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Deciphering the CENTAURQ puzzle
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The effects of multiboson interference with regard to isospin imbalances and spectra are calcu-
lated for high-energy hadronic collisions. Emission is modeled by a relativistic thermal source with
a Bjorken geometry. The requirements for creating CENTAURO-like phenomena are explored. It is
shown that strong collective Bose effects occur when breakup densities are of the order of one pion
per cubic fm. The possibility of emitting pions through isoscalar channels, which can explain large
isospin imbalances, is investigated.

PACS number(s): 25.75.+r, 13.85.Tp, 05.30.Jp

I. INTRODUCTION

High-multiplicity cosmic-ray events with anomalous
isospin imbalances have been observed for over three
decades and are known as CENTAURO events [1]. Most
particles &om a high-energy event should be pions; there-
fore one-third of the particles should be neutral pi-
ons which should leave electromagnetic signals from the
pro ~ 2p decay. An event without such a component is
known as a CENTAURO event while an event with an
excess electromagnetic signal, corresponding to an excess
of neutral pions, is known as an anti-CENTAURO. This
behavior has motivated exotic explanations such as quark
nuggets or disordered chiral condensates [2,3].

In 1984 Lam and Lo [4—7] suggested that the large
isospin Huctuations were due to the Bose nature of the
emitted pions. They considered both the case of emis-
sion &om a large number of deltas and thermal emission
under the constraint that the source equilibrated. Us-
ing diagrammatic techniques [8] the same conclusion was
obtained for a thermal Gaussian source of Gnite size emit-
ting according to the symmetrization weights of outgo-
ing particles. Reference [8] demonstrated that such sym-
metrization enhancements do not require an assumption
that a source has somehow equilibrated, which would re-
quire a long reaction time, but merely that multiparticle
trajectories are weighted by the outgoing multiparticle
wave functions. The effect of constraining the emission
to isoscalar pairs was investigated [9] it was shown that
isospin constraints greatly magnify the effects of sym-
metrization. The models used in these calculations were
schematic and did not incorporate relativistic effects or
collective expansion.

In this paper, we report results from a statistical model
with a realistic space-time and momentum space descrip-
tion. Emission of hadrons &om an energetic collision
cannot be well described by a static thermal source. Pi-
ons are emitted over several units of rapidity due to the
collective Qow of the matter, which is a result of incom-
plete stopping. We apply the techniques of Refs. [8,9]
to the case of thermal emission from a Bjorken geome-

try [10]. The sources emit with thermal weights in their
rest kame with the time and position of the emission
being given according to the Bjorken geometry, which
accounts for collective How along the beam axis —the
correlation between position and momentum. If the dis-
tribution of source rapidities was uniform, all measured
quantities would be boost invariant. The actual distri-
bution of sources is certainly not boost invariant. We
assume the sources have a range of rapidities denoted by
6, which will be a crucial parameter in our study. We
wish to learn for what values of 6 and dN/dy laserlike
behavior is expected to occur.

We calculate not only corrected isospin distributions
but also the distortion of the single-body spectra. We
show that the symmetrization hypothesis for explaining
CENTAURO behavior can be tested by searching for
simultaneous bunching in rapidity and transverse mo-
menta.

Physical, mathematical, and numerical details of the
calculation are laid out in the next section. Sym-
metrization distortions to spectra are described in the
third section. The fourth section contains a detailed
discussion of isospin constraints, while modifications of
isospin distributions are presented in the Gfth section. In
the conclusions we assess the possibility that incoherent
sources could lead to CENTAURO-like behavior given
the bosonic nature of pions and the constraints of isospin
conservation.

II. FORMALISM AND METHODS

In Ref. [8] a formalism was developed for calculat-
ing symmetrization corrections to all orders for single-
body spectra, two-body correlations, multiplicity distri-
butions, and isospin distributions. The technique rests
on the assumption that particles are emitted indepen-
dently and then interfere in their outgoing states, due to
Bose symmetrization. Coulomb and strong interactions

0556-2813/94/50(1)/469(11)/$06. 00 50 469 1994 rhe American Physical Society



470 50

are neglected. First we review the formalism. The equa-
tions below are somewhat difI'erent from those of Refs.
[8,9] as they are done in an explicitly Lorentz-invariant
manner.

