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Blocking effect and odd-even differences in the moments of inertia of rare-earth nuclei
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A phenomenological analysis of the experimental odd-even differences in the moments of inertia,
8J/ J, of well-deformed rare-earth nuclei is reviewed, which reveals that there exist large Quctuations
in b J/J with the blocked levels in odd-A nuclei. A calculation using the particle-number conserving
treatment showers that the odd-even difference in the moments of inertia is a pure quantum mechanical
interference etfect and the experimental strong Huctuations in 8J/J with the blocked level can be
reproduced satisfactorily. The calculated value of b J/ J depends sensitively on the energetic location
and Coriolis response of the blocked level and the underlying physics is discussed. Particularly, b J/ J
is especially large if the blocked orbital is a high- j intruder orbital near the Fermi surface. In contrast,
if the blocked orbital is of normal parity with low j and high tl (e.g. , proton [404]7/2, [402]5/2),
8J/J almost vanishes.

PACS number(s): 21.10.Re, 27.70.+q, 21.60.—n

I. INTRODUCTION

One of the most striking discoveries in high-spin nu-

clear physics was the finding of almost identical superde-
formed (SD) bands in some neighboring nuclei [1—3]. Sev-
eral explanations [3—5] were put forward assuming the
occurrence of such identical bands to be specific prop-
erties of the superdeformed rotational bands. All these
explanations assume [6] that the main contributing fac-
tor to the odd-even difference in the moments of inertia,
namely, the pairing interaction, is substantially weakened
for high-spin superdeformed states. Shortly afterwards,
it was recognized that identical bands are also present
in normally deformed pairs of even- and odd-mass nu-

clei at low spin [6,7] and in normally deformed pairs of
even-mass nuclei [8,9], i.e. , the occurrence of identical
bands is not necessarily related to the phenomenon of
superdeformation or excitation of very high-spin states
in nuclei. It is well known that the pairing interaction
plays a substantial role in the description of collective
motion of normally deformed nuclei at low-lying excited
states [10], e.g. , the pairing interaction may be respon-
sible for the observed reduction of nuclear moments of
inertia compared to that of a rigid rotor [11—15]. How-

ever, according to the conventional BCS approximation
for treating the pairing interaction the moments of in-
ertia associated with one-quasiparticle states in odd-A
nuclei should be larger than those of the ground state
con6guration of adjacent even-even nuclei by a factor of

15% [10]. Therefore it was asserted [6,7] that the oc-
currence of identical bands in normally deformed pairs of
even- and odd-mass nuclei at low spin presents a serious
challenge to the mean-field (BCS) approximation.

General considerations show that the BCS theory is

very suitable for a system of a large number of particles.
The question is, however, how reliable is the BCS ap-

proximation for treating the eigenvalue problem of the
cranked shell model (CSM) Hamiltonian [16,17]? One of
the crucial problems is that the number of nucleons in a
nucleus ( 102), particularly the number of valance nu-

cleons ( 10), which dominate the behavior of low-lying
excited states, is very limited. Therefore the serious de-
fects (particle-number nonconservation, spurious states,
etc.) should be considered seriously, and the conclu-
sions drawn kom the BCS approximation, particularly
the statement concerning the nuclear features which de-
pend sensitively on the particle number, need careful re-
examination. To overcome the defect of particle-number
nonconservation in the BCS approximation, there have
been various methods developed, including the various
types of particle-number projection method [18—27] and
the generator coordinate method [28,29], and improved
agreement with experiment compared to the simple BCS
approximation was obtained. Another crucial problem is
the blocking effect, which is responsible for various odd-
even differences in nuclear properties and is especially im-

portant for low-lying excited states. The blocking effects
on the moments of inertia were addressed in the BCS for-
malism in many papers, e.g. , Refs. [10,13,17,30,31]. How-

ever, while the defect of number nonconservation may be
partly remedied by various types of number projection,
the most serious defect of the BCS treatment is that it is
not able to treat the blocking efFect properly [17]. Just
as Rowe had emphasized [17], while the blocking effects
are straightfonuard, it is very di Jicult to treat them in the
BCSformalism because they introduce different quasipar
ticle bases for different blocked levels (see pp. 194—195 of
Ref. [17]),which seems worth much attention. The odd-
even difference in the moments of inertia b J/J 15%
is only a rough estimate based on the BCS approxima-
tion. In fact, the observed odd-even differences in nuclear
moments of inertia show large fiuctuation [10], including
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the identical bands observed in normally deformed pairs
of even- and odd-mass nuclei at low spin, for which the
conventional BCS treatment offers no satisfactory expla-
nation. Therefore, in this paper we prefer addressing
this problem using a particle-number conserving (PNC)
method in which the blocking effects are taken into ac-
count exactly [32,33].

The experimental odd-even differences in the moments
of inertia of the rare-earth nuclei have been analyzed in
detail in Refs. [6] and [7]. In Sec. II we will give an
additional analysis of the variation of odd-even differ-
ences in the moments of inertia with the blocked level
(see Figs. 1—3 below). Two kinds of odd-even differences
in the moments of inertia [see Eqs. (2) and (3)] are com-
pared and some distinctions are found between the odd-
even differences for the odd-N and odd-Z well-deformed
rare-earth nuclei. In Sec. III the odd-even difFerences in
the moments of inertia of the rare-earth nuclei are calcu-
lated using the PNC treatment [32,33] for the eigenvalue
problem of the CSM Hamiltonian
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FIG. 2. Same as Fig. 1, but for the odd-Z well-deformed
rare-earth nuclei.where HN;~ is the Nilsson Hamiltonian, H~ ———uJ~

is the Coriolis interaction, and H~ the pairing inter-
action. In the PNC approach the particle number is
conserved from beginning to end (unlike the number-
projection technique). The moments of inertia of a lot
of well-deformed even-even rare-earth nuclei have been
calculated in a previous paper [33] and the agreement
between the calculated and experimental results is sat-
isfactory. In this paper we will show that the odd-even

