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A partial-wave analysis of all pp scattering data below 925 MeV /c antiproton laboratory momen-
tum is presented. The method used is adapted from the Nijmegen phase-shift analyses of pp and np
scattering data. We solve the Schrédinger equation for the coupled Pp and 7in channels where the
long- and intermediate-range interactions are described by a theoretically well-founded potential.
This gives the rapid variations of the scattering amplitudes with energy. This potential consists of
the Coulomb potential with the main relativistic correction, the magnetic-moment interaction, the
one-pion-exchange potential, and the heavy-boson exchanges of the Nijmegen one-boson-exchange
potential. Slow variations of the amplitudes due to short-range interactions, including the coupling
to mesonic annihilation channels, are parametrized by an energy-dependent, complex boundary con-
dition, specified at a radius of » = 1.3 fm. The Nijmegen 1993 pp database, consisting of 3646 pp
scattering data, is presented and discussed. The best fit to this database results in xZ;./Ndata
= 1.043. This good fit to the data shows that the Nijmegen long- and intermediate-range poten-
tial is essentially correct. The pseudovector coupling constant of the charged pion to nucleons is
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determined to be f2 = 0.0732(11) at the pion pole, where the error is statistical.

PACS number(s): 13.75.Cs, 11.80.Et

I. INTRODUCTION

A partial-wave analysis (PWA) of all antiproton-
proton (Pp) scattering data below antiproton laboratory
momentum pjap = 925 MeV/c is presented. In the field
of nucleon-nucleon (NN) scattering, phase-shift analy-
ses (more properly called partial-wave analyses, PWA’s)
have a long history and at present the multienergy or
energy-dependent partial-wave analyses of NN scatter-
ing data have reached a stage of considerable sophistica-
tion [1-7]. Due to the poor quality of low-energy antipro-
ton beams and the resulting absence of accurate experi-
mental data, analogous model-independent studies of the
much more complex pp system have in the past always
been impossible.

In recent years, however, experimental progress has
been very significant, in particular due to the advent in
1983 of the LEAR facility at CERN. In the momentum
region that we consider in the analysis presented in this
paper, the situation between 400 and 925 MeV/c is quite
good: a variety of observables have been measured with
impressive accuracy. However, the practical difficulties
involved in constructing a high-quality antiproton beam
of even lower momentum are large. As a result, the pp
database below about 400 MeV/c is still by far not as
good as one would like [8-10], in contrast to the case of
NN scattering, where for instance very accurate proton-
proton differential cross sections have been taken at en-
ergies as low as Tjap = 0.35 MeV (plap = 25.6 MeV/c).

*Present address: Theoretical Division, Mail Stop B283, Los
Alamos National Laboratory, Los Alamos, NM 87545. Elec-
tronic address: timmer@t5zia.LANL.GOV

0556-2813/94/50(1)/48(26)/$06.00 50

During the last 10 years a new method has been
developed by the Nijmegen group to perform partial-
wave analyses of the NN (proton-proton and neutron-
proton) scattering data below laboratory kinetic energy
Tiab = 350 MeV (plab = 883 MeV/c). The hallmark
of this method is that the theoretical knowledge of the
NN interaction is exploited as much as possible in the
description of the energy dependence of the partial-wave
scattering amplitudes. This is done by solving the rel-
ativistic Schrédinger equation for each partial wave and
at each energy with the theoretically well-known long-
range NN interaction represented by the potential for
r > b = 1.4 fm. This long-range interaction is respon-
sible for the fast variation with energy of the scatter-
ing amplitudes. The much slower energy variations of
the amplitudes due to the short-range interactions are
parametrized phenomenologically by the energy depen-
dence of a boundary condition at » = b. In this way
one also avoids the complications due to the lack of
knowledge of this short-range interaction. In order to
achieve a good fit to the NN data one has to include
in the long-range interaction the complete electromag-
netic interaction (including relativistic and some two-
photon-exchange effects, the magnetic-moment interac-
tions, and the vacuum-polarization potential), the one-
pion-exchange potential, and also the intermediate-range
forces (due to two-pion exchange and/or heavier-meson
exchange) of some realistic NN potential model.

The dominant feature of pp scattering at low energies is
the annihilation into mesons, a process that has no coun-
terpart in NN scattering. Annihilation is, in principle,
a very complicated spin-, isospin-, and energy-dependent
multiparticle process. At rest, where kinematically the
production of 13 neutral pions is allowed, 5 pions are
produced on the average [11], and of the order of 100
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two-meson channels contribute significantly [12,13]. In
recent years some progress has been made in understand-
ing specific annihilation processes in terms of quark-gluon
degrees of freedom. However, for the description of elastic
pp — Ppp and charge-exchange pp — 7.in scattering, only
a phenomenological approach to annihilation is feasible
at present. In potential models for antinucleon-nucleon
(NN) scattering one usually simplifies things drastically
by taking the annihilation potential to be completely in-
dependent of spin, angular momentum, isospin, and en-
ergy. This assumption is implemented either by applying
a simple absorptive boundary condition [14-17], or by
using a state-independent two- or three-parameter opti-
cal potential [18-23]. However, when one is interested
in describing the data quantitatively, including spin-
dependent observables, a less naive approach is called
for. For instance, in the Paris NN model [24,25] a spin-,
isospin-, and energy-dependent optical potential is em-
ployed, and in the Nijmegen coupled-channels model [26]
each NN channel is coupled to two effective two-body
mesonic channels (for the coupled-channels approach see
also Ref. [27]). In both cases of the order of 15 parameters
were needed to obtain a more or less satisfactory fit to
the pre-LEAR data, the bulk of which consisted of elastic
differential cross sections. At that time charge-exchange
data and spin-dependent observables were practically ab-
sent. Because the NN system is so much more compli-
cated than the already quite complex NN system it was
then believed that it would be impossible to perform a
PWA of the pp scattering data.

The complexity of the pp system when compared to
the NN system (below the pion-production threshold) is
reflected in the following manner in a PWA. In proton-
proton (pp) scattering (isospin I = 1) one has to specify
at each energy two phase shifts (1Sp and 3P) for J =0
and on the average 2.5 phase parameters for each value of
the total angular momentum J # 0. As an example, for
J = 1 one needs only one phase shift (3P;), while for J =
2 one needs four phase parameters (the ! D3, 3P, and 3F,
phase shifts and the e, mixing parameter). In a PWA
of the neutron-proton (np) scattering data (both isospin
I =0 and I = 1) again two phase shifts are required for
J = 0, but now five phase parameters are required for
each value of J # 0. Due to the lack of sufficient high-
quality np data it has been impossible to do a good PWA
of the np data alone. One needs to take the I = 1 phases
(with the exception of the 1Sy phase shift) from the PWA
of the pp data and correct them for electromagnetic and
mass-difference effects (M, versus M, and mgo versus
myz). In the case of Pp scattering the Pauli principle
is not operative. Apart from this, the possibility for the
Pp system to annihilate into mesons complicates things
even further. This means that one has to determine no
less than four times as many phase parameters compared
to the case of np scattering, so eight phase parameters
are required for J = 0 and 20 phase parameters for each
value of J # 0. In view of this, the situation with regards
to a pp PWA indeed seemed quite hopeless.

Using essentially the same strategy as in the Nijmegen
multienergy partial-wave analyses of NN scattering data,
and with the available recent high-quality data from

LEAR and KEK, we have nevertheless been able to per-
form a PWA of pp scattering data below 925 MeV/c.
This work was started in 1987 [28] and a preliminary re-
port of this analysis has already been given [29]. The
Schrédinger equation for the coupled antiproton-proton
and antineutron-neutron (7in) channels is solved. The
short-range interaction, including the coupling to the
mesonic annihilation channels, is parametrized by way
of a complex boundary condition specified at r = b =1.3
fm. The long-range interaction consists of the Coulomb
potential, the magnetic-moment interaction, and the one-
pion-exchange potential. The tail of the heavy-boson-
exchange part of the Nijmegen potential [30] is used as
intermediate-range interaction. A lot of time and effort
has gone into collecting, scrutinizing, and cleaning up
the world set of pp scattering data, which contains quite
some flaws and contradictory data. Exactly the same ar-
guments were used in this process as were used in the
setup of the Nijmegen NN database [5-7]. The resulting
Nijmegen 1993 pp database in the momentum interval
119-923 MeV/c consists of Ngata = 3646 Pp data, which
can be fitted with x2; /Ngata = 1.043. In view of the ex-
cellent quality of this fit one can be confident that most
of the amplitudes are quite well described. The same
methods have also been applied by us to the strangeness-
exchange reaction pp — AA, which is an even more com-
plicated process [31,32].

This paper is organized as follows. In Sec. II we present
the details of the method of analysis. In Sec. III the treat-
ment of the short-range interaction by parametrizing
an energy-dependent boundary condition is discussed.
In Sec. IV the long-range electromagnetic and pion-
exchange potential are presented and we specify the
heavy-meson exchanges used as intermediate-range in-
teraction. In Sec. V we discuss the nontrivial problem
how to extract the nuclear scattering amplitude in the
presence of electromagnetic effects. The definition of
the phase-shift and mixing parameters for antinucleon-
nucleon scattering can be found in Sec. VI. The statis-
tical tools used in the analysis are briefly reviewed in
Sec. VIL In Sec. VIII the Nijmegen 1993 antiproton-
proton database is extensively discussed. Next, in Sec. IX
we present the results of the analysis, including the de-
termination of the pion-nucleon coupling constant. The
most important results and conclusions are summarized
in Sec. X. The algorithm to extract the phase parameters
from the S matrix is reviewed in the Appendix.

II. THE METHOD OF ANALYSIS

The two-body scattering process is described with the
coupled-channels relativistic Schrodinger equation

[A+p?—2mV]y(r) =0 . (1)

This is a matrix equation in channel space. We use the
physical particle basis Pp, @n in order to treat electro-
magnetic effects properly and to account for the thresh-
old of charge-exchange scattering pp — %in at pjap = 99.1
MeV/c (Tiab = 5.2 MeV). The connection between the
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channel momentum p and the total energy /s in the
center-of-mass system is given by the relativistic expres-
sion p? = %s — m? (for equal masses). The relativistic
Schrodinger equation (1) is a differential form of the rel-
ativistic Lippmann-Schwinger integral equation [33,34].
The difference between the relativistic and the ordinary
nonrelativistic Lippmann-Schwinger equation [35] is the
relation used between energy and momentum. The rel-
ativistic Lippmann-Schwinger equation is in turn equiv-
alent to three-dimensional relativistic integral equations
like the Blankenbecler-Sugar equation [36-39]. For a dis-
cussion about the derivation of potentials for use in the
relativistic Schrodinger equation, starting from the field-
theoretical Bethe-Salpeter equation [40,41], see for in-
stance Refs. [42,43].

The interaction in the region r > b is described by a
theoretically well-founded antinucleon-nucleon potential.
This potential is given by

V= Vo+Vam+Vn, (2)

where Vo and Vypy are the relativistic Coulomb and
magnetic-moment interaction respectively. Vi is the NN
meson-exchange potential. The precise forms of these po-
tentials are discussed in Sec. IV. After making the partial-
wave projection by writing

we obtain the radial Schodinger equation, which for par-
tial waves with total angular momentum J reads
d? L?