Independent emission implies that the n-particle ma-
trix elements factorize into a product of the one-body el-
ements as shown below in the expression for the Lorentz-
invariant n-particle cross section:

2

P(pi, p2, . . . , p ) = f d'zid'z2 d'z T(zi) T(z~) T(z ) U(zi, z2, , z apl, p2, .. ., p ) (2.1)

The symmetrized evolution operator U(z;p) has n!
terms which can be accounted for diagramatically.

U(zg, . .., z„;pg, ..., p„)
(2321 +(1 +2P22'i2 +'' '2 (P» pl i» )

7

(2 2)

where the sum is over the n! permutations of the integers
1 —n into i q

—i„.
This form for the evolution operator U neglects the

hadronic interaction between the pions as well as the
Coulomb interaction. The efFects of Coulomb interac-
tion should largely cancel as the net charge of the system
is zero. Hadronic interactions can be important, particu-
larly when the system is dense. Strong interactions man-
ifest themselves largely through resonances such as p's,
u's and g's. Pions which are formed through these res-
onant channels contribute much less to the symmetriza-
tion. Formation of pions through isoscalar channels is
discussed at great length later in this paper, while a more
responsible account of the efI'ects of the other channels
will be a topic for future study.

All the physical input comes from assuming a form for
T(z). Rather than work with T(z), which is a complex
quantity, we work with a more physical quantity, S(p, z),
the signer transform of TtT:

( bz1 ( bz)
S(p, z)—: d bz exp(ipbz) Tt

~

z+ —
~

T
~

z ——~.2r
(2.3)

If one knew the quantum-mechanical matrix elements
T(z), one could find S(p, z) exactly. Detailed knowledge
of the quantum-mechanical matrix elements is impossi-
ble, therefore one must assume a form of S(p, z) which
incorporates the salient space-time features of the emis-
sion. Here we have assumed that the matrix elements are
Lorentz-invariant quantities (e.g. , Lagrangian elements).

The four-momenta p and q are on shell which means
that the emission function S(z, (p + q)/2) is evaluated
off shell since E((p + q)/2) does not necessarily equal

[E(p) + E(&)]/2.
Usually one is interested in quantities where one has

Qq(p p)
—f dzz

(

P 2 z
(

zl'tz zi

r
(2.4)

The nth order line diagrams can be found by convo-
luting Gg.

d k2d k3 d„"
G-(p q) = ". "G (p k.)

2 3 n

xGi(kz, ks) . Gi(k„, q). (2.5)

The ring diagrams C„can be found by integrating
G-(» p):

1 d pC„= — G„(p,p).
n Ep

(2 6)

Relative symmetrization weights for emitting a number
of pions N are given by the sum ~(N) of all ring diagrams
C(i), connected or disconnected, such that the resulting
order is N. The algorithm for performing this sum is
described in [8]. The sum can be written as follows where

i~ refers to the number of time the ring diagram of order

j appears in a given diagram:

Q&2
1 2

(i1,i2, ."iN, s.t.i1+2.ig+

Q&N
N

ZN-

(2.7)

The differential probability for a pion to be emitted
with momentum p &om an %-particle event is

integrated over most of the n-particle observables. For
example, one might wish to know single-body spectra or
the multiplicity distribution. One can write such quanti-
ties in terms of simple line diagrams and ring diagrams
which are denoted by G„(p, q) and C„. The line dia-
grams of order n consist of a straight line with n dots
which break the line into n+ 1 segments. The momenta

p and q are associated with incoming and outgoing seg-
ments. The intermediate segments are labeled k2 through
k„and the dots are labeled zq through x„. Associated
with each dot is an emission factor S( 2 (kg +kz), z) and a
phase factor exp[i(p —

q) z]. All quantities are constructed
from the lowest order diagram Gq,

Epd P Gg(p, p)(u(N —1) + G2(p, p)(u(N —2) + . G)v(p, p)~(0)
dp' cu(N)

(2 8)
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Assuming a form of S(p, z) all observables can be
calculated in closed form given that the integrations
required to find C„and G„(p, q) can be performed.
These integrals can be calculated analytically for non-
relativistic thermal models with simple Gaussian or
square-well geometries, but for realistic models the in-
tegration must be done numerically.