difFerence in the moments of inertia is a pure quantum
mechanical efFect and the experimental large fluctuations
of the odd-even differences in moments of inertia with
the blocked level can be reproduced satisfactorily by the
PNC calculation (see Table I). The underlying physics is
discussed in detail. A brief summary is given in Sec. IV.
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FIG. 1. Relative odd-even differences in the moments of
inertia for odd-N well-deformed rare-earth nuclei. bJ/ J [see
Eq. (3)] and b J/J~ [see Eq. (2)] are denoted by solid and
open circles, respectively. The blocked neutron Nilsson level
for each band is also indicated. The experimental data of the
bandhead moments of inertia are taken from Ref. [38].
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FIG. 3. Same as Fig. 2, but for the odd-Z rare-earth nuclei,
whose odd proton occupies the [404]7/2 or [402]5/2 orbital.
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II. PHENOMENOLOGICAL ANALYSIS

It has been known that the experimental moments of
inertia of odd-A nuclei exceed those of the ground bands
of adjacent even-even nuclei by amounts that are typ-
ically of order 20%, but show large fluctuations [10].
Particularly, the moment of inertia of an odd-A nucleus
whose unpaired nucleon occupies a high-j intruder orbit
is systematically much larger than those of the ground
band moments of inertia of neighboring even-even nuclei
[10]. For example, the bandhead moment of inertia of the
ground band [642]5/2 of srDy is 2J = 159.452 MeV
(determined by the two lowest observed energy levels),
which is over twice as large as that of Dy (2J = 69.1t'r

MeV r) and rs2Dy (2J = 74.452 MeV r). In sharp con-
trast to this, it was recognized recently [6,7] that the mo-
ments of inertia of some odd-Z nuclei are almost identical
to that of the seniority-zero configuration of the neigh-
boring even-even nucleus with one fewer proton. For ex-
ample, the bandhead moment of inertia of the [404]7/2
band in Lu (2J = 73.8h MeV ) is almost identical to
that of the ground band in r Yb (2J = 71.252 MeV r),
but moderately larger than that of r~2Hf (2J = 63.052

MeV ). Therefore it seems worthwhile to make a sys-
tematic review of the variation of the odd-even differences
in the moments of inertia with the blocked level.

Like the usual definition of the odd-even mass differ-
ence, the relative odd-even difference in the moments of
inertia may be defined as

J(A) —-'[Jp(A+ 1) + Jp(A —1)]
A oddJ r2[Jp(A+ 1) + Jp(A —1)] ('2)

wher'e [Jp (A + 1) + Jp (A —1)]/2 as a reference, is the
average of the ground band moments of inertia of neigh-

boring even-even nuclei. As has been noted in Ref. [6],
the situation may be different if one compare the mo-

ment of inertia of an odd-A nucleus with its neighboring
even-even nucleus having one less nucleon; i.e. , we may
define

bJ J(A) —Jp(A —1)
J Jp(A —1)

The isotonic variations of b J/ J
~

and b J/ J for the
ground state bands of odd-N rare-earth nuclei are dis-

played in Fig. 1. The isotopic variations of b J/J~ and

bJ/J for the rotational bands of odd-Z nuclei are dis-

I

played in Figs. 2 and 3. From Figs. 1—3 several observa-
tions can be made.

(a) For the rotational band whose unpaired nucleon
occupies the high-j intruder orbital (neutron N = 6,
irsy2, proton, N = 5, hrry2), the odd-even difFerences
in the moments of inertia are unusually large; e.g. , for
the ground band of the odd-N nuclei,

Dy [642]5/2 Er [633]7/2 Hf [624]9/2
1.23 0.51 0.39

Similarly, for the rotational bands in the odd-Z nuclei,

r rHo [523]7/2 r~ Lu [514]9/2 rLu*[541]1/2
b J/Ji 0.42 0.32 0.42

In contrast, for the rotational band whose unpaired par-
ticle occupies a low-j and high-0 (strongly deformation
aligned) orbital, e.g. , proton [404]7/2 (g7y2, 0 = j = 2),
[402]5/2 (ds~2, 0 = j = 2), etc. , the value of bJ/J~
is especially small ( 0.10), which is displayed irr Fig. 3.
The underlying physics will be illustrated in Sec. III.

(b) For the odd-Z rare-earth nuclei, bJ/ J is, in general,
smatter than the corresponding value of b J/ J~ „(Figs. 2

and 3). As has been pointed out [6] such systematics
are counter to the expectations of a paired system. In
particular, for the rotational bands building on the pro-
ton orbital [404]7/2 or [402]5/2 (Fig. 3), the value of
8J/ J(& 8J/J~ 0.1) is nearly zero; i.e. , the moment
of inertia of an odd-Z nucleus is almost equal to that of
the neighboring even-even nucleus having one less pro-
ton. In this case, identical bands in normally deformed
pairs of even- and odd-mass nuclei may emerge [6,?].

However, the situation is different for the odd-X rare-
earth nuclei. The value of bJ/J is usually a little larger
than the corresponding value of b J/J] (except for a few
cases). In fact, for almost all the odd-N rare-earth well-
deforrned nuclei, the values of both b J/ J] and bJ/ J are
larger than 0.10; i.e. , it is rarely found that the ground
state band moment of inertia of an odd-N nucleus is al-
most identical to those of the neighboring even-even nu-
cleus.