W—r—z-l-pz—ZmVJ ®'(r) = 0. (5)

V7 is now a matrix with elements (¢s'a’|V7(r)|€sa),
where a is an index used to distinguish the different chan-
nels. For partial waves with £ = J, s = 0,1 all matrices
are 2 X 2, and for waves with £ = J + 1, coupled by the
tensor force, they are 4 x 4. The Schrodinger equation is
solved numerically [44] starting with the boundary condi-
tion at » = b and ending at a value 7o, beyond the range
of the nuclear potential. At this point the S matrix is
obtained by matching this numerical solution @ to the
required asymptotic form

@as('l‘) r—:}oo \/§ [Hz(p’!‘) + Hl(pr)SJ] . (6)

Since the Coulomb potential has infinite range one has
to match to Coulomb wave functions, so H; and H

are diagonal matrices with entries Ht(l)(na,par) and
H}Z)(na, Do), the Coulomb analogues of the spherical

Hankel functions. 7, is the relativistic Coulomb param-
eter

P(r) = &7 (r)/r Veas(6) (3
(r) l;ﬂ s (r)/m Vias(8) ) e = /v = o /P - )
where Written in terms of the standard regular and irregular
Coulomb wave functions, Fy(n,pr) and G¢(n,pr), these

m . L s J £ s
Vies (0) = z Crmgmym Ym, (0) &m (4) Hankel functions are defined as
MM,

Hl(l)(nmpar) = Fy(Na,par) — 1Ge¢(Na, PaT), Hl@)(na,par) = F¢(NasPaT) + iGe(Na, PaT) - (8)

These Coulomb wave functions read asymptotically

T . us
Fe(Na;par) "~ sin [par —45 +0ta=1a 1n(2par)] , (9)
Ge(na,par) "~ cos [par - Zg + 0t = Ta 111(2Par)] : (10)
—

where the Coulomb phase shifts o4, are given by
O1a = argl'(f+1+1in,) . (11)

In case the Coulomb interaction is absent in a channel
(like mn), one can simply put 7, = 0. Then the Coulomb
wave functions become

F(0,p) = pje(p), Ge(0,p) = —pne(p) ,
HM(0,0) = ph{(p), H(0,0) =ph{P(p) . (12)

in terms of ordinary spherical Bessel, Neumann, and
Hankel functions. The matching procedure at 7., works

as follows. The multichannel Wronskian is defined by
1 1
W (®,,®2) = ‘D{E‘I’Iz - ‘I’IlTa‘bZ ) (13)

where the prime denotes differentiation with respect to
r and the “T” denotes transposition in channel space.
The Wronskian of two arbitrary solutions ®; and @, is
independent of 7 and equal to 0 because of the boundary
condition ®(0) = 0. Demanding that

W(®(roo), Pas(rec)) = 0, (14)

we obtain for the partial-wave S matrix



s = —

oT L H <1>T,/ Hl]

where the prime on the Hankel functions denotes differ-
entiation with respect to the argument pr. Since the
matching is to Coulomb wave functions, what is actually
obtained in this manner is the partial-wave S matrix with
respect to the Coulomb force, denoted by S§ SMMAN
How to calculate the scattering amplitude is explained in
Sec. V. The final step, the calculation of all the observ-
ables from the scattering amplitude, is standard [45-49].
See in particular Ref. [50] for the case of antinucleon-
nucleon scattering.

III. THE SHORT-RANGE INTERACTION

The short-range dynamics is treated with the help of
a boundary condition applied at a distance r = b. This
boundary condition, called the P matrix, is the logarith-
mic derivative of the solution matrix ®(r) at a distance
r = b from the origin

P =b (d—q)@'_l) .
dr r=b

The factor b is included in this definition in order to make
the P matrix dimensionless. The boundary-condition ap-
proach to strong interactions goes back to the work of
Feshbach and Lomon [51] and earlier. The term P ma-
trix was introduced by Jaffe and Low [52,53] for use with
the bag model where at the energies of the eigenstates of
the confined quark and gluon degrees of freedom the P
matrix exhibits poles that are not necessarily also present
in the S matrix. (For a review, see Ref. [54].) At this
stage, we will not attempt to make any connection with
multiquark states. In general, this boundary relates the
inner- to the outer-region physics. In NN and NN scat-
tering the short-range interaction is essentially unknown
and has to be treated phenomenologically. The long-
range physics one understands theoretically much better.
The P-matrix formalism provides a useful separation be-
tween these two regions and has become a powerful tool
in analyzing scattering data. In the Nijmegen partial-
wave analyses of NN scattering data [5-7] the P-matrix
method has already proven its power [55].

For the parametrization of the partial-wave P matrix,
it is convenient to use a very simple model for the short-
range dynamics. We assume that the interaction in each
partial wave can be described by a spherical well, a po-
tential which may depend on spin, isospin, and energy,
but which is constant as a function of distance. The P
matrix for such a potential can be evaluated analytically.
For a single-channel spherical-well problem in a partial

(16)

cosf@ sin@ Py
—sinf cos@ 0

o
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(15)

o ]

wave with orbital angular momentum ¢ it is given by
Pe = p'bJy(p'b)/Je(p'b) ,

where Jy(p) = pje(p) with je(p) the spherical Bessel
function and p'2 = p? — 2mV, V being the depth of
the spherical-well potential. The prime on the Bessel
function denotes differentiation with respect to the argu-
ment. In the case of NN scattering we take these short-
range potentials to be complex in order to account for
the annihilation into mesonic channels. The short-range
interaction is in this manner described by a simple state-
dependent optical potential [56]. It turns out that we can
take the short-range spherical-well potential independent
of the energy and still fit the data properly. This was not
possible in the Nijmegen partial-wave analyses of the NV
data: there we had to make the short-range potential en-
ergy dependent. That this is not necessary for NN scat-
tering is probably because of the absence of high-quality
data at low energies such as present in NN scattering.
It is, however, crucial that we take the real parts to be
dependent on spin and isospin. It also turned out that
the imaginary parts of these short-range potentials could
be taken independent of isospin. Each partial wave is
thus parametrized by a maximum of three parameters,
a complex spherical well for both isospin 0 and 1, where
the imaginary parts are equal for both isospins. How
many and which parameters are actually needed in each
individual partial wave is discussed below in Sec. IX.

In the Nijmegen analyses of NN scattering data, a
value of b = 1.4 fm for the boundary radius was found
to be suitable. In the NN case, the results are rather
sensitive on the choice of the value of b. The best results
are obtained with b = 1.3 fm. Since we use in the outer
region a real potential consisting of an electromagnetic
and a meson-exchange part, the coupling to the mesonic
channels is completely absorbed in the boundary condi-
tion. The radius b is therefore a clear measure for the
range of the annihilation potential. The fact that the re-
sults are quite sensitive on b shows that this range is in
fact approximately 1.3 fm. So we find definite indication
that annihilation in Pp scattering is a rather long-range
process.

It remains to discuss the parametrization of the P ma-
trix for the states with £ = J & 1 coupled by the tensor
force. In these cases it is convenient to use the method
also employed in the NN case. For a certain value of the
isospin, we start with a diagonal 2 x 2 P matrix and use
additional parameters to describe the short-range mixing
between the two coupled partial waves, as follows:

I:q)lT 1

-

(17)

0 cosf —sinf
P, ) ( sin 6 COSG) (18)
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The mixing angle @ can, if necessary, be parametrized as
a function of energy, but again in our analysis we can
take it in all cases independent of the energy. We need
these mixing angles only for the isospin I = 0 states, for
the I = 1 states they can be set to zero.

Time-reversal invariance allows us to choose the phases
of the physical states in such a way that the potential
matrix is symmetric. The full S matrix, including all
mesonic channels, is then also symmetric and of course
unitary. When we restrict ourselves to the NN chan-
nels, then this sub-block of the S matrix is of course still
symmetric, but no longer unitary. This reflects the disap-
pearance of probability (flux) into the mesonic channels.
Correspondingly, the P matrix in our case is still sym-
metric, but not Hermitian, as in NN scattering (below
the pion-production threshold).

Why is the P-matrix approach to partial-wave analy-
ses so convenient and powerful? One of the main reasons
is that it allows an easy parametrization of the energy de-
pendence of the scattering amplitudes. This can be seen
as follows. The long-range interactions lead to rapid vari-
ations with energy of the amplitudes. These variations
are much easier to parametrize when one uses the P ma-
trix than the S matrix (or K matrix). For instance, in
the presence of the Coulomb interaction, the S matrix
has an essential singularity and a branchpoint at zero
energy. However, if the Coulomb potential is included in
the potential tail, these singularities and the correspond-
ing left-hand cut are absent from the P matrix. Similarly,
the left-hand cuts due to all meson exchanges included
in the potential tail are absent from the P matrix. All
these cuts, however, are present in the S matrix, in addi-
tion to the kinematical unitarity cut. The point is that
the slow variations with energy of the amplitudes due
to short-range interactions are easy to parametrize, once
the rapid variations have been taken care of by explic-
itly including the corresponding long-range potentials in
the Schrédinger equation. Of course, some left-hand cuts
J

FP(0)=1, F7'(0) =0, F7(0) =

remain, such as the cut due to uncorrelated two-pion ex-
change, as well as right-hand cuts due to the coupling to
inelastic channels. These, however, lead to much slower
energy variations of the amplitudes than the long-range
electromagnetic interactions and one-pion exchange.

IV. THE POTENTIAL TAIL

In order to obtain a good description of the data,
the long-range interaction between the particles, consist-
ing of the electromagnetic interaction and the one-pion-
exchange potential, must be included properly. These in-
teractions are model independent in the sense that they
are (or at least should be) the same in all models of the
(anti)nucleon-nucleon force. The fit to the data is im-
proved when realistic meson-exchange forces are used as
intermediate-range potential.

The long-range electromagnetic potential is included
to order a = e%/4m, the fine-structure constant. The
one-photon-exchange potential is derived from the phe-
nomenological electromagnetic Lagrangian

L., =eQ iy A* + e ﬁ [G0,1] (9" AY — 0¥ A*) |

(19)

where @Q is the nucleon charge in units of e > 0 and
k is the anomalous magnetic moment, for proton and
neutron p, = 1+ K, = 2.793, and p, = k, = —1.913,
respectively. % is the proton or neutron field and A*
the photon field. If the spatial extension of the nucleons
is taken into account, the charge and magnetic moments
are in momentum space replaced by the Dirac form factor
F(t) and the Pauli form factor F(t), which are functions
of the four-momentum transfer ¢. The static limits ¢ = 0
are

K n Kn
L Ff(0) = 5o -

= o (20)

In the point-particle approximation the momentum dependence of these form factors, reflecting the inner structure of
the nucleons, is neglected. In this approximation we end up with the spin-dependent one-photon-exchange potentials
forr > b

o Hp « Bup —2 a — _
Vo(r) = —— + M2 — S12 + —WT—SL-S for pp > pp , (21)
[
and only the potential outside » = b = 1.3 fm, we did not in-
2 clude these effects. The use of o’ in the central potential
Vy(r) = ﬂnz % S12 for an = mn . (22)  for pp — Pp takes care of the main relativistic corrections
AMZ T to the Coulomb potential [57,58]. It is given by
These potentials are obtained by calculating the one- a' = a2p/(Muva) , (23)

photon-exchange diagrams in momentum space and ap-

plying a Fourier transformation to configuration space.
The momentum dependence of the form factors can be
taken into account. This leads to short-range modifica-
tions of the one-photon-exchange potential. Since we use

where vy, is the velocity of the antiproton in the labo-
ratory system. In order to appreciate the order of mag-
nitude of this factor, at 600 MeV/c for instance, where
vlap = 0.54, one has o’ = 1.135a. The spin-orbit poten-
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tial comes from the interaction of the magnetic moment
of one particle with the Coulomb field of the other parti-
cle (and is consequently absent in #n — 7in). It includes
a relativistic correction due to the Thomas precession.
The tensor potential comes from the interaction of the
two magnetic moments. In our energy range the Coulomb
and the magnetic-moment interaction are the dominant

M m? 1

— f£2
V?r(r) - fNN‘l\' p2+M2 m12ri

The mass difference between the neutral 7° and charged
7% pion is included, so we take m = m,o for the elastic
reactions pp — Pp and in — 7fin, and m = m,+ for the
off-diagonal charge-exchange transitions pp ¢ 7.n. In
principle, the pion-nucleon coupling constant is charge
dependent due to the mass difference between the up and
down quarks and due to the electromagnetic corrections.
We introduce here the relevant coupling constants f2,,
at the different vertices

35 3?11'0 ’ f:Ef;fn‘ir° ’ 2fc2§fpn7r+fnpn" ) (25)

for the reactions pp — Dp, ”in — 7n, and Pp & 7n,
respectively. In the PWA a charge-independent pion-
nucleon coupling constant is used, where fzf = f2 =
f% = 0.0745, taken from the most recent Nijmegen pp
PWA [60]. In Sec. IX, however, this assumption is re-
laxed when we determine the charged-pion coupling con-
stant from the charge-exchange data by adding f2 as a
free parameter.

