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Deterministic technique of path summation
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A numerical method, based on the Euclidean path integral formulation of quantum mechanics, to
evaluate the ground state energy and wave function of a quantum system is discussed. The method
is illustrated in one-dimensional cases, and then applied to a two-body system interacting through
central and tensor potentials. A detailed discussion of the deuteron problem with a realistic nuclear
potential is given.

PACS number(s): 03.65.—w, 21.45.+v

Monte Carlo evaluation of path integrals is often useful
in situations dificult to handle by analytical techniques
such as stationary phase approximation or perturbation
theory. An important feature of Monte Carlo techniques
is the possibility of facing problems with arbitrary di-
mensionality, but two fundamental limits are the missing
of the tunneling effects (partially cured by simulated an-
nealing) [1] and the need of high statistics, and then large
CPU time, to reduce the statistical errors.

An alternative method [2,3] for evaluating path inte-
grals is the following: (i) Take the Euclidean "short time"
propagator

K(z, s;zp, 0)

1 1
exp ——(e —ep) —f (e, e; ep, 0)]; (2)

20f'2ms 2E'

where the first term in the exponential corresponds to
the kinetic part of the Hamiltonian, h = m = 1, and the
function f(z, e'; z(), 0) is equal to the symmetric expres-
sion s [V(z) + V(y)]/2; with this choice the short time
propagator is correct to O(s2) [1]. (ii) Build the finite
time propagator through the semigroup composition law

K(e, e; ep, Pp) = J d K(e, ; 'e, e)Ke( e', '; e, e)e. p(e2p)

This convolution integral has to be evaluated for any
x, xo, and it is essentially equivalent to the product of
square matrices with dimension N. (iii) Evaluate the
ground state energy and wave function in a standard
way [2], by stopping the iteration when convergence is
attained. In the practical case this happens after 5—10
iterations only.

The iteration allows us to project out just the ground

V(z) = (z zo) . (3)

We vary the strength of the potential barrier by tuning
the parameter xo. In Table I we compare the "exact"
(N = 100) numerical value for the first level with the
numerical result obtained by discretizations with 17 and
33 points, and after n steps (t = 2"s). The result is quite
good. The relatively long time needed to reach conver-
gence is related to the separation of the second level,
which is almost degenerate with the first (the splitting is
exponentially small with the tunneling barrier).

A Monte Carlo approach needs a much larger computer
time and more refined tricks to work. Furthermore, even
if specific sampling methods are able to recover the in-
stanton contributions, in the less simple case of a slightly
asymmetric double well, where the wave function local-

state. An equivalent and interesting technique is to di-
agonalize directly the short time propagator; this gives
some advantages, as the possibility of obtaining immedi-
ately the excited states. The results of the two methods
are exactly the same.

We must, now, consider the fact that the interval of
integration in (2) goes &om —oo to +oo, and so taking
finite matrices, and consequently finite interval, corre-
sponds to putting the system in an infinite potential well.
This affects the tail of the wave functions but, if the in-
terval is large enough, it gives only small corrections to
the energies and the wave functions. These corrections
can be evaluated perturbatively [4].

The method has been tested and it works very well for
simple solvable systems like harmonic and Poschen- Teller
potentials; with N = 21 we get a precision better than
0.1%. As a xnore sophisticated example we analyze the
double-well potential

TABLE I. Ground state energy of the double-well potential. n is the number of iterations. 1V is
the number of points. Ez., is the numerical value of the energy obtained with 100 points.

