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Nature of the photon correlation function for quark-gluon plasma

Dinesh K. Srivastava
Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 70000$

Joseph I. Kapusta
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55/55

(Received 31 January 1994)

The correlation function for intensity interferometry of high energy photons emitted from an
expanding quark-gluon plasma is examined. It is reiterated that the correlation function for identical
bosons emitted from two point sources is given by 1 + cos(b, k ~ 42:) and will oscillate between 0
and 2, depending on the values of the difFerence in the 4-momenta of the two bosons (b,k) and
the difFerence in their 4-positions (b,z). Integration over smooth, realistic sources, relevant for
very high energy nucleus-nucleus collisions, gives a correlation function which essentially decreases
monotonically from 2 to 1 as the momentum difference becomes large. The oscillatory behavior
seen in a recent work for certain momentum con6gurations is caused by an approximation which
amounts to including only those sources for which the space-time rapidities are identical to the
photon rapidities.

PACS number(s): 25.75.+r, 24.85.+p, 12.38.Mh

Intensity interferometry of two identical particles is
by now routinely employed to obtain the space-time ex-
tent of sources both in astronomy [1] and in heavy-ion
reactions [2]. A large literature has developed on uti-
lizing pion interferometry to get valuable insight about
the reaction zone in heavy-ion reactions. However, since
hadrons only appear in the 6nal state of a very high en-

ergy nucleus-nucleus collision which may admit a QCD
phase transition, their correlations mainly carry informa-
tion about the late dilute stage of the collision, not about
the early dense stage. The usefulness and feasibilty of
photon interferometry as a source of information on the
history of evolution of an expanding quark-gluon plasma
likely to be created in collisions involving ultrarelativistic
heavy ious has been examined recently [3—6]. In contrast
to hadrons, photons are produced throughout the space-
time evolution of the reaction, and suffer essentially no
interactions with the surrounding medium once they are
produced; this would make them a very valuable probe
if photons &om hadronic decays can be subtracted out.

In these studies both (1+1) and (3+1) dimensional
expansions of the plasma, driven by internal pressures,
were considered. The correlation function for (1+1) di-
mensional expansion generally exhibited stronger oscil-
latory behavior than it did for (3+1) dimensional ex-
pansion. Such oscillations are typical of stellar obser-
vations [1]. Here we reexamine the (1+1) dimensional
results, and show that this strong oscillatory behavior
was caused by an approximation employed to simplify
the eight-dimensional integral, which was not done for
the (3+1) dimensional case.

However, before proceeding to the approximation, let
us discuss brieBy the formulation of the correlation func-
tion, which will also help us to understand the oscilla-
tory behavior mentioned above. In what follows we shall
closely follow the treatment of Mci erran [8].

To begin with, let us assume that there are two inden-
tical point sources, located at positions xq and x2 with re-

spect to the observer. Let the single particle momentum
distribution be dN/dsk, and the two-particle momentum
distribution be dN/dskqdsks. Then the two-particle cor-
relation function is de6ned by

dN
t (ki)k2) = EgE2

dN dN
d ky d k2

A(k) = p(k)

where p(k) is a real function which characterizes the
source strength and P; are the phases of the sources. The
plus sign is for identical bosons and the minus sign is for
fermions. The single particle distribution function is

dN = p(k) [1+ cos(kAz+ Pq+ Ps)] .

Now, for incoherent emission, we have

(ei4i —i4s) 0 (4)

and thus

dN

The amplitude for two-particle emission is given by

~~2 &1+~~12+&4'1+&f2 ]

The two-particle distribution function is then given by

In the absence of any correlation this ratio should be 1. In
order to compute the correlation, the emission amplitude
is written as
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= p(kg) p(k2) 1 + cos(4k . Az), (7)
an approximation suggested in [11]. In the limit that
kT/T )) 1 one makes the replacement

which is independent of Pq and $2. Now the correlation
function becomes

2~T '/'
—k~ cosh(y —g)/T —kz /T

k~
b(y —g) . (13)

C(kq, k2) = 1 6 cos(Ak b,z) .

P(kg, k2)
P(kl)P(1l2)

' (9)

where

We see that the correlation function has a characteristic
oscillation scale of order b.k = 1/b, z. In this exam-
ple, the correlation function does not go to 1 at large
relative momenta, but oscillates between 0 and 2 indefi-
nitely. The oscillating cosine may be thought of as zero
for larger relative momenta if one averages it over a suf-
Gciently large momentum interval. For zero relative mo-
mentum the correlation function reduces to 1 6 1.

For sources continuously distributed over space and
time we can write the correlation function for photons
with the same helicity as

P; = P(k;) = mR K f d7. 7.

x exp( —k;T/T),

2mT 2 P2.9 k;TT ln
' ' +1

k;T I g2 T )
(14)

and

«2 T +')
x exp( —k;T/T)

2Jq (qT R) cos[(AE coshy; —
qL, sinhy;)r].

q~R

With this b function approximation the expressions for

P(kz, k2) and P(k) simplify. The problem reduces
to one-dimensional quadrature. P(kq, k2) = PqP2 +
P,gP,2+ P,gP, 2, where

P(I,)= d.Z" ( "'
d4zd3k (10)

(15)

and(, 4 4 dN(zg, kg) dN(z2, k2)
d red ky d z2d k2

x [1 + cos(Ak b.z)] . (11)

dN(z, k)/d zd k is the rate per unit volume for produc-
ing a photon with momentum k at the space-time point
X.

