element of 0.22 to 0.54 eV obtained
with the DDH PNC interaction is substantially suppressed compared with previous calculations in

smaller model spaces but shows agreement with the preliminary Seattle experimental data. The
calculated sign is opposite to that obtained experimentally, and the implications of this are discussed.

PACS number(s): 21.60.Cs, 27.20.+n, 11.30.Er, 23.20.Js

Studies of low-energy parity nonconservation (PNC)
in light nuclei have been developed to provide more re-
liable results on the hadron-meson weak-coupling con-
stants which are of importance for our understanding of
the quark behavior in nucleons under the infiuence of
the fundamental interactions. These studies necessitate
both very delicate experiments and very reliable nuclear
structure calculations of the matrix elements for a correct
extraction of the weak nucleon-meson coupling constants.

Most of the results on the experimental and theoretical
PNC studies in light nuclei have been presented in the
review by Adelberger and Haxton [1].From the proposed
cases during the last 25 years in light nuclei, four cases
are thought to be reliable for quantitative experimental
and theoretical analysis. They involve parity-mixed dou-
blets (PMD) [1] in 4N, ~sF, ~ F, and 2~Ne. Two other
cases involving PMDs in ~sO [2] and oF [3) have been
proposed recently. From the four mentioned cases, only
that of F has been measured with a result larger than
the experimental error. The other cases have been mea-
sured with errors larger (~sF and 2~Ne) or near the result
(~4N). However, the absolute values of the measured er-
rors for F and Ne are so small that they impose severe
constraints on the different contributions to the PNC ma-
trix elements. These constraints combined with theoreti-
cal calculations indicate a discrepancy, which has not yet
been completely resolved. Namely, if one interprets the
small limit of the (experimentally) extracted PNC matrix
element (( 0.029 eV) for 2 Ne as a destructive interfer-
ence between the isoscalar and isovector contributions [1],
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then it is dificult to understand why the isovector con-
tribution in ~ F is so small (( 0.09 eV) and the isoscalar
+ isovector contribution in ~sF is relatively so large (0.40
6 0.10). The possibility of an amplification of the isovec-
tor contribution in 2~Ne is not supported by the actual
structure calculations[1]. However, recent investigations

[4] indicate that, in the z~Ne case, the isoscalar contribu-
tion is very small (if not zero) and this could provide an
explanation.

Another possibility for resolving this problem is to bet-
ter study the isoscalar and isovector components sepa-
rately. Continuous theoretical and experimental efforts
have been undertaken in this direction. The only case
predominantly isoscalar (no isovector contribution) is theJ,T 0+1,0 1 doublet (E 8.7 MeV) in 4N. Study
of this doublet via the ~sC(p, p)~sC resonance scattering
was proposed in 1984 [5] and preliminary experimental
results were presented in Refs. [6, 7]. The theoretical de-
scription of the scattering process is under control [5, 8]
and has been successfully tested for the regular observ-
ables. The predominantly isoscalar PNC matrix element
(the isotensor part contributes 7%) has been calculated
many times in different model spaces and with different
Hamiltonians. The results vary &om 1.39 eV in the ZBM
(Op, ~»Ods~2, lsd~2) model space [5] to 0.29 eV in a full

Op —1sOd (0+1+2)h~ model space using the Kuo-Brown
interaction [10].

The aim of this paper is to provide a new analysis of
the PNC matrix element in N based on a new Hamilto-
nian recently obtained by Warburton and Brown [11]and
including also 3h~ and 4h~ configurations. This analysis
is of importance for the support of the PNC experiments
in N [7,8] and to better understand how to improve the
Hamiltonians for a more reliable description of the weak
observables in light nuclei (A = 10—22).
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In the last few years, important progress has been
made in the improvement of the shell-model calculations
with special emphasis on the description of the weak ob-
servables [12, 13]. Recently, two new interactions have
been developed by Warburton and Brown [11], which
were designed to describe pure hw states in nuclei with
A=10—22. For this purpose, all of the Ohu and 1hu and
two-body matrix elements for the Op-1sOd model space
have been determined &om a least squares fit to exper-
imental binding energies. The 1s and 1f2p major shells
were also included. For 0 and N, (0+2+4)hu cal-
culations are now possible. In the first calculations for
isO [12] it was found that a reduction (about 3 MeV)
in the gap between the Op and 180d major shells is nec-
essary in order to account to for the spectrum of O.
More recently [13],it has been shown that this reduction
compensates for the absent & 6h,~ configurations. That
is, as is well known, the effective interaction and eKec-
tive single-particle energies are model space dependent.
Several choices for the 2hu two-body matrix elements
within the Op —180d model space have been proposed,
based upon the structure of the mixed (0+2+4)her states
in 0 [13,14].