XO = 1

n=5
n=10
n=15

N = 17
0.85675
0.86518
0.86518

N =33
0.48563
0.86930
0.86930

N =17
2.5298
2.6347
2.6381

2.7624

N =33
2.3202
2.7400
2.7535
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part given by [5]

gi(u) = ki(u) exp (—f (u) ), (5)

where u = (r, s; rp, 0), f(u) has been defined above,

o 4

0.2

1
k, (u) =

2')I'E

Xe
—(v. —rp) /2e

e f+ 1
E

(6)
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FIG. 1. Ground state wave function of the slightly asym-
metric double well.

ization is a delicate problem, the Monte Carlo approach
fails completely while this method works very well. As
an example we give in Fig. 1 the wave function of the
slightly asymmetric double-well potential:

~(*) = (*'-4)'Ll+»-'i(I+ -"*-')I
We analyze now a three-dimensional problem with a

central potential. In this case it is possible to separate
the angular and the radial variables; then the kernel fac-
torizes in a product of spherical harmonics and a radial

and Ii+ii2(z) are modified Bessel functions. This short
time propagator can be used in the same way as for the
one-dimensional case and we have tested the stability of
the method by studying the Krazer potential

A 1
V(r) = ———

r2 r
and the limit for A -+ 0 (Coulomb potential). The re-
sults (reported in Table II) are encouraging. They be-
come more stable for angular momenta different from
zero since the centrifugal barrier acts like a natural cut-
off and regularizes the solution at the origin.

A more sophisticated system is the deuteron, with
the two nucleons interacting through a realistic potential
which has also a tensor part that does not commute with
the orbital angular momentum. The Euclidean propaga-
tor of the deuteron is

(r, s, o'Ipzpw e ' "P zpwlro, s, dro) = (g (r, t;rp, tp) h () ho, Y00(8, $) Yp'p(gp, pp)
T7 p

+g (r t ro to) b 0 &2 —,1,&00(g 4') 2*—,( 0 &0)

+g (r, t;ro, to) t 2 i hoG, &2 —G(g 4') Ioo(cot ttt)0)

+g"(r, t;ro, to) &2 .i.&2' ..i..&2- (g &) &2' ..(gp &0))

where Pg and P~ are the projectors on the total angular
momentum J = 1 and on the parity W = +, and Cl
are the Clebsch-Gordan coeKcients. Without loss of gen-
erality, we have taken into account the term J, = 0 only.
Moreover, if we define the matrix

(' gpo g02 )
&(u) =

I 20 22

evaluating the discretized forms of the g is due to the
fact that the exponential of the tensor operator Si2 is a
function of the angular variables too. Then the separa-
tion of angular and radial coordinates is not so straight-
forward as in the case of a radial potential; this difBculty
can be overcome by using the fact that the exponential
of the tensor potential can be written

it satisfies formally the usual composition law

G(r, t;ro, to) =f dr'G(r, t;r', t')G[r', t ;ro,to)(10'),
e "= A(a) + B(a)Si2.

Then, for the short time radial functions g, we obtain

where GG is a matrix product. The main problem in g"(u) = k()(u)e ~ '"&A(a), (I2a)

TABLE II. Ground and excited state energies of the Krazer potential. The number of points is

equal to 33. E&, E&" are, respectively, the numerical and theoretical values of the energy.

5.0
1.0
0.5
0.2

-0.036508
-0.125435
-0.192690
-0.299304

@th
Q

-0.036492
-0.125000
-0.190983
-0.293044

g~
-0.031253
-0.076226
-0.094334
-0.110501

@th
1

-0.031250
-0.076201
-0.094290
-0.110427
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g (u) = [ko(u) + k2(u)]e "
&

"B(n)

(12b)

TABLE III. Deuteron binding energy. N is the number of
points. Eo is the numerical value of the binding energy. r
is the range of integration.

g"(u) =
2

[ko(u)+k. (u)le ""' "'"'(~),
(12c)

(u) k2 (u) e fc—( ) fcs( —) (A(o ) —2B(&)), (12d)

N
51
101
201

&max (&m)

20.0
20.0
20.0

EArgonne = 2.225 MeV.

E R

-4.074
-2.425
-2.243

where n = —fT (u).
We can, now, build up the finite time propagator

through the composition law (10). The results for the
binding energy of deuteron are given in Table III (we
used the Argonne V14 potential). As shown by the data,
the deuteron case is particularly difficult, because the
very long tail of the wave function requires the use of a
large range of integration, and consequently large N, to

have the full contribution to the energy.
Work on further applications and improvements of the

method is in progress.
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