The relation between the magnitudes of bJ/J~ and
b J/ J mentioned above may be partly connected with the
change in deformation of well-deformed rare-earth nuclei
with proton or neutron numbers. For example, the vari-
ations in the quadruple deformation e2 for some well-
deformed rare-earth nuclei [34] are as follows:

N=g4
N=g6
N =g8
N =100
N = 102
N = 104

Dy 0.248
162Dy 0.261
164Dy 0.267

2Er 0 245
Er 0.258
Er 0.267

168Fr 0 273
170E 0 276

'"Yb o.23g
166Yb 0 246
168Yb 0 2
'"Yb o.265
'"Yb o.26g
"4Yb 0.266

Hf 0.219
'"Hf 0.235
'"Hf 0.245
'"Hf 0.254
"4Hf 0.258
'76Hf 0.256 .

It is seen that for these nuclei e2(Z, N) ) e(Z +
2, N), which may be partly responsible for the fact that
Jp(Z, N) ) Jp(Z+ 2, N), which implies 6J/J & b J/J~
observed in odd-Z nuclei. Similarly, e2(Z, N) ) e(Z, N—

]

2) for N & 104, which may partly account for the fact
that Jp(Z, N) ) Jp(Z, N —2), which implies b J/J )
bJ/ J~, observed in odd-N nuclei. However, it should
be emphasized that the odd-even difference in the mo-
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ments of inertia is a pure quantum mechanical effect and
depends intimately on the intrinsic configuration struc-
ture, which will be discussed in Sec. III.

(c) The values of h J/J[ „and h J/J vary in a rather

wide range, but there exists no distinct line of demarca-
tion between the "identical" and nonidentical bands. The
results for some typical (most P-stable) odd-A rare-earth
nuclei are as follows:

Rotational
Bands
Odd-Z nuclei
h J/J
hJ/J

[523]7/2
(hii/s)
161Ho67
0.42
0.31

[514]9/2
(hii/s)
171Lu*
71

0.32
0.24

[413]5/2
(ev/s)
157E
63
0.19
0.16

[411)3/2
(ds/s)
65
159Tb

0.20
0.14

[411]1/2
(ds/s)
167Tm
69
0.13
0.08

[404]7/2
(gr/. )
171Lu
71
0.10
0.037

[402]5/2
(ds/s)

u'
71
0.056

—0.008

Rotational
Bands
Odd-1V nuclei
hJ/J[ „
bJ/J

[642]5/2
(iis/s)

161Dy

1.23
1.31

[633]7/2
(iis/s)

Err99
0.51
0.52

[624]9/2
(iis/s)

179Hf

0.39
0.39

[523]5/2
(fr/s)

165Err97
0.30
0.38

[521]3/2
(hp/s)

157G

0.29
0.36

[514]7/2
(fr/s)

177Hf

0.21
0.17

[512)5/2
(hp/s)

Yb1p3
0.15
0.17

[521]1/2
(ps/s)

»1Yb, ,
0.13

0.06 .

1.6

1.4

1,2

1.0

161
Dy

(a)

To display the variation in h J/J~ „with the neutron
numbers and the Nilsson orbital occupied by the odd nu-
cleon, in Fig. 4(a) the experimental h J/J[ „are shown
by open circles for the ground state bands of some typ-
ical (most P-stable) odd-N rare-earth nuclei. A similar
plot of odd-Z rare-earth nuclei is shown in Fig. 4(b). We
can see that strong fiuctuations in bJ/J[ „are exhibited
clearly in Fig. 4. Particularly, in Fig. 4(a) there ex-
ist three peaks of h J/J[ „corresponding to the blocked
neutron orbitals [642]5/2, [633]7/2, and [624]9/2, respec-

tively, which originate &om the high-j intruder spheri-
cal orbital i13g2 having a strong Coriolis response. Sim-
ilarly, the two peaks of h J/J~ „ in Fig. 4(b) correspond
to the proton orbitals [523]7/2 and [514]9/2, which origi-
nate &om the high- j intruder spherical orbital h11y2. On
the other hand, there exists a valley (h J/J ( 0.1) in
Fig. 4(b) near Z 71, which is connected with the
orbitals [404]7/2 and [402]5/2 having little Coriolis re-
sponse. In fact, the majority of identical bands in nor-
mally deformed nuclei at low spin occur in this region.
For comparisoa, the calculated h J/J[ „using the PNC
treatment (Sec. III) are also showa ia Fig. 4 by solid cir-
cles. The general tendency of the experimental variation
of h J/ J[ „with the blocked level is reproduced satisfacto-
rily by the PNC calculatioa. Considering that there are
no &ee parameters involved in the PNC calculation, the
results seem encouraging. The underlying physics will be
discussed in Sec. III.
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III. MICROSCOPIC CALCULATION AND
DISCUSSIONS

A. Sketch of the PNC formalism
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FIG. 4. Relative odd-even differences in the moments of
inertia h J/J~ „[see Eq. (2)] of some typical (most P-stable)
rare-earth nuclei versus the particle numbers and the corre-
sponding Nilsson levels blocked by the odd particles. The ex-
perimental and calculated h J/ J~ are denoted by open and
solid circles, respectively. (a) Odd-N nuclei. (b) Odd-Z nu-
clei.

A particle-number conserving method for calculating
the low-lying eigenstates of HcsM was developed [32], in
which the many-particle configuration (MPC) truncation
is used instead of the usual single-particle level trunca-
tion and the blocking effects are taken into account ex-
actly. To reveal clearly the inQuence of the pairing inter-
action on the moment of inertia, an improved PNC ap-
proach was developed [33]; i.e. , first, the one-body part
of HcsM, Hp = HN;1 —(u J~ = P, hp(i), is diagonalized
exactly to obtain the cranked Nilsson (CN) orbitals, and
then H~sM ——Ho + H~ is diagonalized in a sufBciently
large cranked many-particle configuration (CMPC) space
to obtain accurate solutions of the low-lying eigenstates
of HCSM. The moments of inertia of the ground bands
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in a series of well-deformed even-even rare-earth nuclei
have been calculated [33) using this approach. It is well
known that the BCS theoretical moments of inertia of the
ground bands in rare-earth and actinide even-even nuclei
are systematically smaller than the experimental ones by
a factor of 10—40%, i.e. , systematic excessive reduction of
the nuclear moments of inertia was found [10,14]. Many
eKorts to reduce the discrepancy between theory and ex-
periment have not got decisive success [27,35]. This long-
standing discrepancy disappears in the PNC calculation
[33]. In this paper this PNC approach is used to calculate
the moments of inertia of odd-A rare-earth nuclei. The
details of the calculation have been presented in Ref. [33].
For convenience, a sketch of the PNC formalism is given
below.