In order to investigate the sensitivity to various as-
pects of the truncation and interaction, we have carried
out the PNC calculation for ~ N using wave functions
obtained with a variety of assumptions. Our shell-model
calculations have been performed with the shell-model
code OXBitSH [15]. Spurious center-of-mass motion is
removed by the usual method [16] of adding a center-
of-mass Hamiltonian to the interaction. The first four
major shells do not provide a completely nonspurious
she11-model basis when more than 2hco configurations are

included. However, the eKect of this spuriosity has been
found to be negligible.

For the first calculation discussed here we have used
(0+2)hei configurations for the positive-parity states and
(1+3)hu configurations for the negative-parity states.
The WBT interaction from Ref. [11] was used for all
two-body matrix elements. In order to reproduce the
energy level spectrum of N (see Fig. 1), the Odsg2
single-particle energy (SPE) has been lowered by 1 MeV,
the Opqg2 SPE increased by 2.2 MeV and the Op3g2 SPE
increased by 0.7 MeV. These changes give a very good
spectrum for the 0+ and 1+ states in N (see Fig. 1)
and keep the I s splitting of the Op states at a reasonable
value. (It is recognized that these changes of the single-
particle energies are perhaps arbitrary and not a unique
method for reproducing the energy spectrum. However,
below we will introduce other models and interactions. )

The PNC matrix element has been calculated in a
one-body approximation. This method was pioneered by
Michel [17], and recently justified and often used for the
PNC calculations [1,18]. In this paper we have not used
the one-body PNC potential derived in the Fermi gas
model approximation [see Eqs. (17)—(20) of Ref. [1]].In-
stead, we have used an exact calculation of the one-body
contribution to the PNC matrix element

(J T
I &PNc

I
J T )0B

~T' t T~M~ ~M

, Q(2J + 1)(2T + 1)

X(~ii»i II &'.p". II "2'»2)
x OBTD[(niligi) (n2l2g2); 0&],

(MeV)

10
1+0

0 1
0+1

8

1+0

1 0

4 1+0

0+1

1+0

0 1

0+1

1 1

1+0

1 0

1+0

0+1

where OBTD denotes the one-body-transition density
and

(~ I . . I&) = ). (~~
I &PNc IP~)

bgcore
—(~~

I
&PNc I ~l3) (2)

lPNc = —
Qi, hi, (1+p„)v'i a2t(&1 x ir2)

p exp( —mar)

.2M' 4-

is assumed. For 4N, an interpolation between a C
core and a 0 core has been performed. This method
has been checked by comparing the one-body calculations
(OB) with the full two-body (TB) calculations [see Table
I(a) and (c)]. The QB calculations give results with a
precision of 2%%up, at least for the components of the VpNc
with the largest contribution to the matrix element, i.e. ,
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FIG. 1. Experimental and calculated 0+, 1+ levels in N.
The calculation is that of model a obtained with the WBT
interaction [11] and modified SPE within the (0+1+2+3)he@
model space as described in the text.

in the isoscalar case (see Ref. [1] for notation).
The PNC matrix elements calculated with weak-

coupling constants from different quark models (see Ref.
[2] for notation a,nd references) are presented in Table
I(a). The matrix elements were obtained using harmonic-
oscillator wave functions with hu = 14.0 MeV. (Below we
will address the important issues associated with loosely
bound wave functions. ) The short range correlations
have been implemented with a correlation function given
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TABLE I. Magnitude of the PNC matrix element calculated with the various strong interactions [11],different model spaces,
aud different models of the weak-coupling constants (see Ref. [2] for the weak interaction notation and references). Units are
eV. Code labels are further explained in the text.