We assume an emission function consistent with a
Bjorken geometry. The Bjorken model describes a ther-
mal source expanding along the beam axis with a veloc-
ity gradient 1/7 p Th.e emission times are chosen to be «
where the times are measured in the local &arne of the
emitting matter. By constraining the local emission time
to be equal to the inverse velocity gradient, the model
is invariant to boosts along the beam axis, aside &om
the constraining of the rapidities of the thermal sources
through the stopping parameter 4 described below.

This model incorporates thermal behavior and collec-
tive expansion along the beam axis, but neglects several
other aspects of the behavior. Usually, a significant &ac-
tion of pions emitted in high-energy hadronic collisions
come &om longer-lived resonances. However, we are ex-
ploring whether laserlike behavior is responsible for the
high values of dN/dy and the isospin fluctuation, in which
case most of the multiplicity is due to the enhancement
of high-multiplicity events caused by Bose weighting. It
is therefore warranted to consider only the prompt pions
as the majority of those emitted in such an event and
to consider pions &om longer-lived resonances as a small
&action, whose emission is not noticeably enhanced by
identical-particle statistics. Of course, even prompt pi-
ons are not emitted all at the same proper time 7 p, but
that aspect of the emission is accounted for by choosing
values of the transverse radius R larger than the actual
physical values. Transverse expansion is also absent from

7 = ')))/t —z (7 = sinh (z/q ). (2.10)

The last term in Eq. (2.9) constrains the rapidities
of the sources to within 6 of zero. This particular form
is a bit more sharply cut ofF than a Gaussian, and was
chosen such that the quantity Gi(p, q) could be found
analytically. The primed quantities refer to those mea-
sured in the rest frame of the matter at the position z.
The matter is assumed to be moving with a relativis-
tic velocity pv = sinh()7). The zeroth component of the
four-momentum is given by

pI) ——cosh(g) po —sinh(g) p, . (2.11)

The momenta that enter the definition of S(p, z) are
evaluated in the local emitting &arne, ensuring that
S(p, z), G„(p, q), C„, and u(n) are all Lorentz invariant.

As mentioned above this form of S(p, z) allows Gi(p, q)
to be found analytically.

G ( )
i( ) 1/a

x [ck(yi)) yq, mi)) mq) + ck(yq) yi) mq))mi)) j

+ „—„R (2.12)

this description. The amount of transverse expansion
is unknown, but by studying the eEects of longitudinal
expansion one can infer the consequences of transverse
expansion.

—p T z +y2 2

p(p, e) = p, e e ~ E(e —co) exp(—

(cosh(p) —))
)x exp

Here the beam coordinate z and the time t have been
replaced by the variables w and g which are defined as

where

(cosh(y~)
o((y~) yq, m» mq) = m„ I

+ a+ b cosh(yz —
yq) I

1
c =

4 + 2ab cosh(y~ —yq) + a2 + b2 + 2a cosh(y„)/42 + 2b cosh(yq)/D2

(1
a = mn

I
i«

I
) b = mq

I
+i«~ l2T ) l2T

yz and yq refer to the rapidities of the two particles, and
m& and mq are the transverse masses.

p- &

yp ——sinh '
Iimp

m = p2+p2+m . (2.13)

Answers will depend on five quantities: the tempera-
ture T, the Bjorken time 7, the transverse size R, the
particle number N, and the stopping parameter A which

I

was discussed above. All the calculations performed in
this paper were done assuming a temperature of 175 MeV
which is in the right neighborhood to explain transverse-
energy spectra in high-energy collisions. The transverse
size R and the Bjorken time 7 should be in the neigh-
borhood of 1 —2 fm for hadron induced collisions. We
arbitrarily choose R = er to reduce the parameter space.
The breakup density depends on R, v, and the particle
number N. Rather than referring to a source size by R
and ~ we will refer to the corresponding breakup density,
as it allows a clearer understanding for how small of a
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system we are considering and it allows comparison of
systems with difI'erent stopping parameters at the same
breakup density.