As mentioned earlier, the approximation we want to
examine was used only in the (1+1)dimensional Bjorken
hydrodynamics [7]. In Bjorken hydrodynamics the local
How velocity of the matter can be expressed in terms of
the space-time rapidity g as u" = (cosh g, 0, 0, sinh rI) .
The coordinate time and position of the matter are z" =
(r cosh', r cos P, r sing, r sinhg), where r is the proper
time and r and P are the radial coordinate and angle.
The 4-momentum of the ith photon is expressed as k,".

(k;T cosh y;, k,T cos Q;, k;T sing;, k;T sinh y, ), where kT
is the transverse momentum, g is the azimuthal angle,
and y is the rapidity. We shall choose axes such that
~kqT sin gq —k2T sin/2~ = 0. For the thermal emission
rate of photons from quark-gluon plasma and hadronic
gas we use the results of Ref. [9]:

= KT ln
I

—+ 1
~
exp( —E/T), (12)

. dN, (29Z )'
where F is the photon energy, g is the QCD coupling
constant, and K is a constant.

Evaluation of the correlation function will involve the
computation of an eight-dimensional integral. The first,
exploratory studies [3,4] used Bjorken hydrodynamics
and simplified this multidimensional integral by using

Here Jq is the Bessel function, R is the radius of the
identical nuclei undergoing a central collision, and AE =
klT cosh yi —k2T coshy2, qT = kiT c s@i —k2T cos42
ql, ——k~z sinhy~ —k2z sinhy2. The P„are the same
as the P„with the substitution of a sine for the cosine.
When combining these expressions to obtain C(kq, k2)
it is apparent that the normalization of the rate, K, is
irrelevant.

If we are interested in the particular momentum con-
6guration ky/ ——k2z ——kz and yy

——y2, which is equiv-
alent to AE = qL, ——0, the correlation function can be
evaluated exactly and without the need of the b function
approximation to get

- 2

C(kg, k2) = 1+
qT

In order to check the validity of the b function ap-
proximation we shall take the time dependence of the
temperature and the parameters as used before in [3].
These are R = 7 fm, T = 160 MeV, Tj~jgj~[ 532 MeV
at r;„;k; ~

= 1/3T; = 0.124 fm/c [10], and terminate the
computation at Tg„~ ——140 MeV.

In Fig. 1 we show the correlation function from the
plasma for the configuration kqT = k2T and gq ——$2 ——0
as a function of qL„corresponding to Fig. 3(a) of Ref. [4].
The solid curves give the results for numerical integra-
tion of the eight-dimensional expression, and the dashed
curves give the results with the b function approxima-
tion. We see that the approximation used for Bjorken
hydrodynamics in the earlier studies [3,4] overestimates
the oscillations. The same applies to the combined con-

tribution &om all the stages of evolution of the system,
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FIG. 1. Correlation function at RHIC energy with param-
eters as specified in the test. This figure shows the correlation
due to the plasma phase only. The dashed curve is the result
of the b function approximation; the solid curve is the result
of a numerical evaluation of the eight-dimensional integral.
The numbers 2 and 3 indicate the transverse momentum of a
single photon.

which we show in Fig. 2. The reason for this enhanced
oscillatory behavior is that the 8 function approximation
requires the space-time rapidity g of the source to be the
same as the rapidity y of the photon. This means that
the time of emission of the photon t is related uniquely to
its longitudinal position of emission z by z/t = tanh(y)
in a Axed frame of reference. Since the rapidity spread of
the source function for each photon is set to zero one ob-
tains a correlation function more characteristic of point
sources. A priori we had expected the b function approx-
imation to work much better than it does, especially for
kz = 3 GeV since the initial value of the ratio kT /T is
5.64 and gets bigger with time.

Thus far we have assumed that the polarization of each
photon is measured. If a polarization average is taken
instead, thea the factor 1+cos(Ak . Ex) in Eq. (3) gets

FIG. 2. Correlation function at RHIC energy as in Fig.
1 when contributions from the plasma, mixed, and hadronic
phases are all added together.

replaced by 1+ —cos(b, k b,2:). This means that C ~ 2

at zero relative momentum rather than 2. Otherwise the
behavior of the correlation function is unchanged.

The lesson learned is that the b function approxima-
tion is not very good when applied to the photon corre-
lation function used for intensity interferometry of high
energy nuclear collisions. The reason is that it includes
contributions only from source elements which have the
same rapidity as the photon. This causes an enhance-
ment of the oscillatory tendency of the interference term,
closer to what one gets with two point sources. This does
not diminish the importance of photon interferometry as
a probe of quark-gluon dynam. ics during the early high
density stage of the collision. It only means that one gen-
erally cannot avoid doing the multidimensional integrals
numerically.
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