To improve the description of the data, some sort of
heavy-meson-exchange potential has to be added to one-
pion exchange in the outer region. Since the tails of re-
alistic VN potentials are remarkably similar, it probably
does not matter very much which potential one picks,
provided it gives a good description of the NN scat-
tering data. We have opted for the charge-conjugation-
transformed version of the Nijmegen one-boson-exchange

electromagnetic effects. The vacuum-polarization poten-
tial [59], which is important [5] in low-energy pp scat-
tering (below T, = 30 MeV), has a negligible influence
here. Two-photon-exchange effects [58] are neglected as
well.

The following simple one-pion-exchange potential
without a form factor is used:

sof1+ 2+ 3 )< (24)
3 T1- 02+ S12 +E+(mr)2 r

r

soft-core NN potential [30], which is one of the best NN
potentials available. (The use of C conjugation rather
than G conjugation is more natural when one works on
the physical particle basis.) The tail of this potential has
already been used in the Nijmegen pp and np partial-wave
analyses, and the tail of the corresponding Nijmegen soft-
core hyperon-nucleon potential [61,62] has been used by
us in our PWA of the reaction pp — AA [31,32]. The
following heavy-boson-exchange potentials are included.
(1) Pseudoscalar-meson exchange. Included are 7(549)
and 7/(958) exchange. For the pseudoscalars, including
the pion, we use the pseudovector type of Lagrangian:

Loy = Vin mf — [Fnss] 8p . (26)

Although equivalent to the pseudoscalar type of interac-
tion for one-meson exchange between protons, the pseu-
dovector interaction is favored because it gives a more
reasonable two-pion-exchange potential and because it
leads to at most small breakings of flavor symmetry
for the coupling constants of the pseudoscalar nonet to
baryons [31]. The scaling mass m,+ is conventionally in-
troduced to make the coupling constant f dimensionless.

(2) Vector-meson exchange. Included are p(770),
w(782), and ¢(1019) exchange. The Lagrangian (in terms
of rationalized coupling constants) is

Lv = Vg [Ty, b] 8% + Va1 fov] (08}, - 972} (27)
P

(3) Scalar-meson exchange. We include ao(783),
f0(975), and f}(760) exchange. The Lagrangian is

Ls = Virg [b9] ®s . (28)

The scalar mesons have always been a controversial topic.
In early one-boson-exchange models for the NN interac-
tion there was a clear need for an isoscalar scalar “o”
meson with an effective mass of about 550 MeV [63-65].
While no such low-mass particle exists, there was some
evidence in production experiments for a broad structure
€(760) under the p°, often explained away as a strong 77

final-state interaction. Later it was pointed out [66,67,43]

[

that such a wide (I' ~ 640 MeV) ¢(760) simulates the
narrow-“c” exchange in one-boson-exchange models for
the NN interaction.

The situation in phase-shift analyses of 7w scattering
data, obtained from reactions as TN — wnwN, has for
a long time been confusing and not conclusive [68]. In
these analyses the assumption has always been that only
7 exchange is relevant, while a; exchange can be ne-
glected. Very recently, however, the situation has been
clarified [69]. Data on #N t— wtm~N using a polar-
ized target provide unambiguous evidence for a broad
I =00%*(750) state, when a proper amplitude analysis
is done, including also a; exchange. In a similar ampli-
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tude analysis of data on K*nt— K*n p [70] evidence
is found for I = 1/2 0" (887) strange scalar mesons under
the K*(892).

In the quark model, several mechanisms give rise to
scalar (J¥ = 0%) mesons. The simplest model is the
3P, QQ states. Then there are the glueball states and

the cryptoexotic QzQz states [71].

meson will in general be a mixture of QQ, QzQz, and
glueball components. The QQ states are expected [72]
near the other 3P QQ mesons, that is around 1250 MeV.
Glueballs are also not very likely to exist below 1000

MeV [73]. For the @2(22 states, however, one [71] does
predict a low-lying nonet of scalar mesons. The lowest
state, with only nonstrange quarks, has I = 0 and de-
cays into wm. It can be identified with the £(760) under
the p®. This nonet contains also a nearly degenerate set
of I = 0 and I = 1 cryptoexotic scalar mesons [like the
p(770) and w(782)] with an Ss pair. These are easily
identified as the f,(975) and ao(983) mesons, previously
called S*(975) and §(983), respectively, with their rela-
tively large branching ratios into K K. The nonet is com-
pleted by a set of broad I = 1/2 strange mesons K (887)
seen [74] under the K*(892).

(4) Next to these conventional mesons, the Nijmegen
soft-core potential (originally derived from Regge-pole
theory) also contains pomeron exchange, which in QCD
is understood as color-singlet two-gluon or multigluon ex-
change [75-77], and the weak diffractive scalarlike part
of the tensor-meson exchanges. The short-range nonlocal
terms of the potential are neglected, which is a very good
approximation outside »r = b = 1.3 fm. .

The consequences of meson exchanges for the NN in-
teraction have been examined by many authors, for in-
stance by Dover and Richard [78-80]. It turns out from a

J

A physical scalar

(s'm/a’'|Mc(0)|sma)

“Ls"smm’éaa’

—636' d mm' ‘Saa’

qualitative investigation that while in the NV case there
is a strong coherence between the isospin I = 1 spin-
orbit forces, in the NN case very strong tensor forces
occur, especially for isospin I = 0. In the NN sys-
tem the vector w(782) and the scalar f§(760) exchange
make up the strong spin-orbit force that splits the 3P, ; »
phase shifts, but the central potentials of these exchanges
largely cancel each other. Similarly, the spin-orbit forces
due to the exchange of the vector p(770) and the scalar
a0(983) add up, but the central potentials cancel. Apply-
ing charge conjugation to the different meson exchanges,
one sees that in the NN potential the central potentials
from w(782) and f}(760) exchange add coherently to a
very strong attractive potential. This has led to specu-
lation about the existence of NN bound states and res-
onances [81-85]. The tensor potentials from p(770) and
7(140) exchange also add up and dominate the charge-
exchange reaction pp — 7in. The same phenomenon is
present in the reaction pp — AA, where K (494) and
K*(892) exchange conspire to build up the strong ten-
sor force that is the hallmark of this reaction [31].

V. THE AMPLITUDES

The evaluation of the scattering amplitude in the pres-
ence of electromagnetic effects is a nontrivial problem
that requires special care. In the pp PWA the precise
values and energy dependence of the phase shifts are in-
fluenced significantly by the electromagnetic interaction.
The same will obviously also be true in the pp case.

We start by discussing the case where next to the nu-
clear force we only have the Coulomb potential to deal
with. The scattering amplitude due to the Coulomb force
is given by

Tla e—ina In %(1—cos 6)+2i00,a

pa(l — cos )

eZiag a

22 (sin? 1)1 +ine (29)

The partial-wave decomposition of Mc(6) in terms of Coulomb phase shifts and Legendre polynomials does not
converge pointlike, due to the infinite range of the Coulomb potential. However, it can be summed in the sense of
distributions [86—88] to give the Coulomb amplitude Eq. (29). In order to make a partial-wave decomposition of the
scattering amplitude, the total scattering amplitude Mc4n(6) is split as follows:

Mcyn(0) = Mc(0) + ME n(6) , (30)

where the amplitude M§ +n(0) is the nuclear scattering amplitude in the presence of the Coulomb potential. Its
partial-wave decomposition reads

S Var(@E+1) it et Ol e Y (6)
eeJ
x(£'s'a'|Sg/*(SSon — 1)5& |t sa)/2ipa (31)

f
Sc is the Coulomb S matrix with matrix elements

(s'm'd'\M&, x(6)|sma) =

where S&, y is the nuclear S matrix in the presence of
the Coulomb force. The total S matrix Sc4n, due to the

Coulomb and nuclear interaction, is then given by (¢'s'a’|Sc|lsa) = 8¢410,e00aar €xp(2i0e,a) - (33)

Sc+N = S’C Séin SI/2 . (32) The nuclear S matrix in the presence of the Coulomb
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force SS 4+ is obtained by solving the Schrodinger equa-
tion numerically and matching to Coulomb wave func-
tions (see Sec. II). It is given by Eq. (15).

Next we discuss the generalization to the case where
next to the Coulomb force also the magnetic-moment

decomposition converges, it is still much more practical
to split off in the scattering amplitude the contribution
of the magnetic-moment interaction. In this way the
magnetic-moment interaction can be included in all par-
tial waves and the summation in the nuclear amplitude

interaction is present [89]. Although this latter poten- converges much faster. We thus write
tial has a finite range and consequently the partial-wave

]

Mesanain () = Mc(6) + MG rme(0) + MSTIM, v (6) - (34)

Here M§ v (0) is the scattering amplitude of the magnetic-moment interaction in the presence of the Coulomb force.
Since this amplitude is almost exactly in phase with the Coulomb scattering amplitude M (6), it is essential that the
effect of the magnetic-moment interaction is evaluated in Coulomb-distorted-wave Born approximation (CDWBA),
and not in plane-wave Born approximation, as was pointed out by Knutson and Chiang [90]. The contribution, in

CDWBA, of the magnetic-moment interaction to the K matrix is

o o]
(£'s'd'|Kymllsa) = —(Saa:];é/ dr Fop(Mars par ) Vaa (1) Fe (e PaT) - (35)
a 1]

Integrals of this type can be evaluated very rapidly and
accurately by a backward-recursion algorithm [91]. The
magnetic-moment interaction Vi is given in Eq. (21)
for pp — Pp and in Eq. (22) for min — 7@n. All these
partial-wave contributions are subsequently summed to
obtain the total amplitude M&, \p,(0). In practice it
turns out that the spin-orbit potential of the magnetic-
moment interaction leads to a contribution Zps to
(11a|ME, x(6)|10a) that converges much too slowly to
be summed term by term. This part can be summed
analytically [90]. For antiproton-proton scattering the
result is

Zis = — MprS (e-——inln;(l—COSO) _ %(1 — cos 0)) ,

sin0v/2
(36)

J

Sc+MM4N = Sé'/z Cramyy

)1/2

where we have defined
a
fus = —@(8% -2). (37)

There is a similar contribution —-Z;s to
(10a|M&, y(0)|11a). The corresponding result for pp
scattering [90] is the properly symmetrized version of
this expression. The partial-wave decomposition of
Mg:m +n(0), the nuclear scattering amplitude in the
presence of the Coulomb force and the magnetic-moment
interaction, is similar to Eq. (31), but there now appears
the following S matrix:

C+MM 1/2 L1/2
Givmrn (SErvm) Sc/ . (38)

Since the magnetic-moment interaction contains a tensor part, the matrix S§ +My 1s not diagonal in orbital angular
momentum. However, the square root of this matrix is still well defined. What it all comes down to is to rewrite the
S matrix in the following manner in order to split off the Coulomb amplitude Mc and the amplitude M§ +ym due to

the magnetic-moment interaction in the presence of the Coulomb force

Scemmsn —1=(Sc —1) + SF* (SSmm — 1) S + S,

Other electromagnetic effects, like vacuum polarization,
can be treated in a similar way. For a more extensive dis-
cussion we refer to Ref. [89]. Because of the long range
of the magnetic-moment interaction the matrix elements
of SgIMM 4 are hard to calculate. We will use the ap-
proximation
C+MM  _ oC

Scivmsn ~ SGin - (40)
Exactly the same approximation is made in the Nijmegen
NN partial-wave analyses [89].