We are now left with the seemingly straightforward
task of calculating the quantities G„(p, q) and C„ from

Gi (p, q), which is known analytically. To calculate
G~(p, q) &om Eq. (2.5), one must numerically integrate
over n —1 internal momenta. For high order diagrams
this is more diKcult than it 6rst appears because, in or-
der for a combination of the n —1 internal momenta to
contribute, all n momenta must be within 1/B of one
another. This means that, for higher order quantities,
a random sampling Monte Carlo routine fails. In fact
for order n ) 5 straightforward Monte Carlo methods
could not converge in acceptable amounts of CPU time.
A Metropolis method, on the other hand, can sample
a distribution more intelligently. However, Metropolis
algorithms are only good for sampling averages of quan-
tities according to a distribution, and are not so conve-
nient for performing integrals. One can, however, write
the integral we are performing as an expectation of the
integrand we are interested in, divided by an integrand
we know how to integrate analytically. The answer we

want can then be written as this expectation multiplied
by the integral of the integrand we know how to perform
analytically. For example, if the integral I wish to per-
form is I, which requires integration over n coordinates
of A(ki, k2, . . . , k„), and an integral I, know how to per-
form is Ip, which is an integral over the same coordinates
of Ap(ki) k2) ..., k„), I can write I as

I = dkgdk2 - dk„A k )

f dki dk2 dk)k Ap (k)= Ip
Ip

(2.i4)

Ap k
(2.i5)

where

Ip = dkydk2 ~ ~ ~ dk Ap k (2.i6)

A(k) = Gi (ki) k2)G1(k2) ks). . . Gi (k„)ki)) (2.17)

Ap(k) = H(k„k2)H(k2, ks). . . H(k„, ki) [G„(k)k)]

(2.18)

where

and (E) refers to the average of F according to the dis-
tribution Ap ~ One can now calculate the expectation in
Eq. (2.15) using Metropolis methods, multiply this ex-
pectation by Ip, and we are done. The trick is 6nding
a distribution Ap which is calculable analytically, is suf-

ficiently close to A such that the Metropolis algorithm
can be performed in a reasonable time, and never has
any regions where A/Ap becomes large.

For calculating C as in Eq. (2.6), the corresponding
integrands are

(2.19)

The parameter S is chosen such that the procedure
converges most efficiently. Since H(k, , k; 1) in the pre-
vious equation depends only on the relative coordinates,
we can see that Ip will factorize into an integral over the
n —1 relative momenta which can be done analytically
and an integral over the average momentum k which can
be done numerically:

I() —— ] dk G„(k, k)n' (2.20)

Using the procedure outlined above, C„becomes

C„=Ip- G(kl k2) G(k2 ks) ' ' ' G(k ki) 2.21
n p

The Metropolis algorithm consists of averaging the
quantity in brackets over a path in momentum space
found by taking a random walk whose direction is
weighted by Ap.

To obtain G„(p,p) one follows a similar procedure.

1 G(ki)k2)G(k2)ks) G(k„, ki)
n p)p — p n

x (k(p —k, ) + b(p —k2) +k(p —ks) ))
(2.22)

By inspecting Eq. (2.22) one sees that calculating G„
can be performed during the calculation of C„by simply
testing whether any of the momenta are in the neighbor-
hood of p.

Using this procedure, G„(p,p) and C„were calculated
satisfactorily for values of n up to around 10. Beyond
n = 10 Huctuations grow such that C2p required several
hours of CPU time and was still uncertain by a factor of 2.
Values of C for n greater than 10 were found by extrap-
olating from the values with n from 6 to 10. The form of
the extrapolation was taken from the analytic solution to
the nonrelativistic case solved in [8] which closely resem-
bles an exponential in n. The fit of the two-parameter
extrapolation to the numerically determined values for
n greater than 5 and less than 10 is shown in Fig. 1.
The numerically determined value C2p is also shown on
the figure, illustrating the success of the extrapolation.
To extrapolate to higher values of n in the calculation
of G (p, p) the fitting function was an exponential in n
with parameters a and 6, G„=a exp( —bn).

Diagrams of higher order were responsible for a large
portion of the answer, which makes one cautious in the
extrapolations. However, in testing many different Btting
procedures, the choice of procedure never had more efI'ect

than changing B and v by a few percent. Thus, given the
extreme sensitivity to the B and 7 p parameters which
are uncertain on the order of 25%%u(), the extrapolations are
satisfactory.
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FIG. 1. The closed diagrams C(i) of a given order i. This
was performed for the example of 4 = 3.0, R = c7 = 1.22 fm.
Due to numerical limitations, higher order diagrams cannot be
calculated numerically and must be interpolated from lower
order diagrams. Numerically calculated diagrams are shown

by diamonds, while the interpolation is shown by the solid
line. The two-parameter interpolation, which was fitted for
values of i from 6 to 10, is used to obtain values of C(i) for i
greater than 10. The interpolation is justified by the compar-
ison of the interpolated value to the numerically determined
value at i = 20. Numerical auctuations of C(i) for values
of i less than or equal to 10 are smaller than the size of the
symbols.