Interaction

WBT

WBP

WBP + 0.8 Bonn
MK

Code Model space
(0+1+2+3)hu
(0+1+2+3)hu

(0+1+2+3+4)hu
(0+1+2+3)h~
(0+1+2+3)h~

(0+1+2+3+4)h~
(0+1+2+3)h~
(0+1+2+3)h~
(0+1+2+3)h~
(0+1+2+3)h~

PNC
OB
TB
OB
OB
TB
OB
OB
TB
OB
OB

DDH
0.487
0.483
0.233
0.764
0.732
0.797
0.502
0.492
0.351
0.331

Weak-coupling
AH

0.372
0.366
0.164
0.565
0.549
0.593
0.370
0.371
0.260
0.246

models
DZ

0.421
0.413
0.190
0.620
0.620
0.669
0.418
0.417
0.292
0.276

KM
0.278
0.269
0.127
0.418
0.400
0.436
0.275
0.269
0.193
0.181

by Miller and Spencer [25], which was shown to give sim-
ilar results with a much more elaborate treatment [26].
Its eH'ect is to decrease the isoscalar PNC matrix element
by a factor 3.5—3.8, in agreement with other similar in-
vestigations [1]. The isotensor contribution has been cal-
culated in the full TB approximation and is found to
give about a 7'%%uo destructive contribution to the isoscalar
matrix element. In all calculations discussed below this
contribution has been added to the OB result. Our value
of 0.489 eV obtained in the (0+1+2+3)hu model space
with the WBT interaction, and based on the DDH best
values for the weak couplings, is to be coxnpared with pre-
vious results of 1.39 eV from the ZBM (Opii2, 0dsi2, 1sii2)
model space with the REWIL interaction [5], 1.04 eV
from the (0+1+2)hu model space [9], 0.56 eV from the
(0+1+2)hu model space and the Millener-Kurath inter-
action [10], and 0.29 eV from the (0+1+2)br' model
space with the Kuo-Brown interaction [10]. The ex-
perimental data [6, 7, 23] suggest a magnitude of about
0.38 60.28 eV for the PNC matrix element. For compar-
ison, a (1+2)hu calculation with the WBT interaction
has been performed. The (0+1)2 state in the PMD has
been assumed to be a pure 2' con6guration, while the
(0 1)i state has been considered a pure lhasa configura-
tion. The calculated binding energies (no modification
of the SPE) are quite close (—107.72 and —108.82 MeV
for the 0+1 and 0 1 states, respectively) and the PNC
xnatrix elexnent was found to be 1.24 eV for the DDH
weak couplings.

It is interesting to analyze the contributions to the
PNC matrix element in order to understand the source
of change when going to larger model spaces and the
correlations with other calculated observables (e.g. , the
electromagnetic transition probabilities). It is convenient
to rewrite the PNC matrix element, Eq. (1), in the fol-
lowing form

(4)

where n, P denotes the single-particle orbitals, g p is the
one-body transition density [OBTD in Eq. (1) [15)) and
V p the single-particle xnatrix elexnent of the one-body
PNC potential (including the spin-isospin coefficient in
front). The detailed contributions entering Eq. (4) are
presented in Table II for the main component of VpNg
[Eq. (3)]. The C p and V p are in MeV and they are
given up to a dimensionless factor —g~h'(I+y, „)/2, which
depends on the quark model. A general analysis of the
important contributions to the PNC matrix element has
been made in Ref. [1]. Our specific results for i4N are (a)
the main contribution comes from the (nP) = (Opii21si2)
amplitude in all model spaces, which is the only con-
tribution in the ZBM model space; (b) a spreading of
the strength appears going to a larger model space, the
go„, ,i.. . decreases, the effect of the other (nP) con-

TABLE II. Components of the PNC matrix element entering Eq. (4) as described in text.

Op&/2

1sy/2
1s
Opi/2

Op3/2

Od3/2

1sx/2
2p1/2

1sy/2

Opi/2

Opi/2
1sg/2
Od3/2

Op3/2

2pz/2
1sg/2

V p
0.171
-0.171
-0.196
0.196
-0.213
0.213
-0.169
0.169

0-p
1.193
0.259

ZBM
C p

0.204
-0.044

-0.082 0.0161

0.004 -0.0009

0.072 0.0122

(1+2)h~
Cap

0.717 0.1226

Model a
0 p Cap
0.510 0.0871
0.235 -0.0402
-0.045 0.00881
-0.0006 -0.0001
0.044 -0.0102
0.028 0.0063
-0.015 0.0025
0.015 0.0025
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TABLE III. Experimental and calculated electromagnetic transition probabilities, B(M1) and B(E1),between 0+, 1+ states
in N. Units are p~ and e fm, respectively.