Usually the Nilsson orbitals [36] are characterized by
(parity) and 0 (eigenvalue of j,) and are conven-

tionally denoted by the asymptotic quantum numbers
[Nn, AZ]A. Each Nilsson level is twofold degenerate
(+0). For the CN orbitals, j, is no longer conser-
vative and the degeneracy is removed. Each CN or-
bital is characterized by x and signature r = e
+i( n = pz), and denoted by lyn&, corresponding
to the energy eigenvalue e„. Hereafter, lpn& is often
briefiy denoted by lp), corresponding to the energy eigen-
value e„. The CMPC of an n-particle system cab be
expressed as lpqp2 p„&, pq, pz, . . . , p,„being the occu-
pied CN orbitals. Each CMPC, simply labeled by Ii),
is characterized by E;(= P e„,, configuration energy),
parity, and signature. When the pairing interaction is
taken into account, we may diagonalize ASM in a suf-
ficiently large CMPC space (i.e. , all the CMPC's with
energies E, —Eo & E, are considered, Eo being the en-
ergy of the lowest CMPC and E, the truncation energy)
to obtain the solutions of the yrast and low-lying excited
states. Assuming one low-lying excited state of ASM
is expressed as l@& = P,. C;li), the angular momentum
alignment is

(4)

Considering J to be a one-body operator, the matrix
element (il J Ij) (i g j) is nonzero only when li) and

Ij) difFer by one-particle occupation. After certain per-
mutation of creation operators, Ii) and

Ij) are brought
into the form Ii) = (—1)M' lp. ), Ig) = (—1)N "Iv ),
where the ellipses stand for the same particle occupation
and (—1)M'» = +1, (—1)~~" = kl, according as the per-
mutation is even or odd. Thus the kinematic moment of
inertia of the state I@& can be expressed in terms of the
single-particle picture as follows:

where n„= P,. IC; I P;„ is the particle occupation proba-
bility of the CN orbital

I p) in the state I4'& and P;„=1, if
Ip) is occupied in li), and P;„=0 otherwise. If the pair-
ing interaction is missing, only one CMPC appears in I @&

and all the interference terms J„„vanish. When the pair-
ing interaction is taken into account, the diagonal part
(g J») changes only a little [see Tables II(a), III(a),
IV(a), and V(a) below] which can be understood from the
slight change i.n particle occupation due to pairing corre-
lation. The reduction of the moments of inertia originates
mainly from the destructive interference (P & J„(0)
due to the antialignment eKect of the pairing interaction.
The ofF-diagonal part (P &„J„„)depends sensitively on
the features and distribution of the CN orbitals near the
Fermi surface. Each J„„(pg v) depends on the ener-
getic location of the CN orbital e„and e„and the mag-
nitude of the matrix element &plj lv), which is especially
large for both p and v being the high-j intruder orbitals
(the neutron iqsg2 orbitals and proton h~qy2 orbitals for
rare-earth nuclei). If p or v were far away &om the Fermi
surface, J„„would be negligibly small. Therefore only
when both p, and v are near the Fermi surface is J„„of
importance [see Tables II(b), III(b), IV(b), and V(b) be-
low]. Also it should be noted that the contribution to the
moments of inertia &om a harmonic oscillator closed ma-
jor shell is zero. Therefore, for the rare-earth nuclei, no
contribution comes &om N & 3 proton shells and N (. 4
neutron shells, which are closed for the low-lying excited
bands at low spin. Similarly, the contributions from the
N & 6 proton shells and N & 7 neutron shells are very
small, even when the pairing interaction is taken into ac-
count, because these shells are completely vacant in the
lowest configuration of rare-earth nuclei. Therefore al-
most all the contributions to the moments of inertia of
rare-earth nuclei come &om the N = 4, 5 proton and
N = 5, 6 neutron shells [see Tables II(a), III(a), IV(a),
and V(a) below].

It is seen that the transitions between adjacent high-j
intruder orbitals (AO = kl) in the vicinity of the Fermi
surface play a decisive role in the contributions to the mo-
ments of inertia; e.g. , the neutron iqsgz shell, [660]1/2 ~
[65113/2 ++ [642]5/2 ++ [633]7/2 ++ [624]9/2 ++ [615]11/2
[Tables II(b) and III(b)], and the proton hqq~z shell,
[532]5/2++ [523]7/2 ++ [514]9/2, etc. [Tables IV(b) and
V(b)].

For odd-A nuclei, if a single-particle level vo is occu-
pied by an odd nucleon, the pairing correlation is reduced
(blocking efFect). Calculation shows that J„, becomes
positive, with magnitude depending on the energetic lo-
cation and Coriolis response of the blocked level vo., hence
the calculated moments of inertia show large variation
with the blocked level.

B. Calculated results and discussions

(5)

The moments of inertia of a series of well-deformed
odd-A rare-earth nuclei were calculated and the compar-
ison between the calculated and experimental odd-even
differences in the moments of inertia, bJ/Jl „, is dis-

played in Fig. 4. The experimental large fluctuations
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in bJjJ] are reproduced rather well by the PNC calcu-
lation.