III. SINGLE-PARTICLE SPECTRA

Bose symmetrization enhances emission of low-energy
particles. The most fundamental example of such effects
is the difference of Planck's blackbody spectrum with re-
spect to an exponential. Symmetrization distortions for
a 6nite system with 6xed particle number were calcu-
lated analytically in the context of a simple model in
[8,9]. This model was a nonrelativistic source of Gaus-
sian extent in space and instantaneous in time. The most
important characteristic of high-energy collisions which
was missing in the analytically solvable model is the lack
of collective expansion. This is addressed in the Bjorken-
like model described in the previous section, where there
is expansion along the beam axis, and the expansion is
described by a velocity gradient 1/7p

For all the calculations described in this paper the as-
sumed temperature is 175 MeV. Symmetrization effects
depend critically on the values of R and v. All the cal-
culations shown here will assume R = r; therefore the
density scales as R . For a given multiplicity, the den-
sity is also determined by A. The overall extent of the
source in the beam direction scales as 7 A for small values
of L. Rather than referring to values of R and v we refer
to calculations by the resulting breakup density at the
origin, p „.Thus when we compare symmetrization ef-
fects for different values of the stopping parameter A we
compare for the same p . This means that larger val-
ues of A will be using smaller values of R and w to attain
the same p . Figure 2 illustrates how pm~ depends on

FIG. 2. The maximum density given 60 pions distributed
with a transverse radius R and a proper time er = R for
several values of the stopping parameter A. Small values of
4 confine the emitting sources to a small region of rapidity.
The density at the origin is shown for b, =1.0 (circles), 3.0
(crosses), 6.0 (diamonds), and 10.0 (squares).

R = c7.. One should remember that p „refers to the
breakup density at the origin and that average breakup
densities are less.

Symmetrization corrections to dN/dy are shown in Fig.
3. Normalized to unity, the rapidity distributions for
several values of the stopping parameter 4 are shown in
Fig. 3(a) with the effects of symmetrization neglected. A
250 TeV cosmic ray has a rapidity of approximately 13.
Choosing 6 = 10 corresponds to very little stopping as
the resulting dN/dy extends k6 units of rapidity. Choos-
ing 4 = 1 corresponds to nearly complete stopping and
would be signaled by nearly all the pions being emitted
into the central 3 —4 units of rapidity.

Figure 3(b) illustrates the effects of symmetrization on
the stopping. For this example, R and 7. were chosen
such that sixty pions would result in p „=1.0 fm
CENTAURO events might have multiplicity somewhat
exceeding 60, but some fraction of those would be emitted
from high-energy jets or from long-lived resonances, and
their spectra would not be affected by symmetrization.
The effects of symmetrization will vary as to whether one
is measuring an overpopulated or underpopulated isospin
species. For this example, corrections were calculated
assuming one is viewing an overpopulated species where
40 of the 60 pions have been emitted with that isospin.

From comparing Fig. 3(b) to Fig. 3(a), one sees that
symmetrization enhances the apparent stopping of the
collision, but not by so much as to constitute a signal.
Estimates of stopping for a high-energy hadron incident
on a nuclear target vary widely [11—13].

The transverse-momentum distribution is also dis-
torted by symmetrization, with the greatest amount of
distortion occurring for rapidities near zero in the center
of mass. Looking at a narrow slice in rapidity, the prob-
ability that a pion has a given transverse momentum is
shown in Fig. 4. Again it is assumed that the domi-
nant species is measured, and that 40 of 60 pions have
that isospin. For this example A was set equal to 3.0.
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nomena are caused by symmetrization. If symmetriza-
tion is the cause, Bose distortions to spectra should be
different for overpopulated and underpopulated flavors.
However, such behavior would not prove that the effect
was caused by incoherent sources emitting into outgo-
ing symxnetrized wave functions. A coherent component
would also likely be focused at low momentum.