Experiment Theory

(o+1),

(o 1),
(l-o),
(1 1)1

Transition
-+ (I+0)i
m (1+0)2
-+ (I+0}s
m (1 0)i
~ (1+o),
m (0+1)i
m (1+0)i
~ (1+0)2

Type
M1
M1
M1
E1
E1
E1
E1
E1

AjS [20]
0.159
1.056
12.71

0.0258
0.0636+0.0187

((0.42+0.19) 10 )
(1.8+0.45) 10
(2.1+0.45) 10

Zeps [23]
0.05+0.005
1.05+0.1
12.2+1.2

0.0161+0.0019
0.0355+0.0028

(1.23+0.09) . 10
(1.47+0.12) 10

ZBM
0.32

12.7
0.16
0.086

Model a
0.031
0.572
11.31

0.0042
0.015

0.44 ~ 10
0.62 10-'
0.46 10

tributions is not more than 20%%up and it is constructive
in all cases (the destructive contribution coming from

gp&
&

pg
&

is rather small); (c) the effect of the pairing
forces in the destructive contribution gp (to g p) can be
seen only in the ZBM (Opig2, 0ds~2, lsig2) and Op —lsod
(0+1+2+3)hler model spaces; it contributes 20%%up in the
ZBM space and 40'%%up in the larger (0+1+2+3)hu model
space.

It was suggested in Ref. [1] that the El operators could
behave in a similar way with respect to these destruc-
tive effects due to the fact that they are also odd under
particle-hole conjugation; therefore they might represent
a good test for the reliability of the wave functions with
respect to the axial-charge matrix elements. In Table III
some electromagnetic transition probabilities between 0+
and 1+ states in N are included and compared with the
recent experimental results. The B(M1) are very close
to the experimental results of Zeps [6]. If one excludes
the very small B(E1) transition (1 0)i ~ (0+1)i all
other B(E1) transitions are underestimated in the new
calculations by a factor of 3 to 5; this means a factor
of 1.7 to 2.3 for the matrix element. Can we conclude
that the PNC matrix element is underestimated by a
similar factor'? In order to address this question, it is
important to look to the components of the El matrix
elements and compare with those of the PNC matrix el-

ement. This analysis is presented in Table IV, for the
transition (0+1)2 —+ (1 0)i, where we have rewritten the
El matrix element in the following form

((1 0),
~

El
~

(O+1)2) = ) q~qt'~p ——) B~p,

similar to Eq. (4). The Qp&, ,i.. . is still one of the main
components, but the other important one comes from

Qpp~~~pd~&2. Even if the gp~, &,pd, » admixture is relatively
small, its contribution is rather large due to a large single-
particle matrix element, E p. The effect of gp is small
and even constructive for the Qp&, ,i.. . component. So,
the origin of the smallness of the El matrix element is
due to the cancelation between gp„, ,i„,and Qp„, ,pq, ,
contributions which does not exist in the PNC case. One
can conclude that in this case the smallness of the El
matrix elements does not necessarily indicate an under-
estimation of the PNC matrix element.

Another important way to analyze the PNC matrix
element is to consider different nh~ -+ (n 6 1)h~ contri-
butions. We have carried out calculations with various
strong Hamiltonians and different methods to treat the
effect of the higher nba con6gurations. We have per-
formed seven difFerent calculations (see also the code la-
bels in Table I):

(a) The WBT interaction [ll] with the SPE modified
as discussed above and with (0+1+2+3)h~ configura-
tions included.

(b) Same as (a) except that 4hu configurations are
also included for the 0+1 states.

(c) The WBT interaction with a modified Op —lsod
gap (b,ep„——0.9 MeV, Eei,pg = —1.1 MeV) and with
(0+1+2+3)hler configurations included.