As illustrative examples, the calculated results for the
bandhead moments of inertia of four groups of typical
rare-earth nuclei are presented in Tables I—V. The results
for the other rare-earth nuclei are similar. The compar-
ison between the calculated and experimental moments
of inertia is given in Table I and the detailed analyses
of the contributions to the moments of inertia are shown
in Tables II—V. In the calculations the Nilsson param-
eters (e2, e4, K, p) are taken from the Lund systematics
[34,36] and no change is made to improve the calculated
moznents of inertia. The pairing interaction strength G„
and G„are determined unambiguously [33] by the exper-
imental odd-even differences in binding energies [37],

IN = 2[B(Z,N) +B(Z,N+ 2)] —B(Z, N+ 1)
= Eg (Z, N + 1) —

2 [Es(Z, N) + gs (Z, N + 2)],
(6)

Pp = 2[B(Z, N) + B(Z+ 2, N)] —B(Z+ 1,N)
= E,(Z+1, N) —,'[Z, (Z, N—)+E,(Z+2, N)]

where E~ is the ground state energy of the nucleus at
~ = 0. In the PNC calculation of E~ of an odd-A nu-
cleus the blocking effect has been taken into account ex-
actly. The values of G„and G„ thus obtained are listed
in Table I of Ref. [33). The CMPC truncation energy is
chosen as E, = 0.85%up (e.g., for i PYb, fuup„——7.837
MeV, harp~ = 6.966 MeV) and the accuracy of the so-
lutions of low-lying excited states has been discussed in
Ref. [33]. From Table I it is seen that the agreement
between the calculated and experimental moments of in-
ertia is satisfactory. Now some discussions follow.

From Table I it is seen that the calculated moments
of inertia for even-even nuclei are greatly reduced due

to the strong pairing correlation (antialignment ea'ect).
This is a pure quantum mechanical effect. For example,
the calculated

2Jp( Dy)]~ p ——187.6h MeV

and

2Jp( Dy)]G —p = 160.6h MeV

are reduced to 68.752 MeV and 71.2h MeV, re-
spectively, which are very close to the experimental re-
sults. The PNC calculation shows that the contribu-
tion to the moments of inertia from the diagonal part
(P J») changes only a little due to pairing correlation
[see Table II(a)] and the vast majority of the reduction
of the moments of inertia, of zeo, x62Dy comes from the
negative off-diagonal part (P„(„J„„(0), which van-
ishes for G = 0. Particularly when both p and v are
the high-j intruder orbitals in the vicinity of the Fermi
surface (e.g. , [651]3/2, [642]5/2, [633]7/2, etc.), the value
of J„„is especially large [but negative; see Table II(b)].
These interference terms due to pairing play a decisive
role in the reduction of the moments of inertia.

As for Er and Er, the experimental moment of
inertia of Er (2Jp ——74.552 MeV ) is larger than

Er (2Jp —65.752 MeV ) by a factor of 13.4',
which is reproduced rather well by the PNC calculation,

(ieeE ) J, , (ie4Er)

J i(le4Er)

The reason is as follows. The calculation shows that the
contributions to the moments of inertia from protons are
nearly the same for both ie4Er and ieeEr (see Table I),
but the contributions &om neutrons are rather different.

TABLE I. Comparison of the calculated and experimental bandhead moments of inertia of four
groups of rare-earth nuclei. Columns 2, 3, and 4 are the calculated contribution to the moments of
inertia for vanishing pairing (G„= G~ = 0) from protons, neutrons, snd their sum, respectively.
When the pairing interaction is taken into account, the corresponding calculated results are given
in columns 4, 5, snd 6. The pairing strengths (G„snd G~) sre determined by the experimental
odd-even mass difFerences [37] snd the values of G„snd G„sre taken from Ref. [33]. The exper-
irnentsl bsndhesd moments of inertia [38] extracted from the lowest two levels of each band are
given in the final column.

2J,~i (5 MeV ')
Rotational
band
160D
' 'Dy [642]5/2
162D
164E

Er [523]5/2
166K".Yb

Lu [514]9/2

170Yb
Lu [404]7/2

1'72Hf

Proton
61.26
60.18
59.46
44.16
42.98
42.10
41.66
35.08
37.86
41.66
39.74
37.86

G„,G„=0
Neutron

126.32
113.54
101.14
106.74
103.20
99.22
80.26
81.98
84.08
80.26
81.98
84.08

Total

187.58
173.82
160.60
150.90
146.18
141.32
121.92
117.06
121.94
121.92
121.72
121.94

Proton

28.98
28.66
29.66
23.82
24.86
24.97
25.46
40.20
21.70
25.46
27.40
21.70

G„,G„g 0
Neutron

39.70
117.92
41.56
42.32
60.62
49.55
43.74
44.36
41.92
43.74
44.36
41.92

Total

68.68
146.58
71.22
66.14
85.48
74.50
69.20
84.56
63.62
69.20
71.76
63.62

2Jexpt
(h. MeV ')

69.1
159.4
74.4
65.7
90.6
74.5
71.2
88.3
63.0
71.2
73.8
63.0
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For ssEr (1V = 98), there exists a large gap in the neu-
tron Nilsson level scheme immediately above the Fermi
surface, which leads to a significant pairing reduction,
and hence a larger moment of inertia of Er compared
to that of Fr.