It is doubtful that cosmic-ray experiments will pro-
vide the statistics necessary for detailed studies of spec-
tra. The possibility of creating such phenomena with
accelerator-based experiments is discussed in the conclu-
sion. where

1
Is4( = l(a. b)(c. d) + (a. cg(b. d5gZ,

+(d. d)(b cq)),

Iu4) =

lb ) =
Z {12(d b)(d d)

—(d . f:)(b . dg —(d .d) (b . cg) ),
1

Z
a c b. d —a d b c0

(4.2)

Z, =5, Zg ——4, Z„=4/3.

IV. CONSTRAINING EMISSION TO ISOSCALAR
PAIRS

ls2) = l(a. b)). (4.1)

The vector indices refer to the three isospin states while
a and b denote the outgoing momentum states. It as-
sumed that we are working in the "xyO" basis rather
than the "+ —0" basis. We only calculate observables
based on the total pion number and the number of neu-
tral pions, which are not affected by the choice of basis.
The "xy0" basis is more convenient as all three flavors
are treated on an equal footing. The state is normalized
given the choice (ata ) = 3 ~ . For the case where four
pions are emitted there are three forms:

It was shown in Ref. [9] that symmetrization can
explain broadened isospin distributions, but explaining
events with very large isospin imbalances requires as-
suxnptions regarding isospin constraints. It was shown
that, by assuming that emitting N pions factorized into
the emission of N/2 isoscalar pairs, events with a large
isospin imbalance become common. Before discussing
the results of the calculations, I review the motivation
for constraining the isospin coxnpositions.

In a CENTAURO event where the nucleon-nucleon
center-of-mass energy is in the neighborhood of 600 GeV,
most produced particles at midrapidity originate &om
gluons [14]. At this energy a nucleon's structure func-
tion might contain 20 gluons with energies greater than
1 GeV. All pions arising Rom such collisions must be
in an isosinglet, and since g-parity is conserved only an
even number of pions can be emitted. A typical pion
multiplicity &om gluons hadronizing xnight be 4 or 6.
Other processes that radiate pions such as Pomerons or
a u field might also tend to radiate a small number of
pions in an isosinglet. If a quark-gluon plasma was cre-
ated with an equilibrium quark composition, the isosin-
glet constraint would be over a xnuch larger &action of
the distribution. We wish to study the importance of
performing the isospin constraint pairwise as was done
in Ref. [9], four at a time, or over the entire distribution.

For the exaxnple of two pions emitted in an isosinglet,
there is only one possible form for the isospin portion of
the outgoing wave function:

The first elexnent is coxnpletely symmetric under per-
mutation, while the other forms are part antisymmetric,
which means that their momentum-space wave functions
must be antisymmetric to compensate. Thus, when all
pions have the saxne momentum, only the first matrix
element form is allowed. The first form is the only one
of the three that allows all six pions to have the same
flavor.

For the case of six pions, there are 15 isosinglet forms.
Again, only the purely symmetric state

I
ss) allows all the

pions to have the saxne flavor. For the case of 20 pions,
there are over 13 million isosinglet forms of which only
the symmetric form allows all pions to have the same
flavor. If all forms are equally likely the chance that an
N-pion state will lead to all neutral pions is given by

I (&~ laob() "o)I' 3"N/2
all neutral- ar

~ &forms
(4 3)

where nq„, ——(N —1)!!is the number of terms required
to construct the purely symmetric state IsN), and Nf,
is the number of isosinglet forms which exist for N pions.
The number of forms can be found by considering the
number of states with projection m, = 0 and subtracting
the number of states with projection m = 1. These
numbers are straightforward to calculate by counting the
number of ways N values of 1, —1, and 0 can be arranged
to form a total of m, .

The normalization Z, is dificult to calculate because
the various (N —1)!!terms that comprise ls„) are not
orthogonal. For instance,

((a.b)(c. d)l(a b)(c d)) = 1, .

((a.b)(c. d)l(a c)(b. d)) = s.