S (SSam)* (SSTAM v — 1) (SE )

V2gUz (39)

VI. THE PHASE SHIFTS

In this section we give the parametrization of the NN
S matrix in terms of phase-shift and inelasticity param-
eters. We first seek guidance in the way this is done
in analyses of NN scattering below the pion-production
threshold where the S matrix is unitary and symmetric.
The symmetry of the .S matrix is a consequence of time-
reversal invariance which allows one to choose the phases
of the in and out states such that the coupled-channels
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potential matrix, and thus the S matrix, is symmetric.
If there is conservation of flux, the S matrix is unitary.

The phase shift for uncoupled partial waves with £ = J,
s = 0,1 is defined by parametrizing the 1 x 1 S matrix
as

§7 = exp(2i) . (41)

One usually denotes the different phase shifts by §, for
singlet s = 0 waves, and by &, for triplet s = 1 waves.
For the partial waves with £ = J + 1, s = 1 coupled by
a tensor force one writes the 2 x 2 S matrix in terms of
two phase shifts §;_1,7, 741,57 and one mixing param-
eter £5. A popular parametrization is the “eigenphase”
convention of Blatt and Biedenharn [92], in which the
symmetric .S matrix is diagonalized by way of a rotation

sJ = exp(—ieyoy) exp(2i8) exp(icjoy) , (42)

where

_ 051, 0
6= ( 0 51+1,J) ’ (43)

More often one uses the “bar-phase” convention of Stapp,
Ypsilantis, and Metropolis [93], in which

S7 = exp(id) exp(2i€ 0.) exp(id) . (44)

An advantage of the “bar-phase” convention is that the
parameters go to zero when the interaction vanishes, un-
like the mixing parameter in the “eigenphase” conven-
tion. Only in the former case is the mixing parameter a
measure of the strength of the off-diagonal tensor force.
We will use the “bar-phase” parametrization for the three
elastic parameters, since this is at present the common
choice in analyses of NN scattering.

In the presence of coupling to annihilation channels the
S matrix describing NN scattering is only a submatrix of
the much larger coupled-channels S matrix, and is there-
fore still symmetric, but no longer unitary. This doubles
the number of parameters needed. The parametrization
of the S matrix for uncoupled partial waves with £ = J,
s = 0,1 in the presence of annihilation requires two pa-
rameters. One writes

S7 = nexp(2i6) , (45)

with |n| < 1. To denote the inelasticities for the differ-
ent partial waves we will use a similar notation as for
the phase shifts: 7, for singlet s = 0 waves, and 7,5 for
triplet s = 1 waves. For the coupled partial waves with
£=J %1, s =1 six parameters are needed, and it is not
so easy to think of a convenient parametrization which
satisfies all constraints from unitarity, is completely gen-
eral, and free from nontrivial ambiguities. Fortunately,
the essential work has already been done by Bryan [94]
and others [95-97] in the case of NN scattering above
the pion-production channel. Bryan generalizes the “bar-
phase” convention by writing

57 = exp(id) exp(iejo,) H' exp(i€;o,) exp(id) ,
(46)

where H is a three-parameter real and symmetric matrix
representing inelasticity. Bryan calls this matrix N, but
we use H (capital n) to stress the analogy with the case
of uncoupled partial waves written in the form

S7 = exp(id) n exp(id) . (47)

If the inelasticity vanishes, then H tends to the unit ma-
trix, and the “bar-phase” parametrization is recovered.
There are several nice ways to parametrize H, but we find
it convenient to follow Klarsfeld [96], who diagonalizes H
in Blatt-Biedenharn fashion

H! = exp(—iwsoy) (77‘]_1"’

xp(iwyo,) ,
0 7IJ+1,J)6p(wJ v)

(48)

where the diagonal matrix contains the “eigeninelastici-
ties” ny_1,7 and ny41,7. In this way the partial-wave an-
nihilation cross section depends only on the “eigeninelas-
ticities,” since it is proportional to

Tr(1-H?) = 2-n3_y ;7 — 341 - (49)

If the phase parameters are actually searched for on
a computer, it is better to write all inelasticities as
n = cos2p. In this way, all parameters are real and
unbounded. The mixing parameter w; is finite as the
inelasticity vanishes, just as the mixing parameter €; in
the “eigenphase” convention tends to a finite value when
the off-diagonal tensor force goes to zero. Sprung [97]
has extended the Bryan parametrization to allow the use
of “eigenphases.” In this case one writes

S7 = exp(—icjoy,) exp(i8) H' exp(id) exp(icjoy)
(50)

The matrix H in that case is, in general, not equal to
the matrix H in Eq. (46). As stated above, we will use
the “bar phases.” The algorithm, due to Bryan [94], to
extract the phase parameters and inelasticities from the
S matrix presented in numerical form is reviewed in the
Appendix.

VII. STATISTICS

Statistics is an essential ingredient in analyses of large
amounts of scattering data. The theoretical predictions
are compared with the experimental data using a least-
squares-fitting procedure in which the model parameters
are adjusted to the data. During this process one con-
tinually scrutinizes the data and passes sentence on the
quality of different sets, which sometimes have to be re-
jected on the basis of statistical criteria. This goes on
until a final verdict is reached and the building of the
data set is completed. In this section this procedure is
outlined and the statistical tools required for our pur-
pose are presented. A more exhaustive treatment can be
found in Ref. [5].

We start by assuming for the moment that the mea-
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surements have no normalization uncertainties and that
no other type of systematic error is present. In a certain
experiment, denoted by a subscript a, one has measured
N, data points. Each such measurement with statistical
error is denoted by E, ; +¢,; (i =1,...,N,). The model
prediction for a certain data point is given as M, ;(p),
where the model parameters are arranged in a vector p,
with entries po (@ = 1,...,Npar). The parameters are
adjusted to the data by minimizing the x? function

Ng . _ 2
) = Yodle) = L) [ M Ee | o

€
2 i=1 a,i

with respect to all parameters.

In practice, however, measurements usually do have an
overall normalization uncertainty, specified by the exper-
imentalists. These errors can be taken care of by intro-
ducing for each group of data a normalization parameter
v, with error €,0. The normalization of a certain group
is then given as v, = 1 + £,0. This means essentially
that for each group with a finite normalization uncer-
tainty another free parameter v, has been introduced, to
be determined in the fit, as well as an additional datum
1 with error €, 9. Since we want to restrict the param-
eter space to the model parameters only, we employ the
following trick to take the normalization parameters into
account. We redefine the x2 function as follows:

) = Tie) = E;ming; [tetesle) —Fus]" Tre 1) (52

In this way, the normalizations are adjusted trivially, by
minimizing in each iteration a quadratic function. In
case the normalization of an experiment is completely
unknown, €, 9 = 0o and we can remove the second term
on the right-hand side of Eq. (52). The corresponding
normalization v, is determined in the fit. We say the
normalization is “floated.” If the normalization is ex-
actly known, we fix the normalization at v, = 1 and we
can remove again the second term. Angle-dependent nor-
malization errors can be treated in a similar manner. The
minimum value x2; = x*(P) |p=p.... is reached when

9x*(p)/Opa = 0, (53)

for all values of a. At this point one defines the error
matrix E of the parameters as

_ 1
(B Nap = 5 0°X*(P)/Opadpsl,_, .. - (59)

The standard error on the parameter p,, is (Eaa)l/ 2, As-
suming that the x? function is quadratic near its mini-
mum, one can show that this is the variation in p, that
gives arise Ax? = 1in x2,,, when the remaining param-
eters are refitted [98].

According to this discussion the following integers can
be defined. In the fit one must determine N, nor-
malization parameters as well as Npa; model parame-
ters. The actual number of free parameters is therefore
Ng, = Npar + Np. Of these N, normalization parame-
ters N, have a finite normalization error and the rest
Nps = N, — Ny is the number of “floated” normal-
izations. The total number of experimental scattering
observables is Nyps and the actual number of scattering
data is Ngata = Nobs + Npe. The number of degrees of
freedom is Ndf = Ndata - pr = Nobs — Npar — 4Vnf-

In the process of screening the database, we employ
certain rejection criteria to remove data points that spoil
the statistical quality of the data set, for instance by un-

derestimated statistical errors or by unspecified system-
atic errors. When statistical errors are underestimated,
data pretend to give more information than they actually
do, causing false results. By systematic errors we mean
those errors that do not average to zero when the mea-
surement is repeated many times, causing them to have
a correlated effect on the data. When not treated cor-
rectly, systematic errors can bias the values of the model
parameters and therefore also of the phase parameter.
A detailed discussion of this point can again be found
in Ref. [5]. Of course, we only reject data if there is
conclusive evidence against them. The rejection criteria
are constructed in such a way that in a purely statistical
ensemble they have a very small chance to occur. The
following rejection criteria have been employed by us.

(i) An individual data point E, ; that has x2 ; > 9 is re-
jected. Rejection of such outliers will give more accurate
values for the model parameters. This rejection criterium
corresponds to the usual three-standard-deviation rule.
It implies that a correct datum has at most a chance of
0.27% to be rejected. The same criterium applies to an
experimental normalization. If it contributes more than
9 to x2,,, this datum is rejected and the normalization
is floated.

(ii) A group of N, data is rejected if its xZ in the mul-
tienergy fit is less than a minimum xZ _ (N,). The values
for x%, can be found in Ref. [5]. They are constructed
such that again the chance for a correct group to be re-
jected is at most 0.27%. This rejection criterium is used
as a means to avoid systematic errors. Very low values of
x? are very probably caused by systematic errors present
in the data and are not a virtue of a model. This cri-
terium generally does not seem to be appreciated by the
uninitiated in statistical methods.

(iii) A group of N, data is also rejected if its x2 in the
multienergy fit exceeds a maximum ﬁxf_igh(Na), where
B = Nag/(Nas + Npar). The values for xf]igh can also be
found in Ref. [5].
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VIII. THE NIJMEGEN 1993
ANTIPROTON-PROTON DATABASE

A. Set-up of the 1993 database

In order to perform a pp PWA, we first had to put
together a statistically sound data set. In NN analy-
ses, one has over 30 years experience with the data, and
by now a proper database is more or less agreed upon.
In the pp case, we must start from scratch, but fortu-
nately we can use the experience of the NNV analyses to
arrive at an acceptable pp database. Let us summarize
the general features of our database. We will include
in our pp database all available pp scattering data be-
low antiproton laboratory momentum pj,p = 925 MeV/c
published in a regular physics journal since 1968. We
do not take into account data published only in confer-
ence abstracts, in conference proceedings, and/or the-
ses. The reason we restrict ourselves to this momentum
range is that it corresponds roughly to the energy range
of the NN partial-wave analyses below kinetic energy
Tiab = 350 MeV (momentum 925 MeV/c corresponds
t0 Tiab = 379 MeV) and that we want to include the ac-
curate backward elastic cross sections between 406 and
922 MeV/c taken by Alston-Garnjost [117]. Low-energy
data, below pjap, = 175 MeV /¢, so Tiap = 15 MeV, are
of course almost nonexistent here. Only scattering ob-
servables are analyzed, other “data” like for instance the
real-to-imaginary ratio of the forward scattering ampli-
tude or the slope of the 7p forward nuclear amplitude are
omitted, since the extraction of these quantities from the
data is model dependent. A summary of the Nijmegen
1993 pp database can be found in Table I.