In contrast, the experimental moment of inertia of
Hf (2Jo ——63.0h MeV ) is smaller than that of
Yb (2Jo ——71.2h MeV ) by a factor of 13%, which is

also approximately reproduced by the PNC calculation,

J,si(' Hf) —J,si(i72Hf)

J. i('72Hf)

This is intimately connected with the moderate gap in
the proton Nilsson level scheme at Z = 70, which leads
to a weaker pairing correlation in Yb (Z = 70) than
in Hf (8 = 72); hence the calculated J„ for i7oYb

(2J„= 25.465 MeV i) is larger than that for 2Hf

(2J„= 21.752 MeV ). The smaller difference in the
calculated values of J„ for Ybqoo and Hfqoo may
partly come Rom the small change in deformation (e2 ——

0.265 for i Yb, and 0.254 for 2Hf) [36].
Now let us consider the moments of inertia of odd-A

nuclei and the odd-even differences.
(a) First, we address the first group ( Dy [642]5/2

band, so i Dy g.s. bands) and try to explain why the
odd-even difference in the moments of inertia is so large.
From Table II(b) we see that, unlike the even-even nuclei

is2Dy, for the isiDy [642]5/2 band the value of J„„
becomes positive for p or v = [642]5/2 (o. = +2), due
to the important blocking eH'ect and the strong Coriolis
response of the [642]5/2 level; hence the reduction of the
moments of inertia due to pairing observed in ' Dy
disappears in the Dy [642]5/2 band. Therefore it is
not surprising that the calculated neutron contribution
to the moment of inertia for the isiDy [642]5/2 band

TABLE II. (a) Structure analysis of the neutron contributions from each major shell to the
moments of inertia of the ground bands of ' Dy and the [642]5/2 band in Dy. No contribution
comes from the neutron N = 0, 1, 2, 3 shells. (b) The off-diagonal part of the contribution to the
moments of inertia from neutrons.

160Df94

161Df95
[642]5/2

162Df96

N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells

G„=o
2P Jpp

42.45
83.87

126.32

41,93
71.61

113.54

41.68
59.45

101.14

2g Jjug

0.11
42.40
72.25

114.56
0.09

41.20
70.46

111.74
0.09

39.97
63.13

103.19

G„QO
2P Jpv

—0.02
—20.67
—54.17
—74.86
—0.01

—18.32
24.51
6.18

—0.05
-18.24
—43.34
—61.63

2Jncal

0.09
21.54
18.07
39.70
0.08

22.87
94.97

117.92
0.04

21.72
19.79
41.56

[541]
[541]
[514]
[s3o]
[530]
[s3o]

1/2, [

1/2, [
9/2, [

1/2, [

530]
S32]
sos]
532]

1/2
3/2
ll/2
3/2

1/2, [521]3/2
1/2, [521]1/2

[660]1/2, [651]3/2
[532]3/2, [523]5/2
[532]3/2, [521]1/2
[651]3/2, [642]5/2
[521]3/2, [523]5/2
[521]3/2, [512]5/2
[642]5/2, [633]7/2
[523]5/2, [514]7/2
[633]7/2, [624]9/2
[S12]S/2,[503]7/2
[660]1/2, [642]5/2
[521]1/2,[510]1/2
[521]1/2, [512]3/2
Total

(b)
Neutron orbitals

a=-'
2

—0.28
—0.25
—0.37
—0.05
—2.05
—0.29
—2.81
—2.88
—0.30
—14.57
—0.70
—2.09
—8.25
—0.88
—0.62
—0.05

—0.10
—2.12
—0.24
—4.40
—2.88
—0.34

—14.52
—0.70
—2.09
—8.25
—0.88
—0.62
—0.05
—0.10

—74.86

160D
1a =
2

—0.22
—0.28
—0.37

—0.97
—0.27
—1.48
—2.72
—0.29

5.83
—1.00
—2.14

9.31
—0.97
—0.67

—0.98
—0.23
—2.46
—2.72
—0.33

7.81
1.00

—2.14
6.79

—0.97
—0.67

6.18

2J„(h MeV ')
Dy [642]5/2

a=-' A = ——
2 2

-0.20 -0.16
-0.16 -0.19
-0.26 —0.26

—0.21
—0.17
—0.28

—0.97—0.96
—0.28
—1.64
—2.41
—0.30
—6.08
—0.83
—2.15

—12.42
—1.30

—0.23
—2.47
—2.41
—0.34
—6.06
—0.83
—2.15

—12.42
—1.30
—1.10
—0.07
—0.04

—1.10
—0.07

—0.97
—0.05

—0.06
—0.07

—61.63

162D
1a = ——
2

—0.17
—0.19
—0.28
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is greatly increased (2J = 117.952 MeV ) and close
to the value for vanishing pairing interaction (G„= 0,
2J„= 113.5' MeV ). A similar argument may ac-
count for the observed large odd-even difFerences in the
moments of inertia for the [633]7/2 and [624]9/2 bands
in odd-N rare-earth nuclei.

(b) Second, we discuss the calculated moment of iner-
tia for the ~ sEr [523]5/2 band. The contributions to the
moments of inertia &om protons are almost the same for
~s4 ~ssEr and the ~ssEr [523]5/2 band, so the odd-even
diHerence mainly comes from the o6-'diagonal part of the
neutron contribution [Tables III(a) and III(b)]. However,
the most important interference terms are those con-
cerning the high-j intruder orbitals ([660]1/2, [651]3/2,
[642]5/2, [633]7/2, [624]9/2, etc.) and the contributions
to the moment of inertia &om the normal parity or-
bitals ([523]5/2, [514]7/2, etc. ) are of minor importance.

J( Lu [514]9/2)—Jo( Yb)J (1ToYb)
J( Lu [514]9/2)—Jo( ~Hf)

JO (17~Hf)

Experimental Calculated

24% 22'%%uo

40'%%uo 33'%%uo

The reason is that the high-j intruder proton orbital
[514]9/2 plays an important role in the contribution to

Therefore the blocking eifect of the orbital [523]5/2 only
leads to a moderate increase of moment of inertia of the
~ssEr [523]5/2 band compared to the neighboring even-
even nuclei.

(c) Third, we investigate the ~7~Lu [514]9/2 band. The
observed moments of inertia of the ~ Lu [514]9/2 band
(2J = 88.3h MeV ~) exceed those of ~ Yb and ~72Hfby
a factor of about 30%, which is reproduced satisfactorily
by the PNC calculation (Tables I and IV), i.e.,

TABLE 111. The same as Table II, but for the ground bands of ' Er and the neutron [523]7/2
band of Er.