(d) The WBT interaction with a null gap and the 4hur

con6gurations included and shifted down by 4 MeV.
(e) The WBP interaction [11]with shifted energies [13]

(b,2hw = —6.0 MeV, b, lhasa = —1.75 MeV, E3hu
—7.25 MeV), and with (0+1+2+3)h~ configurations in-

cluded.
(f) Same as (e) except that the Bonn potential multi-

plied by 0.8 has been used for 2hu Op —ls0d cross-shell
matrix elements [14] (62hw = —6. MeV, Alhtd = —2.5
MeV, 43h~ = —8.5 MeV).

(g) The Millener-Kurath interaction [19] with shifted

TABLE IV. Components of the El matrix element entering Eq. (5) for the (0+1)2 —+ (1 0)i
transition.

Opi)2
1sy/2

Op3)2
Od5(2

1sgg2
Op

Od5)2

Op3)2

E p
0.485
0.485
-1.455
1.455

0.6886
0.1493

ZBM
8 p

0.334
0.072

Model a

0.2804
0.1191
0.0514
0.0029

I3 p
0.136
0.057

-0.0749
0.00415
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energies (62hu = —6.0 MeV, Alba = —2.5 MeV,
b,3hru = —8.5 MeV) and with (0+1+2+3)hu configu-
rations.

Cases (b) and (d) include the 4hu configurations in
the structure of the (0+1) states. Method (d) has been
carefully designed to give a correct description of the ex-
perimental difference between the lowest (0+1) level and
the second (0+1) level ( 6.5 MeV). The small shift nec-
essary to correctly describe the (0+1) levels signifies that
the nba catastrophe effect is almost healed for N when
the 4hcu configurations are included.

The calculated PNC matrix elements are presented in
Table I. The corresponding spectra and the decomposi-
tions in nb~ -+ (n + 1)hu contributions for some of these
cases are presented in Figs. 1—5. The range of values for
the DDH weak-coupling constants vary between 0.232
and 0.764 eV, with an average value of around 0.48 eV.

Table V presents the relative contributions to the wave
functions of the (0+ 1)2 and (0 1)q states coming &om
different nb~ configurations. Table VI presents the dif-
ferent nb~ ~

(nial)hu

contributions to the PNC matrix
element (DDH weak couplings assumed). The (0+1)2
state is predominantly a 2h~ configuration. The Ohcu

configuration is small ((10'%%uo) but the Ohu-1hu contri-
bution is rather large and opposite in sign as compared
with the dominant 25~-15~ contribution. This is in fact
the main mechanism of suppression of the PNC matrix
element and it is very sensitive to the Oh~ content of the
(0+1)2 wave function.

Another important point is the sign of the 2hu ~ 3'
contribution. If the Qo„, ,q.. .component would be dom-
inant for every contribution in the nhur m (n 6 1)ha
series, then the sign of this contribution should be nega-
tive and the PNC matrix element would be further sup-
pressed. However, all calculations in Table VI give a
positive sign. This result is is very sensitive to the mass
dependence of the single-particle energies given by the
interaction. All models in Table VI correctly describe
the experimental SPE order for C (ls1~2 Odd~2). An-
other calculation with a version of the MK interaction
which happened to give an opposite Od5)2-1sqy2 SPE or-

)' N(0+1)g & = 0.178(0 h~ &+ 0.885(2 h~ & + 0.432(4 h(u &

-0.335 + 0.853 + 0.216 + 0.125

'1 I

P4N(0 1)g & = 0.915[1 hco &
IP

0.402[3 h ~ &

E~

(MeV)
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FIG. 4. Same as Fig. 1 but with model c.

Es

(MeV)

FIG. 3. Same as Fig. 2 but with model d where 45~
configurations are also included.

['"N(0+1)2 & = 0.175[0 5 &a & + 0.982)2 h ~ &

10
1+0

O-1
0+1
1 1

1+O

0 1

O+1

& Vp~~' &z)DH —— -0.347 + 0.941 + 0.228
6

1+0

1 0

1+0

1 0

ii4N(0 1)i & = 0.915il h(u & + 0.402i3 her &

1+O

0+1

0+1
1+0

FIG. 2. Decomposition of the PNC matrix element into
the contributions coming from difFerent nba components of
the wave functions. The calculation is that of model c and
the DDH weak-coupling constants have been used. Units are
eV.