Several experiments [133-135] have reported a reso-
nant structure in the antiproton-proton total cross sec-
tion near 490 MeV /c without agreeing, however, on the
exact position, strength, and width of a possible reso-
nance. We do not include these data in the PWA, since
more recent and accurate measurements of total cross
sections [136,111,109,137,114] have convincingly ruled
out the existence of this type of rather broad resonance.
(A more narrow type of resonance, however, is not ruled
out by the existing data. In fact, there is some statisti-
cal evidence for a narrow structure in backward elastic
cross sections around 509 MeV/c [138]. Probably, only an
accurate measurement of the backward charge-exchange
cross section can definitely settle this issue.)

High-quality total cross sections below 400 MeV/c
have been measured at LEAR by the PS172 Collabo-
ration [106]. The effects of the pure Coulomb force and
Coulomb-nuclear interference are not significant, except
perhaps at low momenta < 300 MeV /c. This may be the
reason why we had to reject the data at the two lowest
momenta.

In a number of experiments [134,139,111,140-144] the
pp annihilation cross section into charged mesons has
been measured. We cannot include these data, not even
with a floated normalization, since the momentum depen-
dence of the cross section for annihilation into neutral
mesons is not known. At LEAR the total annihilation
cross section, including annihilation into neutral chan-

nels, has been measured from 180 to 600 MeV/c by the
PS173 group [105,100]. These last data are included.

We do not include integrated elastic-cross-section
data [110,104,145,113,115], due to difficulties in a proper
treatment of Coulomb and Coulomb-nuclear interference.
Integrated charge-exchange cross sections, on the other
hand, are included in the database. In two experi-
ments [108,99] this observable was measured over a large
momentum region. For the experiment of Ref. [99] data
points at the lowest momenta are rejected since they are
in conflict with more recent measurements done at LEAR
by the PS173 group [103]. Our PWA clearly favors this
last experiment.

In the pre-LEAR era a very large part of the exper-
imental data on Pp scattering consisted of elastic dif-
ferential cross sections [110,104,129,132,128,113]. The
most accurate data were those taken by Eisenhandler
et al. at 690, 790, and 860 MeV/c (and higher mo-
menta) [128]. With the exception of the data at 194.8
MeV/c of Ref. [104] and the data at 910 MeV/c of
Ref. [132] we find these pre-LEAR data to be consistent.
An accurate measurement of the backward elastic differ-
ential cross section at cos # = —0.994 was done by Alston-
Garnjost et al. [117] between 406 and 922 MeV/c. Since
1983, differential cross sections on pp — Pp have been
measured by different groups at LEAR and at KEK. For
an extensive discussion of these data we refer to the next
subsection.

A number of pre-LEAR experiments determined the
elastic differential cross section at forward scattering an-
gles in order to study the Coulomb-nuclear-interference
region [146,118,112,147]. At LEAR this was done by the
collaborations PS172 [107,125] and PS173 [148,149]. In
general, all these data are well described in the PWA, al-
though in some cases data points in the extreme-forward
region had to be rejected since they are contaminated
by multiple Coulomb scattering in the target (so-called
Moliére scattering).

Some of the most important results coming from LEAR
are the high-quality elastic analyzing-power A, (polar-
ization) data, measured by the PS172 [122,123] and
PS198 [130,120] collaborations at a number of energies
above 439 MeV/c. Since in the pre-LEAR era only
very few and inaccurate data points existed [132,127,131],
these experiments mean real progress. We find the data
of PS172 and PS198 to be consistent, except for their
normalizations. In our PWA we float the normalizations
of the A, data at 497, 523, and 679 MeV/c. PS172 has
also obtained the first (not very accurate) results on the
elastic Dy, depolarization [150]. For these data we do
not take a normalization error into account, in view of
the large error bars.

Before the advent of LEAR in 1983, also charge-
exchange differential observables were scarce. Some dif-
ferential cross sections existed [119,129,151,121,152], but
these were not very accurate. Since 1984, however, the
situation has improved enormously. High-quality differ-
ential cross sections have been obtained at KEK between
392 and 781 MeV/c [116], and at LEAR by the PS173
group at low momenta between 183 and 590 MeV /c [103].
One of the most important experiments at LEAR has
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TABLE 1. Reference table of antiproton-proton scattering data below 925 MeV/c.

Plab No.® Norm Pred.

(MeV /c) type® Xin error  norm° Rejected? Ref. Comm.
119.0-

-923.0 50 Oce 29.2 3-5%  1.098 <385.0, #=8 [99] k, m
176.8—

-396.1 5 Cann 7.5 4.4% 0.943 176.8 [100]

181.0 46 doe 48.7 5% 1.037 >0.925, #=6 [101,102]  j, o0
183.0 13 doce 8.3 5% 0.976 0.940, —0.170,
—0.574, —0.966 [103]
194.8 19 doa 4% All [104) fi,o0
200.0—
-588.2 48 Oann 57.8 2.2% 0.978 [100,105]
221.9-
-413.2 45 oot 53.0 0.9% 0.971 221.9, 229.6 [106]
233.0 54 doe 87.6 5% 1.034 >0.938, #=6;
0.764 [107) j
239.2 20 doa  27.7 4% 1.089 [104] o
272.0 65 doe 55.9 5% 1.055 0.967 [107] Jj
276.0—

-922.0 21 Oee 320  5-10% 1.138 [108] m
276.9 20 doe 18.9 4% 1.042 [104] o
287.0 54 doe . 5% ) All [101,102] j, 1, 0
287.0 14 doc. 24.0 5% 1.201 0.985 [103]

310.4 20 doo  30.1 4%  1.039 (104] o
340.9 20 doe 32.2 4% 1.044 —0.850 [104] o
348.7 38 doe 42.4 4% 0.993 [110] i, o
355.0—

-923.0 36 otot . 1.5% . All [111) e, m
353.3 119 doe 116.4 5% 1.037 0.366 [112] j, 0
369.1 19 doe 15.7 4% 1.020 0.550 [104] i, 0
374.0 39 doa 243 5% 1.067 [113] o
388.0—

-598.6 29 oot 35.4 0.7% 0.973 [114]

392.4 19 do 5% All [115] 1

392.4 15 doee ) 5% ) All (116] f

404.3 40 doe 38.6 4% 0.994 —0.575, —0.925 [110] i, o
406.0—

-922.0 30 doe 36.7 4% 0.896 [117] n
406.0 119 doe 99.8 5% 1.029 0.990, 0.750, 0.578 [112] j, o
411.2 38 doe 379 5% 1.025 —-0.925 [113] i, o
413.4 7 doa 5.6 5% 1.054 0.992 [118] j, 0
424.5 7 doe . 5% . All [118] e j, 0
428.0 10 doce 12.3 20% 1.221 [119]

435.8 7 doe 1.6 5% 1.017 0.992 [118] j, o
439.0 27 doa . 10% ) All (120] 1
439.0 24 Ay el 38.8 5% 1.068 0.851 [120] o
439.9 39 doe 42.0 5% 1.031 [113] o
440.8 38 doel 61.4 5% 1.035 (113] i, 0
444.1 38 doe 35.0 1% 0.972  0.175, —0.825, —0.875 [110] i, o
446.0 119 doa 115.3 5% 1.021 [112] jo
447.1 7 doel 6.9 5% 1.050 0.992 [118] j, o
458.3 8 doel 2.0 5% 0.994 0.996 [118] j, o
467.5 39 doe 32.7 4% 1.039 —0.925 [110] i, 0
467.8 39 doa 24.0 5% 1.056 [113] o
469.2 8 doe) 8.2 5% 1.013 0.996 [118] j,o
479.3 119 doe 109.3 5% 1.003 0.919, 0.873, 0.697 [112] j, o
480.0 10 doce 14.3 oo 1.154 [121] g
481.2 8 doel 7.2 5% 1.048 0.996 [118] 5o
490.1 37 doa : 5% i All [115] 1
490.1 15 doe 12.5 5% 1.068 —0.193 [116]

490.6 39 doe 47.5 5% 0.983 [113] o
492.7 8 doe 4.2 5% 1.014 0.996 [118] J,o
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TABLE 1. (Continued).

Plab No.? Norm  Pred.

(MeV/c) type® Xin error norm® Rejected? Ref. Comm.
497.0 14 Aya 7.3 oo 0.718 (122,123] h
498.7 37 doa  27.7 4% 1.004 [110] i, 0
503.8 8 doe) 13.3 5% 1.047 0.996 [118] j, 0
504.7 39 do 14.3 5% 1.021 (113] o
505.0 54 doe . 5% . All (101,102] j, L0
505.0 14 doce 30.1 5% 1.034 0.574 [103]

508.0 119 doe 105.3 5% 1.019 0.663, 0.530 [112] j, o
508.9 39 doe 28.7 5% 1.025 [113] o
516.0 8 doei 5.5 5% 1.018 0.996 [118] j, 0
523.0 15 Ay el 8.3 oo 0.786 [122,123] h
524.8 36 doe 32.2 4% 1.020 [110] i, o
525.9 39 doe  45.0 5% 1.053 [113] o
528.2 8 doei 3.2 5% 1.005 0.996 [118] j, 0
533.6 119 doe 133.7 5% 1.029 [112] j, 0
537.0 10 doee  19.4 o0 1.199 (121] g
540.6 8 doe 10.9 5%  1.015 0.996 [118] j, 0
543.2 39 doe 38.4 5% 1.065 —0.975 [113] o
544.0 33 do. . 10% . All [120] 1
544.0 30 Ay 375 5% 1.046 >0.883, #=3 (120] o
546.0 23 Ayce  36.1 4% 0.959 [124]
549.4 10 do. 7.1 20%  1.258 [119]
550.0 67 doe 76.0 5% 1.006 >0.995, #=3;

0.910, 0.883, 0.869 [125] j
553.1 34 doe 38.6 4% 0.981 (110] i, o
553.4 8 doel 2.4 5% 1.017 0.996, 0.972 (118] j, o
556.9 119 do.i 125.4 5% 1.025 0.908 [112] j, o
558.5 39 doa  45.4 5% 1.040 (113] o
565.5 8 doel 5.7 5% 1.006 0.996 [118] j, o
568.4 37doa 343 5% 1.040 —0.675, —0.825 [113] i, 0
577.2 36 doe 36.0 1% 0.983 [110] i, o
578.1 9 doe 6.2 5% 1.014 0.999 (118] j, o0
578.3 119 doo 1323 5% 1.047 (112] j, 0
584.0 10 doce 15.7 oo 1.112 [121] g
590.0 39 do . 5% A All (101,102] j, 1,0
590.0 15 doce 32.8 5% 1.092 0.996, —0.574 [103]
591.2 9 do.i 6.5 5% 1.029 0.999 (118] j, 0
591.2 39 doe . 5% . All [115] 1
591.2 15 doce 18.0 5% 1.058 —0.358 [116]
596.5 38 doa 495 5% 1.075 [113] o
599.2 33doa 158 4%  0.997 [110] i, 0
604.0 9 doe 7.6 5% 0.987 0.998 [118] j, o
615.0 38 doei 48.1 5% 1.046 —0.575 [113] o
617.0 9 doe 6.7 5% 0.953 0.998 [118] j,o
630.0 10 doe. 9.3 o0 1.073 (121) g
630.9 9 doe. 4.6 5% 0.997 0.998 [118] j, o0
639.6 38 doe) 17.1 5%  0.995 ~0.175 (113] o
644.7 9 doe) 7.8 5% 0.996 0.998 [118) J, 0
656.0 21 Ayce 219 4% 0.963 (124,126
658.1 38 doei 37.4 5% 0.972 0.225, —0.675, —0.975 [113] o
658.6 9 doe 8.9 5% 1.004 0.998 [118] j,o
670.0 10 doe 5.5 ) 1.165 [121] g
671.5 9 doe) 3.3 5% 0.987 0.998 (118] j, 0
679.0 26 doa . oo . All (123] 1
679.0 27 Ay 23.1 0o 0.846 0.540 (122,123] h
679.0 1 Dy, 1.4 - . (150] P, q
679.1 4 Aya 6.3 5% 0.983 (127] o
680.1 38 doe 40.2 5% 1.003 [113] o
686.1 9 doel 3.9 5% 0.986 0.998 [118] i, o
689.0 39 doe . 5% : All (115] 1
689.0 16 doce 26.5 5% 1.010 —0.139 (116]
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TABLE 1. (Continued).