164Er96

165Er97
[523]5/2

166Er98

(a)
N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells

G =0

43.38
63.36

106.74

39.25
63.94

103.20

34.74
64.48
99.22

2+ Jpp
0.09

40.53
67.97

108.60
0.08

39.96
63.04

103.09
0.05

36.47
62.62
99.15

G„g 0
2+ Jpv

—0.01
—18.99
—47.29
—66.28
—0.07
—4.46

—37.95
—42.47
—0.01

—12.38
—37.20
—49.59

2Jncal

0.08
21.54
20.68
42.32
0.02

35.50
25.10
60.62
0.04

24.09
25.42
49.55

(b)
Neutron orbitals

[541]
[541]
[514]
[530]
[530]
[532]
[ss2]
[660]
[651]
[521]
[s21]
[642]
[s23]
[6ss]
[s21]
[s21]
[s21]
[sso]

1/2, [530]1/2
1/2, [532]3/2
9/2, [505]11/2
1/2, [521]3/2
1/2, [521]1/2
3/2, [s2s]s/2
3/2, [S21]1/2
1/2, [651]3/2
3/2, [642]S/2
3/2, [s2s]s/2
s/2, [s12]s/2
5/2, [633]7/2
5/2, [»4]7/2
7/2, [624]9/2
1/2, [510]1/2
1/2, [512]3/2
5/2, [503]7/2
1/2, [SS2]3/2

[660]1/2, [642]5/2
[624]9/2, [615]11/2
Total

cx= -'
2

—0.09
—0.09
—0.31
—1.14
—0.31
—2.44
—0.31
—1.69
—7.16
—0.72
—2.25
—12.71
—1.56
—1.33
—0.09
—0.06
—0.07

—66.28

164E
1

CX = ——
2

—0.07
—0.10
—0.31
—1.14
—0.25
—2.44
—0.37
—3.15
—7.11
—0.?2
—2.25

—12.70
—1.56
—1.33
—0.07
—0.07
—0.07
—0.05
—0.07

1
2

—0.29
—0.47
—0.33

0.45
—0.32
—0.61
—2.74

0.47
—2.12

—13.64
1.02

—1.73
—0.14
—0.11
—0.09

—0.29
—0.47
—0.26

0.60
—0.38
—1.09
—2.72

0.31
—2.12

—13.64
0.52

—1.73
—0.12
—0.13
—0.09

—42.47

2J„„(h MeV )
Er [523]5/2

o, =-'
2

a=-'
2

166E
1A = ——
2

—0.24
—0.38
—0.32
—0.68
—0.31
—0.47
—2.37
—0.15
—1.95

—13.30
—1.71
—2.07
—0.18
—0.13
—0.10

—0.24
—0.38
—0.25
—0.67
—0.37
—1.03
—2.36
—0.15
—1.95

—13.30
—1.71
—2.07
—0.15
—0.16
—0.10

—0.08 —0.08
—49.59
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the moments of inertia [Table IV(b)]. The value of J„„
for p or v = [514]9/2 is rather large (but negative) for
the even-even nuclei, but becomes positive for the Lu
[514]9/2 band due to the blocking effect, and then leads
to a rather large odd-even- difFerence in the moments of
inertia.

(d) Finally, we consider the ground state [404]7/2 band
of i7iLu. Recently, it was recognized [6,7] that the mo-
ment of inertia of the i iLu [404]7/2 band (2J = 73.85
MeV i) is nearly equal to that of the neighboring even-
even nucleus having one less proton, iroYb (2J = 71.252
MeV i), which was considered as experimental evidence
for identical bands in normally deformed nuclei at low
spin [6,7]. However, it was also noted [6] that the differ-
ence in the moments of inertia between the Lu [404]7/2
band and that of the neighboring even-even nucleus hav-
ing one more proton, i72Hf (2J = 63.052 MeV i), is so
large that it is hard to consider the ground band of Hf
and the "iLu [404]?/2 band as identical, which seems

rather odd and hard to understand. It is interesting to
note that such a feature of the moments of inertia can be
reproduced satisfactorily by the PNC calculation,

J( Lu [404]7/2) —Jo ( Yb)
(1To~b

J( Lu [404]7/2) —Jp( Hf)
J (172Hf )

Experimental Calculated

3.7% 3.7'%

13' l?Fp

The reason is that the [404]7/2 orbital with low j and
high &(gy/q, 0 = j = 2) has a very small Coriolis re-
sponse and the contribution to the moments of inertia
from the [404]7/2 orbital is trifling [Table V(b)], so the
blocking effect of the [404]7/2 orbital is not worth men-
tioning. Therefore it is not surprising that the moment
of inertia of the ground state band [404]7/2 in "iLu is
nearly equal to that of the ground band in Yb. The
reason why the moment of inertia of 2Hf is much smaller

TABLE IV. The same as Table II, but for the ground bands of Yb Hf, and the proton
[514]9/2 band of Lu.