0 1+0
Exp Theo

1+0

FIG. 5. Same as Fig. 1 but with model e.
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TABLE V. Relative contributions of the nba excitations to the wave functions of (0+1)2 and
(0 l)q states in N. Code labels correspond to the cases in Table I.

Code J T
0+1
0 1
O+1

0 1
0+1
0 1
O+1

0 1
0+1
0 1
0+1
0 1
0+1
0 1

oh~
0.047

0.098

0.031

0.030

0.061

0.078

0.050

0.855

0.855

0.838

0.838

0.818

0.782

0.876

2 h(d

0.953

0.773

0.969

0.784

0.939

0.922

0.950

0.145

0.145

0.162

0.162

0.182

0.218

0.124

0.129

0.187

der, gives an opposite sign for the 2hco ~ 3hu contri-
bution and, as a consequence, a very small PNC matrix
element ( 0.08 eV).

The (0+2+4)her calculations for the 0+1 states are
not completely fixed for case b. The inclusion of the 4hu
configurations depresses the (0+1)2 state by 3 MeV.
However, this case is presented to put in evidence the
defects of the wave functions when the shifts of the single
particle energies obtained from the (0+2)hu calculations
are used for the (0+2+4)hu calculations (see Tables I, II,
VI, VII, VIII). In case d the shifts were fixed to correctly
describe the difference between the lowest 0+1 level and
the second one. For this case the Ohu amplitude is com-
parable with that &om case c, but some of the strength
kom 2hu ~ 1hu transition has moved in the 2hu —+

3hu and 4hu ~ 3hu contributions to the PNC matrix
element. The main result is that the 4hu ~ 3hu contri-
bution is positive and smaller than the 2h~ -+ 3hcu one,
suggesting a convergence of the series. The overall sup-
pression of the PNC matrix element in case b comes &om
the Ohu contribution to the (0+1)2 wave function (9.8%%),

and thus it is important to have a good description of the
Oh~ contribution to the (0+1)2 wave function. One can
try to fix this by looking to other observables, e.g. , B(EI)
and B(M1) transition probabilities. Different contribu-
tions to B(El) matrix elements for the (0+1)2 —+ (1 0) i
transition are presented in Table VIII. One can see that
the dominant contributions are Ohu ~ 1hu and 2hcu ~

1hu; these are in phase and hence are not very sensitive
to the Obeah contribution to the (0+1)2 wave function.

The B(M1) transitions (0+1)2 ~ (1+0)i 2 which are,
of course, all nb~ ~ nba appear to be much more rel-
evant. The various nba contributions to the B(Ml)
matrix elements are presented in Table VII. The Ohu
and 2hu contributions are opposite in sign and thus con-
tribute destructively to the total B(Ml). Unfortunately,
the dimension of the shell model Hamiltonian for the
(1+0) states is unmanageably large when one includes
the 4hu configurations. This makes the interpretation of
the results for case d difIILcult, due to the missing 4h~
m 4h~ strength. The Gh~ contributions are not exactly
proportional to the total amount of the Ohu configura-
tion of the (0+1)2 wave function. However, it is clear that
the cases with a relatively higher Obeah content (b, f, and

g) give a relatively small B(M1) value as compared with
the experimental data in Table III. From this, one may
estimate approximately 3—5% Ohu content of the (0+1)2
wave function and —0.35 to —0.45 eV for the Oh~-1h~
contribution to the PNC matrix element.

Another ingredient which is often important for the
PNC matrix element is the effect of the derivative oper-
ator [see Eq. (3)] on the tails of the single-particle wave
functions (SPWF) [1]. The use of Woods-Saxon (WS)
SPWF decrease the matrix element as compared with its
value calculated with harmonic oscillator (HO) SPWF.
However, we make two observations (i) The derivative

TABLE VI. The nhcu m (n + 1)hu contributions to the PNC matrix element (DDH weak

couplings assumed) for various cases studies (described by code labels). Units are eV.

Code Oh~ -1hcu
-0.440
-0.638
-0.347
-0.335
-0.453
-0.530
-0.344

2hcu m 1h~
0.793
0.732
0.941
0.853
0.764
0.717
0.669

2h~ -+ 3h~
0.172
0.121
0.228
0.216
0.222
0.190
0.032

0.079

0.125
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TABLE VII. nba —+ n~ contributions to the relevant Ml matrix elements in units of p~. Last column contains the
calculated B(M1) (p~). Relative contributions of nba excitations to the wave functions are also given.