Plab No.* Norm Pred.

(MeV/c) type® X2 in error norm* Rejected? Ref. Comm.
690.0 89 doe 103.5 4% 0.991 0.370 [128]
693.0 34 doce 39.3 10% 1.069 -0.075 [126] r
696.1 21 doe 16.4 4% 1.026 [129]
696.1 16 doc. 21.0 4% 1.050 [129]
697.0 24 doa) . 10% : All [130] 1
697.0 33 Ay 20.3 5%  1.022 0.629 [130] o
698.0 10 doce 7.1 e’} 1.237 [121] g
700.0 44, 2.1 5%  0.991 (131] 0
701.1 9 doe 3.5 5% 1.000 0.998 [118] j, o
715.3 9 doe 10.6 5% 1.002 0.998 [118] j,o
728.0 10 doce 2.9 o) 1.105 [121] g
757.0 72 doe 95.7 5% 1.055 >0.996, #=3 [125] j
767.0 22 Ayce 255 4% 1113 [124]
780.5 39 doe) i 5% X All [115] 1
780.5 15 doce 140 5%  0.974 [116]
783.0 30 doe . o0 ) All [123] 1
783.0 30 Aya 301 45%  0.944 —0.300 (122,123]
783.0 3 Dy, 4.9 - ) [150] P, q
790.0 95 doe; 101.5 4% 1.034 [128]
860.0 95 doe; 70.5 4% 1.045 0.510 [128]
875.0 23 Ayce  20.0 4%  0.995 [124]
886.0 34 dog . oo . All [123] 1
886.0 34 A,q 385 45%  0.992 (122,123]
886.0 1 Dy, 1.2 - : [150] P, q
910.0 19 doq . oo . all [132] f g
910.0 21 Ay 147 5%  0.989 (132]

®The number includes all published data, except those given as 0.0+0.0 (see i), and those having
Plab > 925 MeV/c (see m).

PThe subscripts “el” and “ce” denote observables in the elastic p — Pp and charge-exchange
Pp — Tin reactions, respectively. “do” denotes a differential cross section do/dS2, Ay a polarization-
type datum (asymmetry or analyzing power), and D, a depolarization datum. oot stands for total
cross section, Oany for (total) annihilation cross section, and o.. for integrated charge-exchange cross
section.

°Normalization, predicted by the analysis, with which the experimental values should be multiplied
before comparison with the theoretical values.

9Tabulated is pj,p, in MeV/c or cosf. The notation “>0.925, #=6,” e.g., means that the 6 points
with cos8 >0.925 are rejected.

*Group rejected due to improbable low x2,...

fGroup rejected due to improbable high x2;,.

€Floated normalization. Data are relative only.

hNormalization floated by us, since the norm contributes much more than 9 to xZ;,.

{Data points given as 0.040.0 not included.

iCoulomb-nuclear-interference measurement. Data points in the extreme forward angular region
are rejected when they contain multiple-scattering effects.

*Data points at low momenta rejected (see text).

"Problematic differential cross section. Not included in the database. See the text, Sec. VIIIB and
Tables II and III.

™Part of a group of data with points having pjap, > 925 MeV/c.

"Elastic differential cross sections as a function of momentum taken at backward angle cos8 =
—0.994.

°Normalization error assumed by us, since no clear number is stated in the reference.
PDepolarization data. Not included in the fit, in view of large error bars.

9Normalization error taken to be zero, in view of large error bars of these data.

"Data points taken at the same angles averaged.
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been PS199 whose goal was to study the spin structure of
the charge-exchange reaction. So far, it has obtained very
accurate data on the differential charge-exchange cross
section at 693 MeV/c and very important data on the
charge-exchange analyzing power A, between 546 and
875 MeV/c [126,124]. More results from PS199 can be
expected in the near future. Very recently, a new LEAR
experiment called PS206 [153] has been approved that
will further study the charge-exchange reaction.

B. Flaws in elastic differential cross-section data

Since 1983 several experiments have measured the elas-
tic differential cross section at different momenta. PS173
at LEAR measured this observable at low momenta be-
tween 181 and 590 MeV /c [101,102]. It was subsequently
measured at KEK between 392 and 781 MeV/c [115],
by PS172 at 679, 783, and 886 MeV/c [123] (and at
higher energies), and by PS198 at 439, 544, and 697
MeV/c [130,120]. Unfortunately, these different exper-
iments do not appear to be consistent with each other,
nor with the accurate pre-LEAR data of Eisenhandler et
al. [128] which are described very well in the PWA. In
fact, this is the most serious flaw in the pp database and
a major obstacle in fitting potential models [25]. It is

highly probable that some of these data contain unspec-
ified systematic errors, or that the statistical errors have
been underestimated.

Since we are talking about a total of 540 cross sec-
tions (not counting the Eisenhandler data) we decided
to put some effort in trying to determine what is wrong
with these data, instead of rejecting them outright. This
turned out to be very difficult. The discussion about
statistical and systematic errors in most of the original
papers can be called marginal at best. Sometimes results
from Legendre fits are presented, but in several cases it
turns out that the x2; of these fits is much too high for
a statistical data set. The procedure that we followed
to examine these data was as follows. We fitted each
differential cross section with

£max

do/dQ = Z apPy(cosB) .
£=0

£max was determined by the requirement that the error
on the corresponding coefficient a; was smaller than the
coefficient itself. In the ideal situation this would give
a fit with x2. /N4 ~ 1.0. However, for few groups
this was actually the case. We then enlarged the errors
by adding a point-to-point systematic error in quadra-

TABLE II. Corrections applied to elastic differential cross sections from Eisenhandler et al., from PS172, PS173, and PS198

from LEAR, and from KEK. The number of data includes all published points.

The column labeled “syst. error” gives

the approximate point-to-point error that has to be added quadratically to the statistical error to reach X2in & Ngs. The

“y 2

column labeled “xZ,.” gives the result of the Legendre fit without any corrections, except that PS173 points at forward angles
contaminated by multiple-scattering effects are removed. For the values of xZ;, after the corrections, see Table III.

Plab No. Syst.

(MeV/c) Group data Rejected points (cos ) error Xne Ref. Comm.
181.0 PS173 46 > 0.92, #=6 41.0 [101,102] a
287.0 PS173 54 > 0.95, #=9; 0.345, 0.199, 0.101, 0.051, —0.345 5% 160.7  [101,102] a
392.4 KEK 19 2% 19.2 [115] b
439.0 PS198 27 4% 28.0 [120]

490.1 KEK 18 4% 202.0 b
19 150  [115] c

505.0 PS173 54 > 0.98, #=3; 0.96, 0.67 59.5 (101,102] a

544.0 PS198 33 231 [120]

590.0 PS173 39 > 0.99, #=2 3% 39.0 [101,102] a

591.2 KEK 19 0.825 3% 276.2 b
20 0.275, —0.075 2% 36.0 [115] c

679.0 PS172 26 0.50, —0.50 82.7 [123] d

689.0 KEK 15 3% 90.5 b
24 3% 242 [115] c

690.0 Eisenh. 89 0.37 101.9 [128]

697.0 PS198 24 6% 174.0 (130]

780.5 KEK 14 2% 30.5 b
25 16.4  [115) c

783.0 PS172 30 0.58, —0.58 31.9 [123] d

790.0 Eisenh. 95 88.2 [128]

860.0 Eisenh. 95 69.4 [128]

886.0 PS172 34 0.66, 0.54, 0.46, —0.18, —0.66 77.6 [123] d

®Data points in the extreme forward angular region are rejected because they contain multiple-scattering effects.
®Data in the “one-prong” region. For a discussion, see the text.

°Data in the “two-prong” region. For a discussion, see the text.

9The most forward and the most backward data point are rejected (Bradamante, private communication).



50 ANTIPROTON-PROTON PARTIAL-WAVE ANALYSIS BELOW . .. 63

ture to the quoted statistical errors. The amount of
error added was determined by the requirement that
now indeed x2;. =~ Ngs. Once for a group this result
was approached, outliers were removed (three-standard-
deviation rule). For some groups special measures had
to be taken, which we will discuss now. The results of
these investigations are summarized in Table II.

The data measured by PS173 [101,102] are at the most
forward angles contaminated by effects due to multiple
scattering in the target (Moliére scattering). Since the
experimentalists do not present their data corrected for
these effects, and since these corrections depend on de-
tails of the target used, there is no way for us to take
these effects into account. Consequently, the only sen-
sible thing to do is to reject the data at angles where
multiple-scattering effects are believed to be seen. These
data were used to extract the real-to-imaginary ratio of
the forward-scattering amplitude [148]. It is perhaps re-
markable that in Ref. [148] values for this ratio were pre-
sented at more momenta than the four for which the
corresponding differential cross sections were presented
in Refs. [101,102]. These remaining cross sections have
never been published. After removing the points at for-
word angles, difficulties remain. At 287 MeV/c it is nec-
essary to reject five individual data points and add a 5%
point-to-point error. At 505 MeV /c two outliers must be
removed and at 590 MeV/c a 3% error must be added.

The data taken at KEK [115] present serious difficulties
of a different kind. The only manner to achieve satisfac-
tory results in a Legendre fit seemed to be to either reject
a large number of data points or to enlarge all errors by

a significant amount (= 6 —7%). However, improvement
could be obtained in the following manner. It turned
out that most difficulties resided in the data taken in
the “one-prong” region [115], i.e., at forward and back-
ward angles. The data at intermediate angles, the “two-
prong” region, appear to be less troublesome. In fact, in
Ref. [115] different systematic errors are quoted for these
two regions, although the experimentalists perform Le-
gendre fits to the data as one group. When we split the
groups at 490, 591, 689, and 781 MeV/c into two differ-
ent parts, it suffices to enlarge the statistical errors by
a smaller amount, and in some “two-prong” regions the
data need no corrections at all.

The description of the data taken by PS172 [123] im-
proves when the points at the most forward and at
the most backward angle are removed at all momenta
(Bradamante, private communication). At 886 MeV/c
three additional outliers have to be rejected. Especially
for these groups there remains a big problem with the
normalization [123] (see below). For the data at 697
MeV/c [130] from the PS198 group the statistical errors
may have been underestimated. We had to enlarge these
by adding a 6% point-to-point error.

After all these corrections have been applied to the dif-
ferent groups the next step is to see to what extent the
Legendre coefficients at comparable momenta are consis-
tent. These coefficients are presented in Table III. It is
immediately clear that significant problems occur in the
normalization ag of the different groups (which is why we
present the “renormalized” Legendre coefficients a;/ag
for £ > 0). This is especially true for the PS172 data.

TABLE III. Legendre-polynomial fits to elastic differential cross sections from Eisenhandler et al., PS172, PS173, and PS198
from LEAR, and from KEK. The corrections summarized in Table II are taken into account. The number of data is the number
of published data minus the rejected points. For the KEK groups at 490, 591, 689, and 781 MeV/c the first line gives the
results for the “one-prong” region, and the second line the results for the “two-prong” region.

Plab No.