17oYb
(a)

172Hf

171Lu1oo
[514]9/2

N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells

Gp ——0

2g Jpp
15.39
26.27
0.00

41.66
15.62
19.46
0.00

35.08
10.43
27.43
0.00

37.86

2P Jpp
14.44
27.55
3.12

45.11
14.53
21.79
2.75

39.08
11.85
27.07
5.99

44.91

G~ g 0

2P Jpv
—3.36

—13.23
—3.06

—19.65
—3.42

7.32
—2.77

1.12
—3.05

—13.83
—6.33

—23.21

2 Jncal

11.08
14.32
0.06

25.46
11.11
29.11
—0.02
40.20
8.80

13.24
—0.34
21.70

[42o]
[42o]
[541]
[532]

3/2
1/2
5/2
7/2

1/2, [411]
1/2, [411]
3/2, [532]
5/2, [523]

[413]5/2, [404]7/2
[411]3/2, [402]5/2
[523]7/2, [514]9/2
[411]1/2, [402]3/2
[404]7/2, [402]5/2
[514]9/2, [505]11/2
[541]1/2, [532]3/2
[541]1/2,[53O)1/2
[660]1/2, [651]3/2
[651]3/2, [642]5/2
[532]3/2, [523]5/2
[41111/2,[400]1/2
[642]5/2, [633]7/2
Total

(b)
Proton orbitals

—0.05
—0.11
—0.31
—0.92
—0.72
—0.50
—4.30
—0.25
—0.03
—0.30
—0.40
—0.04
—0.91
—0.27
—0.27

170Yb
10! = ——
2

—0.05
—0.10
—0.31
—0.92
—0.72
—0.50
—4.30
—0.29
—0.03
—0.30
—0.48
—0.08
—1.61
—0.27
—0.27

—19.65

0.15
—0.37

—0.83
—0.23

0.11
—0.44
—0.07
—1.48
—0.23

1.12

2J„„(FPMeV )
Lu [514]9/2

1 1A =
2 2

—0.06 —0.06
—0.08 —0.08
—0.41 —0.41
—0.47 —0.47
—0.74 —0.74
—0.52 —0.52

3.59 6.17
—0.25 —0.30

a= —'
2

—0.04
—0.06
—0.32
—0.40
—0.49
—0.51
—4.06
—0.23
—0.15
—0.82
—0.73
—0.11
—0.89
—0.59
—0.38

Hf
1
2

—0.04
—0.06
—0.32
—0.40
—0.49
—0.51
—4.06
—0.27
—0.15
—0.82
—0.90
—0.13
—2.69
—0.57
—0.38
—0.05

—0.80 —0.80
—23.21
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TABLE V. The same as Table II, but for the ground bands of Yb Hf, and the proton

[404]7/2 band of LU.

17oYb
(a)

172Hf100

171Lu1oo
[404]7/2

N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells
N=4
N=5
N=6

All shells

Gp ——0
2g Jpp

15.39
26.27
0.00

41.66
12.96
26.78
0.00

39.74
10.43
27.43
0.00

37.86

2P Jpp
14.44
27.55
3.12

45.11
12.67
27.50

2.75
42.91
11.85
27.07
5.99

44.91

G„g 0
2P Jpv

—3.36
—13.23
—3.06

—19.65
—1.21

—11.49
—2.80

—15.51
—3.05

—13.83
—6.33

—23.21

2Jncal

11.08
14.32
0.06

25.46
11.45
16.01
—0.06
27.40
8.80

13.24
—0.34
21.70

411]3/2
411]1/2
532]5/2
523]7/2
4O4]7/2
4o2]s/2
514]9/2
402]3/2
402)5/2
505]11/2
532]3/2
530]1/2
651]3/2
642]5/2
s23]s/2
400]1/2
633]7/2

1/2, [
i/2, [
3/2, [

5/2, [

s/2, [
3/2 [
7/2, [

1/2, [

7/2, [

9/2, [

i/2, [

i/2, [

1/2, [

3/2, [

3/2, [

1/2, [

s/2, [
1

20]
2O]

41]
32]
is]
11]
23]
11]
04]
14]
41]
41]
Bo]
51]
32]
11]
42]
ta

[4
[4
[s
[5
[4
[4
[s
[4
[4
[s
[5
[s
[6
[6
[s
[4
[6
To

(b)
Proton orbitals

n= -'
2

—0.05
—0.11
—0.31
—0.92
—0.72
—0.50
—4.30
—0.25
—0.03
—0.30
—0.40
—0.04
—0.91
—0.27
—0.27

170Yb

—19.65

1
2

—0.05
—0.10
—0.31
—0.92
—0.72
—0.50
—4.30
—0.29
—0.03
—0.30
—0.48
—0.08
—1.61
—0.27
—0.27

1
2

—0.06
—0.31
—0.33

0.26
—0.52
—4.34
—0.25

0.07
—0.30
—0.37
—0.03
—0.85
—0.23

—0.06
—0.31
—0.33

0.10
—0.52
—4.34
—0.29

0.05
—0.30
—0.45
—0.07
—1.51
—0.22

—15.51

2J„„(h MeV )
LU [404]7/2

0! =
2 2

—0.04
—0.06
—0.32
—0.40
—0.49
—0.51
—4.06
—0.23
—0.15
—0.82
—0.73
—0.11
—0.89
—0.59
—0.38

—0.80
—23.21

172Hf
1A = ——
2

—0.04
—0.06
—0.32
—0.40
—0.49
—0.51
—4.06
—0.27
—0.15
—0.82
—0.90
—0.13
—2.69
—0.57
—0.38
—0.05
—0.80

than those of ~roYb and the ~r~LU [404] band has been
discussed above, and is intimately connected with the
gap in the proton Nilsson level scheme at Z = 70.

IV. SUMMARY

The variation of the odd-even differences in the mo-
ments of inertia of well-deformed rare-earth nuclei with
the blocked level was addressed both phenomenologically
and microscopically. The experimental large Huctuations

in b J/ J can be reproduced satisfactorily by the PNC cal-
culation. The underlying physics of such large variations
in b'J/J is discussed in detail. It is noted that treating
the blocking effects properly is essential to account for
the experimental large Huctuations in b J/J. The cal-
culated value of b'J/J is especially large if the blocked
orbital is a high-j intruder near the Fermi surface. In
contrast, if the blocked orbital is of low j and high 0
(e g , proto.n .[404]7/2 and [402]5/2), the calculated b J/ J
almost vanishes. In this case, the occurrence of identical
bands in pairs of even- and odd-mass nuclei at low spin
seems understandable.
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