Transition
(0+1)2

m (1+0)g

(0+1)2
-+ (1+0)2

Code
(o+1).

Oh~
0.047
0.098
0.031
0.030
0.061
0.078
0.050
0.047
0.098
0.031
0.030
0.061
0.078
0.050

254p

0.953
0.773
0.969
0.784
0.939
0.922
0.950
0.953
0.773
0.969
0.784
0.939
0.922
0.950

Oh~
0.765
0.765
0.747
0.747
0.719
0.735
0.809
0.676
0.676
0.698
0.698
0.651
0.610
0.727

25~
0.235
0.235
0.253
0.253
0.281
0.265
0.191
0.324
0.324
0.302
0.302
0.349
0.390
0.273

Ml
Ohcu

-0.108
-0.160
-0.162
-0.136
-0.274
-0.198
-0.140
-0.485
-0.160
-0.375
-0.370
-0.488
-0.552
-0.476

matrix element
25~

0.284
0.270
0.452
0.304
0.546
0.250
0.238
1.242
0.270
0.999
0.621
1.192
1.252
0.852

total
0.176
0.110
0.290
0.168
0.273
0.051
0.108
0.757
0.110
0.625
0.251
0.704
0.707
0.376

B(M1)

0.031
0.012
0.084
0.028
0.074
0.0026
0.012
0.572
0.012
0.390
0.063
0.495
0.490
0.141

operator does not act directly on the SPWF but rather
on the matrix element of the short range form factor,
(8/Br[exp( m~r)/r—] I. (ii) It is clear that the use of the
WS SPWF will change the value of the PNC matrix el-
ement, especially when some states in the WS basis are
unbound or nearly unbound.

We have estimated the efFect of the nearly unbound

Isq~m WS state on the dominant Opz~s -+ ls&~2 contribu-
tion to the PNC matrix element. The ls&~2 proton level

is unbound by 0.4 MeV in N and is slightly bound by
0.1 MeV in ~F. For neutrons, the same level is bound
by 1.9 MeV in C and by 3.25 MeV in O. We have
chosen a —0.1 MeV value for the 18~F2 proton SPE and
—2.0 MeV for the neutron SPE. The comparable values
for the Op&~2 orbit are —2.5 MeV for protons and —5.0
MeV neutrons. The WS SPWF are obtained by adjust-
ing the WS well depth to reproduce the above binding
energies. We have found a suppression of the dominant

Ops~2 ~ 18qy~ contribution to the PNC matrix element
of 37% in the case of protons and 28% for neutrons, an
average of 32%. All matrix elements in Table I must be
decreased by this factor.

We wi11 now make a few comments concerning the sign
of the PNC longitudinal analyzing power. The sign found
in the experiment [6, 7] is opposite from our calculations
as well as from the initial prediction [5]. The sign of
the calculated observable depends on the product signs

associated with the PNC matrix element and the spec-
troscopic amplitudes, which describe the proton decay
of the compound states in N. As in the previous cal-
culation, the dominant contribution to the PNC matrix
element comes from the 1—2hu transition (see Figs. 2
and 3). Moreover, the spectroscopic factors appear to be
stable quantities for this case. For instance, in case c, we

obtained for Co+ (see Ref. [5] for notations) a value of
0.226/~2 —to be compared with 0.299/~2 in ZBM case

[5] —and 0.977/+2 for Co (to be compared with I/v 2
for ZBM). The nhu decompositions of the spectroscopic
factors gives 0.210/~2 for the N(0+1)20hw ~ C

g.s. Ohu, 0.016/~2 for ~4N(0+ I) 2hu -+ C g.s.
2hu, 0.827/~2 for ~ N(0 l)2 lhasa ~ sC g.s. Ohu, and
0.150/~2 for the ~ N(0 l)2 Ihu ~ sC g.s. 2hu. Our
best calculation, case d, gives a value of 0.211/~2 for

Co+, in accord with the (0+1+2+3)hw calculation (case
c). The contributions from different nhur transitions are
in phase for both spectroscopic factors so they are more
stable quantities than the PNC matrix element. The
widths of the (0+1)2, (0 1)q states calculated with these
spectroscopic factors and the method described in Ref.
[5] are 4.5 and 1020 keV, respectively. They are in rel-
atively good agreement (if one keeps in mind that the
width is proportional to the matrix element squared)
with the experimentally extracted ones [24]: 3.8+ 0.3

TABLE VIII. nhug m (n 6 1)hu contributions to the (0 1)q ~ (1 0)q El matrix elements in units efm Last colum. n
contains the calculated B(E1) (e fm ). Relative contributions of nb~ excitations to the wave functions are also given.