(MeV/c)  Group data ao a;/ao az/ag as/ao as/ag as/ao as/ao Xnin
181.0 PS173 40 | 7.02(25)  0.92(06)  0.46(07) 41.0
287.0 PS173 40 | 510007) 1.58(03)  0.82(03)  0.15(02) 36.0
392.4 KEK 19 | 5.49(06) 1.92(04) 1.35(05)  0.35(03) 15.6
439.0 PS198 27 | 4.09(08) 1.93(06) 1.63(07)  0.67(08)  0.39(09)  0.19(07)  0.09(04)| 19.6
490.1 KEK 18 | 507(10) 1.95(05) 1.55(07)  0.50(05)  0.10(03) 15.4

19 | 5.61(45) 1.91(21) 1.89(28)  0.72(13)  0.38(10) 15.0
505.0 PS173 49 | 4.18(05) 1.90(04)  1.76(04)  0.96(05)  0.49(06)  0.11(05)  0.06(04)| 36.1
544.0 PS198 33 | 3.79(05)  2.08(05) 2.16(06)  1.16(06)  0.57(06)  0.12(04)  0.04(02)| 23.1
590.0 PS173 37 | 3.73(06)  2.11(05)  2.09(05)  1.25(06)  0.66(06)  0.26(05)  0.10(03)| 32.2
591.2 KEK 18 | 4.42(08) 2.12(05) 1.95(06)  0.83(04)  0.16(03) 13.8

18 | 5.24(33)  2.07(18)  2.08(22)  0.99(11)  0.38(07) 15.2
679.0 PS172 24 | 1.96(02) 2.59(05)  1.88(02)  1.39(04) 18.8
689.0 KEK 15 | 3.52(22) 227(15)  2.35(18)  1.46(11)  0.63(14)  0.17(07) 9.8

24 | 321(15) 2.16(14)  2.14(17)  1.20(09)  0.38(06) 19.0
690.0 Eisenh. 88 | 4.28(07) 2.28(06) 2.45(08) 1.67(07) 0.76(06)  0.23(04)  0.03(02)| 816
697.0 PS198 24 | 3.54(09)  2.22(08)  2.30(09)  1.43(08)  0.51(05)  0.10(02) 21.5
780.5 KEK 14 | 3.14(23)  2.37(17)  2.72(23)  2.10(16)  1.07(16)  0.29(07) 9.1

25 | 2.39(10)  2.07(11)  2.39(16)  1.36(08)  0.66(07) 16.4
783.0 PS172 28 | 255(07) 2.73(17)  2.45(11)  2.26(20)  0.67(05)  0.38(07) 29.8
790.0 Eisenh. 95 | 3.87(08)  2.36(07)  2.69(09)  2.08(09)  1.09(07)  0.42(05)  0.12(03)| 88.2
860.0 Eisenh. 95 | 3.67(06) 2.41(06)  2.83(07)  2.33(07)  1.34(05)  0.56(04)  0.17(02)| 69.4
886.0 PS172 20 |  2.44(04) 2.66(08)  2.64(06)  2.46(09)  0.95(03)  0.47(04) 22.2
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The probable reason [123] for the difficulties is that data
could only be taken in a very limited angular region, so
that only a small fraction =~ 5% of the cross section is de-
tected. Properly normalizing the data is then especially
difficult. These data would have to be treated with a
“floated” normalization. Certainly a 10% normalization
uncertainty as suggested in Ref. [123] is not sufficient.
Since also the KEK data in the “two-prong” region cover
a limited angular region it would be a good idea to float
these normalizations as well, since they are not consistent
with the normalizations of the data in the “one-prong”
regions. Apart from these normalization problems it is
clear from a study of Table III that it is very unlikely that
the different experiments are consistent. Certainly, the
PS173 data at 590 MeV/c are not compatible with the
KEK data at 591 MeV/c; the PS172 data at 783 MeV/c
are not compatible with the KEK data at 781 MeV /¢, nor
with the Eisenhandler data at 790 MeV/c. The PS198
data at 439 MeV /c do not appear to intrapolate between
the KEK data at 392 and 490 MeV/c, etc. So, although
many beautiful data have come out of LEAR and KEK,
unfortunately elastic differential cross sections are not
among them.

To summarize, at present we are prejudiced in favor of
the pre-LEAR data by Eisenhandler et al. [128], although
we cannot exclude completely the possibility that these
data contain unspecified systematic errors and that one
of the LEAR or (more unlikely) the KEK experiments is
correct after all. Preliminary study showed that we could
obtain a reasonable fit to the LEAR data from PS172
and PS198, but only at the cost of rejecting the pre-
LEAR data of Eisenhandler et al. [128] and of Sakamoto
et al. [113]. And still, the problems with the data from
PS173 and KEK would remain. Further investigation is
required before such a drastic step will be taken. Obvi-
ously, a dedicated new experiment that might shed some
light on this issue would be highly welcome.

IX. RESULTS

After deciding on the final content of the Nijmegen
1993 pp database to be used in the PWA, the free P-
matrix parameters are fitted to these data.! In Table I
we present an overview of the results of this fit for all
the pp scattering data. In this table one can find the val-
ues for x2, for each individual group, the normalization
predicted by the PWA, and the data points and groups
that have been rejected by us on statistical grounds. The
total number of scattering observables that are rejected
is 204, not including the problematic LEAR and KEK
elastic differential cross sections discussed in the previ-
ous section. Three normalization data are rejected. We
reject three groups because of an improbable high x2,,,

'For the sake of completeness we mention that at the time of
our final fit, the data of Refs. [151,152,147] were not available
to us. Also, we were at that time not aware of the existence
of the data of Refs. [136,137].

and two groups because of an improbable low x2, . In
the final fit we have (in the notation of Sec. VII)

Nobs = 3543, N, =113, Ny =103, Npar =30,
so that

Nyata = 3646, Ng, =143, Npe =10, Ngr = 3503.
When the data set is a perfect statistical ensemble and

when the model is totally correct one expects
(x%:in/Nag) = 1.000 +0.024 .
Our best fit to the final 1993 database results in
Xoin = 3801.0,
corresponding to

X% in/Ndata = 1.043 and X%in/Nag = 1.085 .
The 3543 scattering observables contribute 3700.9 to
X2in» Which means that the 103 normalization data con-
tribute the remaining 100.1 of x2,; .

In order to get a feeling for some of these numbers,
let us compare them to the NN case. In the Nijmegen
NN PWA the database contains Nga.t. = 4301 NN scat-
tering data, which are described with x2; = 4263.8 or
x2../Ndata = 0.991 [7]. The number of model parame-
ters needed in our case is 30, which is a reasonable num-
ber, in view of the fact that 21 parameters were used in
the Nijmegen pp PWA and an additional 18 in the np
PWA.

The values for the P-matrix parameters and their er-
rors are tabulated in Table IV. The parameters for the
higher partial waves are the same as the corresponding
state given in this table. For instance, the ! F3 wave has

TABLE IV. P-matrix parameters of the different partial
waves. Vo and V; are the real parts of the short-range spher-
ical-well potential, for isospin I = 0 and I = 1, respectively.
W is the isospin-independent imaginary part. The mixing an-
gles that take care of the short-range I = 0 tensor force are 6,
= 55.7° £1.3° for the 3C; state, 6, = 45.8° +1.1° for the 3C»
state, and 6z = 10.7° + 4.7° for the ®Cj state. The quoted
errors are defined as the change in each parameter that gives
a maximal rise in x2;, of 1 when the remaining parameters
are refitted.

Partial wavel Vo (MeV) Vi (MeV) W (MeV)
1So 0 0 —99(6)
38 —151(6) —17(3) —100(3)
P 0 0 -90(7)
3P —132(9) 178(19) —156(9)
P 155(12) —66(3) -97(4)
3P, —136(4) —69(3) —142(3)
'D, 0 0 —105(12)
5Dy —215(7) 33(16) —106(5)
:D. —38(12) —198(4) ~110(4)
3D3 —152(6) —102(5) —163(4)
3F, —101(20) —250(14) —179(7)
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the same parameters as the ! D, wave, the 3F3 wave the
same as the 3D, wave, the 3G3 the same as the 3F,,
and so on. This is just a convenient prescription. For
higher partial waves the short-range parametrization is
irrelevant due to the centrifugal barrier and the dynam-
ics is completely determined by the potential tail. As
explained in Sec. III, these parameters correspond to a
spin-dependent optical potential for the short-range in-
teraction. It can be seen that even if one introduces
for each partial wave of specific isospin a simple complex
spherical-well potential, then still by no means all of these
parameters can be determined from the existing data.
This is in striking contrast with for instance the pp anal-
ysis where one needs four parameters already to describe
the 1S, channel. The reason is that the pp 'S, phase
shift is very accurately known at very low energies (be-
low 3 MeV). A proper description of the P waves in the
pp case also requires more than one parameter for each
wave. In our Pp case, no single partial wave (of specific
isospin) needs more than one parameter for the real part
of the short-range interaction, but, on the other hand,
many more partial waves contribute significantly to the
scattering process. This is especially true for the charge-

exchange reaction, as can be seen from Table V where
we give the partial-wave cross sections for the elastic and
charge-exchange reaction at a number of momenta, as
well as the total and annihilation cross section. Com-
pared to nucleon-nucleon scattering, one notes a large
contribution of P and D waves to the cross sections al-
ready at low momenta. The reason for this is the greater
strength of the antinucleon-nucleon potentials, especially
the central and tensor potentials.

In Fig. 1 we show the results for the total and
annihilation cross sections as a function of momen-
tum. The high-quality data are from the LEAR ex-
periments PS172 [106,114] (total cross sections) and
PS173 [105,100] (annihilation cross sections). We cal-
culate total cross sections with the optical theorem. Ob-
viously, these cross sections can only be compared to the
experimental data, when the effects of the Coulomb inter-
action can be neglected. Except for the lowest momenta
(mab < 200 MeV/c) this is probably a good approxi-
mation. An example of the fit to the differential cross
sections from Eisenhandler et al. [128] is shown in Fig. 2.
In Fig. 3 the fit to the backward elastic cross sections
(cosf = —0.994) from Ref. [117] is demonstrated. As-

TABLE V. Partial elastic and charge-exchange cross sections in mb.

Pp — PP Pp — fin
Plap (MeV/c) 200 400 600 800 200 400 600 800
1S, 14.6 6.8 3.7 1.9 0.5
p 1.7 2.6 2.5 2.4 1.3 0.4
D, 0.1 0.4 0.7 0.8 0.1 0.4 0.2
1Fs 0.1 0.2 0.1 0.1 0.1
G, 0.1 0.1 0.1
3p 1.8 7.6 7.6 6.2 6.7 6.2 2.8 1.4
3D, 0.1 0.3 2.2 3.9 0.3 2.6 3.2 2.0
3Fs 0.1 0.1 0.2 0.4 1.0 1.4
3G, 0.3 0.4
3Po 4.7 4.6 3.4 2.6 2.1 1.4 0.7 0.3
35, 71.1 29.6 14.4 7.9 2.0 0.5 0.3 0.3
38, =D, 0.2 0.1 0.6 0.5 0.1
3D, —38; 0.2 0.1 1.4 0.7 0.1
3D, 0.3 0.8 1.3 0.1 0.3 0.5 0.4
3p, 6.3 16.1 15.5 12.9 0.8 1.2 0.5 0.3
3p, 53%F, 0.1 0.1 0.2 0.2 0.1 0.4 0.4 0.2
3F, 5P, 0.1 0.1 0.2 0.2 0.3 0.6 0.4 0.3
3F, 0.1 0.3 0.1
3Ds 1.2 5.0 7.1 0.4 1.0 0.6
3D3 3G 0.1 0.1 0.1 0.2 0.3 0.2
3Gs —3D; 0.1 0.1 0.1 0.3 0.4 0.3
3Gs 0.1
3F, 0.3 1.2 0.1 0.1
3Fs —%H, 0.1 0.1 0.2
3H, —3F, 0.1 0.1 0.2 0.2
3};14
Rest 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9
Singlet 16.4 9.8 7.0 5.4 2.0 0.9 0.4 0.2
Triplet 84.7 60.5 50.1 44.5 14.4 15.9 12.6 9.6
Total 101.1 70.3 57.1 49.9 16.4 16.8 13.0 9.8
pp — all Pp — mesons
Plab (MeV/c) 200 400 600 800 200 400 600 800
314.7 193.9 151.8 128.5 197.2 106.8 81.7 68.8
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FIG. 1. Total and annihilation cross section as a function
of momentum in antiproton-proton scattering. The oo¢ data
are from the LEAR experiment PS172 [114,106] and the oann
data are from experiment PS173 [105,100]. The curve from
the PWA for oo has x2,;, = 88.4 for 75 points, and the curve
for Gann has x2;, = 65.3 for 52 points.

suming that these data are correct, it can be seen from
this figure that there appears to be room for improvement
at the lowest momenta. This is precisely the momentum
region (piab = 509 MeV/c) where some statistical evi-
dence for a resonance was found [138]. The differential
cross section for charge-exchange scattering is given in

100.0

do/dQ (mb)

100 -

data from Eisenhandler et al.

1.0

0.1

0.01 ' ' '
-1 -0.5 0 0.5
cosf
FIG. 2. Differential cross section for elastic scattering at
790 MeV /c. The data are from Eisenhandler et al. [128]. The
curve from the PWA has x2;, = 101.5 for 95 points.

1.2

(cosB = -0.994)

do/dQ (mb)
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i

o8| J
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02~
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0
300 400 500 600 700 800 900 1000
Plab (MeV/c)

FIG. 3. Elastic cross section at backward angle
cos@ = —0.994 as a function of momentum. The data are
from Alston-Garnjost et al. [117]. The curve from the PWA
has x2;, = 36.7 for 30 points.

Fig. 4, compared to recent high-quality data taken by
PS199 [126] at 693 MeV /c. This is one of the most con-
straining experiments in the database. In order to fit this
group properly, orbital angular momenta up to £ = 10
must be taken into account. The cross section exhibits
the typical dip-bump structure at forward angles, which
can be understood as an interference effect between one-

4 T T T
=
E
G L
3
]
3 4

|+ datafrom PS199

0 1 1 1
-1 -0.5 4] 0.5
cosf
FIG. 4. Differential cross section for charge-exchange scat-
tering at 693 MeV /c. The data are from the LEAR experi-
ment PS199 [126]. The curve from the PWA has xZ;, = 39.3
for 33 points.



S0 ANTIPROTON-PROTON PARTIAL-WAVE ANALYSIS BELOW ... 67

pion exchange and a background [154]. Unfortunately, no
data of similar quality have been taken in this dip-bump
region.

In Fig. 5 we give the results for the analyzing power
(polarization) for elastic scattering, compared with the
recent data from PS172 [122] and from PS198 {130,120].
The fits to the analyzing-power data for the charge-
exchange reaction from PS199 [126,124] are shown in
Fig. 6. Finally, in Fig. 7 the prediction for the depo-
larization for elastic scattering at 783 MeV/c is shown
compared to the data from PS172 [150]. Only a few de-
polarization data exist: one point at 679 MeV/c, three
points at 783 MeV /c, and one point at 886 MeV/c. These
data points are not included in the fit in view of the large

- -
|

I

T

1

o

4 544 MeV/c .
* data from PS198
-0.5 —1— L
-1 0.5 0 0.5 1
cose
0.5 T T
0.25 +4 ]
0 : } 4 1 I t
.0.25 + 1 783 MeV/c i
* data from PS172
-0.5 L L
-1 -0.5 0 0.5 1
coso

error bars. This also means that no normalization error
is taken into account.

In Sec. VI a formalism was proposed to extract phase-
shift parameters and inelasticities from the S matrix for
antinucleon-nucleon scattering. It does not make much
sense to present all these phase shifts, inelasticities, and
mixing parameters without a proper assessment of the
uncertainties (statistical errors). This, however, requires
a lot of work. Preliminary study shows that the phase-
shift parameters for the 1Sy and ! P, partial waves are not
pinned down accurately at all above pjap, = 400 MeV/c.
On the other hand, a large number of parameters appear
to be very well determined by the existing data, such
as the 3P, ; 2 and 3D, ; phase shifts and inelasticities,

0.5 T T

025 11 | _

0 } rfl t
025 | 4 679 MeV/c ]
e data from PS172
-0.5 i 1
-1 -0.5 0 0.5 1
| cosé
05 T } T
0.25 - l-{— i
off } | :
-0.25 | + 886 MeV/c J
e data from PS172
-0.5 1 1
-1 -0.5 0 0.5 1
cosé

FIG. 5. Analyzing power in elastic scattering at 544, 679, 783, and 886 MeV/c. The data are from the LEAR experiments
PS172 [122] and PS198 [120]. The curves from the PWA have x2,;, =37.5, 23.1, 30.1, and 38.5 for 27, 26, 29, and 34 points,

respectively.
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and the e; > mixing parameters. All results are avail-
able in numerical form from the authors. An extensive
discussion of the remaining uncertainties in the predic-
tions of the PWA and the phase-shift parameters will be
presented elsewhere.

In our 1991 preliminary PWA [29] we were able to de-
termine the charged-pion-nucleon coupling constant f2
from the data on the charge-exchange reaction pp — 7n,
in which only isovector mesons can be exchanged. In this
PWA we analyzed 884 scattering observables between 400
and 950 MeV/c, using 23 free parameters. We found f?2
= 0.0751(17), at the pion pole. The error is purely sta-
tistical. This value was in nice agreement with other
determinations of f2 from np [155] and 7p scattering

05 T T

0.25 |- 4 i §

025 | 4 546 MeV/c

¢ data from PS199

cosé

0.25 | T -

-0.25 | + 767 MeV/c 4

_0'5 1 1

cosf

data [156]. These results provided strong evidence for an
approximate charge-independent pion-nucleon coupling
constant, since they were consistent with the value for
f2 found in the Nijmegen pp PWA [6].

Since this preliminary analysis, more high-quality
analyzing-power data for the charge-exchange reaction
have become available from PS199 [124]. We have re-
peated the determination of f2, but this time from the
complete 1993 Nijmegen database. The coupling con-
stants of the neutral pion were kept at the value of f;f
= f2 = 0.0745. Since fg is determined by the data on
elastic scattering pp — Pp, and f2 by the data on charge-
exchange scattering pp — 7in, one expects that the cor-

0.5 T T

025 | T 1

-0.25 + 656 MeV/c ]
e data from PS199
05 1 1
- -0.5 0 0.5 1
cos9
0.5 T T
0.25 | {—— :
Y M { t
-0.25 4+ 875 MeV/c 4
e data from PS199
- i 1
08, -0.5 0 0.5 1
cos8

FIG. 6. Analyzing power in charge-exchange scattering at 546, 656, 767, and 875 MeV/c. The data are from the LEAR
experiment PS199 [126,124]. The curves from the PWA have XZin =36.1, 21.9, 25.5, and 20.0 for 23, 21, 22, and 23 points,

respectively.
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1 T
DW

0.5 H T 1
0 Jl f

-0.5 T b

* data from PS172
1 1 1
-1 -0.5 0 0.5

cos

FIG. 7. Depolarization in elastic scattering at 783 MeV/c.
The data are from the LEAR experiment PS172 [150]. The
curve from the PWA has x2;, = 4.9 for 3 points.

relation between the two is small. Adding f2 as the 31st
free parameter, we now find

f2=0.0732(11) ,

at the pion pole. This result supersedes our previous
value from Ref. [29]. Again, the error is of statistical
origin only. In view of the enormous amount of work in-
volved, it is very hard for us to make statements about
possible systematic errors on this result. In Ref. [29]
we did demonstrate that there were no systematic errors
due to form-factor effects or due to p(770) exchange. In
the Nijmegen pp PWA systematic errors could be more
thoroughly investigated and there they were found to be
small [60]. Although in our case the systematic errors
are probably larger than for the pp case, it is very en-
couraging that the available charge-exchange data pin
down the charged-pion coupling constant with a remark-
ably small statistical error and that the result is consis-
tent with other determinations from n*p [156] and NN
scattering [155,60]. Very probably the new LEAR ex-
periment PS206 [153] will further constrain the charged-
pion-nucleon coupling constant.

X. SUMMARY OF CONCLUSIONS

To summarize, we have performed an energy-
dependent partial-wave analysis of all antiproton-proton
scattering data below 925 MeV /c antiproton momentum,
published in a regular physics journal since 1968. This is

the first time such an analysis has been attempted. We
have set up the Nijmegen 1993 pp database by scruti-
nizing and passing sentence on all available pp scattering
observables below 925 MeV /c. Serious problems were en-
countered with a set of 540 elastic differential cross sec-
tions from LEAR and KEK. These data were rejected,
although further study is required here. Of the remain-
ing 3747 scattering observables 204 (5.4%) were rejected
on the grounds of sound statistical criteria. We also
rejected three normalization data. The final database
contains 3543 scattering observables and 103 normaliza-
tion data for a total of 3646 scattering data. Using 30
free parameters we obtain x2; = 3801.0 correspond-
ing to x%;./Ndata = 1.043. This shows that the tail
of the charge-conjugated Nijmegen potential is a real-
istic intermediate- and long-range pp force. Data on the
charge-exchange reaction pp — nn provide further evi-
dence for a “low” and approximately charge-independent
pion-nucleon coupling constant fZ,, = 0.0745. The
present results will serve as a starting-point for future
investigations by our group of the antiproton-proton sys-
tem, and should be of help in planning further experi-
ments at LEAR and elsewhere.
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APPENDIX: FROM S MATRIX TO PHASE
PARAMETERS

In his second paper on the subject of parametrizing the
S matrix for nucleon-nucleon scattering above the pion-
production threshold [94], Bryan has presented an easy
algorithm to extract the three parameters 31_1’ 7,0 J+1,0,
€y, and the three different elements of the inelasticity
matrix H” from the 2 x 2 S matrix, written as

S7 = exp(id) exp(i€j0.) H”' exp(i€jo,) exp(id) .
(A1)
For completeness we list the relevant expressions. The

derivation can be found in the paper by Bryan. If the S
matrix is presented numerically as

SJ — Rll exp(2i6u) iRlz exp(2i51z) (A2)
iR12 €xp(2id12) Ra2 exp(2id22) ’
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then the phase shifts 3_1_.1,_/ and EJ.HJ can be obtained
from the following two equations:

R2,sin 26
tan2(f, + 6p) = 12
an ( @ + b) R11R22 + R%Z CcOos 2(5 ! (AB)
tan(6, — 0y) = 222 =B 016 . (Ag)
Ry1 + Ra2
Here we defined the auxiliary phases
o =611 —05-1,7 , (A5)

J

2cos 2e Hy; = R11¢0826,(1 + cos 2€) + Rap cos 2605(1 — cos 2¢)
2cos2e Hay = Ry cos26,(1 — cos 2¢) + Rap cos 26,(1 + cos 2¢)
cos2e Hip = Ry2sin(d — 6, — 0y) .

If the matrix H” is parametrized according to Klars-
feld [96], the three inelastic parameters ny_1 7, 774+1,7,
and wy can be obtained from

(A6)
(A7)

Op =822 — 87417
= 011 + 022 — 262 .

The mixing parameter € can subsequently be calculated
from

2Ry cos(b, + 0y — 8)
Ry, cos20, + Rz cos 26, '

tan2e =

(A8)

where ¢ = £;. Next the elements of the matrix H” are
isolated. One finds

(A9)
(A10)
(A11)

[
Nr-1,0 +ns41,0 =T HY | (A12)
Ny—1,0M7+1,0 = det H , (A13)
tan 2(4)] = 2H12/(H11 - Hgg) . (A14)
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