Code 2'~
0.953
0.773
0.969
0.784
0.939
0.922
0.950

(0+1)g

Oh~
0.047
0.098
0.031
0.030
0.061
0.078
0.050

(1-0),
1hen

' 35~
0.839 0.161
0.839 0.161
0.828 0.172
0.828 0.172
0.876 0.124
0.778 0.222
0.876 0.124

0 —+ 1h~
0.026
0.037
0.015
0.015
0.013
0.016
0.041

El
2 M 15(d

0.053
0.040
0.055
0.041
0.038
0.040
0.067

matrix element
2 m 3hcu

-0.014
-0.014
-0.017
-0.015
-0.013
-0.006
0.011

0.0001

0.0014

total
0.065
0.063
0.053
0.041
0.039
0.051
0.119

B(ZI)

0.0042
0.0040
0.0029
0.0017
0.0016
0.0026
0.0142
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keV and 410 6 20 keV.
The sign of the isoscalar PNC matrix element has an

interesting history. The earliest calculations based upon
the factorization approximation gave a sign which was
consistently opposite to that found experimentally in the
~ F and p+p experiments [21,22]. Later, estimates of the
quark and sum-rule contributions for the nucleon-nucleon
PNC interactions were added and were found to change
the sign of the isoscalar PNC interaction, bringing the
sign in agreement with the experiment [21, 22]. The ac-
tual sign &om the F experiment is not definite because
it relies on calculating the correct sign for a very weak
El matrix element. Thus we have at present three pieces
of data: (a) p+ p scattering which prefers the DDH sign,
(b) the ~sF experiment which prefers the DDH sign but is
not certain and (c) the ~4N experiment which prefers the
factorization approximation. It is diKcult to reconcile
(a) and (c). Perhaps the reconciliation of (a) and (c) will
require "in medium" modification of the isoscalar PNC
weak coupling constants, but further and more accurate
calculations and experiments will be needed to clarify
this puzzle.

In conclusion, new calculations of the predominantly
isoscalar PNC matrix element between the (0+1)2, (0 1)q

states in ~4N have been performed in a (0+1+2+3+4)h~
model space using new Hamiltonians. A new method
of calculating the PNC matrix elements in a one-body
approximation has been proposed and shown to give re-
liable results as compared with the full two-body cal-
culations; this method proves to be very useful for cal-
culations in larger model space, e.g. , (0+1+2+3+4)hu.
The most reasonable range of values for the PNC matrix
element was found to be 0.22 to 0.54 (a 32'%%uo WS suppres-

sion included), which is in reasonable agreement with a
magnitude of about 0.38 + 0.28 eV deduced &om experi-
ment [6, 7, 23] (even with the upper limit given by the er-
ror, if one dismisses the experimental result as accurate).
Our range of values are suppressed by a factor of 3 to 4
with respect to the ZBM (OP~~2, 0ds~z, Is~~2) calculations.
This suppression comes mainly &om the decrease of the
gpz, &, q, ,&, OBTD and from a stronger cancellation due to
the particle-hole conjugate transition densities. All cal-
culated E1 transition probabilities between 0+, 1+ states
in N are smaller than the experimental results, but the
mechanism of suppression for the El matrix elements is
different from that for the PNC matrix element. The
analysis of the nba -+ (n 6 1)hu contributions put in ev-
idence the importance of the Qhu content of the (0+1)2
wave function. This part can be to some extent fixed by
the B(Ml) transition probabilities. The relative sign of
the 2h~ —+ 3hu contributions appear to be fixed as posi-
tive but its magnitude remains somewhat uncertain. The
effect of higher ()3hu ) configurations deserves further
study as well as the convergence of the nhur ~ (n + 1)h~
series.
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