(4.4)

(4.5)

For an example with N particles, the challenge is to
count how many terxns have a given number of permuta-
tions. Every matrix element can be factorized into prod-
ucts of purely cyclic elements of order N made up of
n = N/2 dot products,
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((aq bq)(a2 . b2)(as bs) (a„.b„)~(az . b2)(a2 . bs). . . (a„q b„)(a bq)) = (4.6)

We define C(n) as the sum of all cyclic permutations
of n dot products, divided by 2n,

(4.7)

The last term along with the factor (2n)! which was

divided out in the definition would count the number
of ways to arrange 2n objects in a cyclic manner. The
factor of 1/(2n) accounts for the overcounting caused by
rotating labels.

We can now express the matrix element normalization
factor ZN as the sum of all possible products of cyclic
graphs:

ZN =Nt
n1,n2, " s.t.n1+2n2+3n3+ "=N/2

C(1)"'

C(2)"' C(N/2)" Ny'

n2! nN/2 ~

(4.8)

204

103

654

102

101

This sum looks identical to the diagrammatic sum used
in Eq. (2.7). Thus using the same techniques as in [81
the sum of all diagrams can now be calculated.

If there are no isospin constraints and all isospins are
chosen randomly, the probability of all N pions being
neutral is (1/3) . If isospin is constrained to be zero
using pairwise constraints, the probability of all the pi-
ons being neutral is (1/3) ~ . The enhancement due to
the pairwise constraint, P u „,„t, i/(1/3)~, is 3 ~ and is
illustrated in Fig. 6. If the constraint is performed by al-

lowing all N-pion isosinglets to be populated with equal
probability, the enhancement calculated with Eq. (4.4)
is weaker as can be seen in Fig. 6. The enhancement
scales as N / for large N.

Prom viewing Fig. 6, one can sense the importance
of constraining the isospin of pions to be a combination

I

of many isosinglets rather than constraining the overall
isospin. A detailed study of hadronization from gluon-

gluon scattering could clear up the question. As two

gluons collide subsequent branchings are likely to remain
in the gluonic sector. Following a vertex where quark-
antiquark pairs are created and then branch out, the re-
sulting mesons must be constrained to an isosinglet. If
quarks are exchanged with other branches, the isospin
constraint could be spread over more particles. Thus in
relativistic heavy-ion collisions, where created quarks are
likely to interact many times, assumptions about emit-
ting through isoscalar pairs would be unwarranted.

The existence of heavier resonances also detracts from
symmetrization. For instance, an isosinglet branch can
decay into two p's or two ~'s. These isospin structures
are included in the list of four- and six-pion isospin forms,
but the existence of the resonances enhances the emission
in these structures. In most statistical models or string
models, pions from resonances account for over half of the
total pions. Production in these channels works against
large imbalances in the isospin composition. For exam-
ple, two u's will always decay into two pions of each
Havor.

Several qualitative reasons can be given for explaining
why an undue portion of the hadronization of a few pions
could be in isosinglet pairs.

(1) Emission of heavy mesons like the p and ur through
gluonic channels could be suppressed by the fact that
they must be produced pairwise to keep the matter in
an isosinglet. This penalty for producing more massive
mesons would be especially severe if supercooling occurs.

(2) If gluonic rnatter cools by emitting Pomerons, the
Pomerons naturally emit isoscalar pairs.

(3) The chiral condensate, referred to as the o field in
the linear sigma model, could Buctuate rapidly due to
the restoration of chiral symmetry. Radiation from the
o. field would produce isoscalar pairs.

(4) Since resonances decay away from the collision re-

gion, their emission is less enhanced by statistics, reduc-
ing the fraction of pions emitted through such channels.

Symmetrization will enhance emission through
isoscalar pairs relative to heavier resonances. To illus-

trate this we consider a binomial multiplicity distribution
of isoscalar pairs with an average of 30 and a cutofF of
120. This is shown in Fig. 7 along with symmetrization-
weighted distributions. Symmetrization-weighted distri-
butions are found by calculating the average symmetriza-
tion enhancement vo(N) for N pions:

100
0

I

10

N

20

FIG. 6. Constraining N pions to be in an isosinglet sin-

glet enhances the probability of creating all neutral pions. If
the constraint is performed pairwise the enhancement to the
probability of having all neutral pions is 3 (diamonds). If
all N-particle isoscalar channels are populated equally, the
enhancement is weaker (circles).

{N/2)!
. ur (2n~) u) (2ns)(u(2n, )

{N/2)!
~n~+n„+n =N/2 n~!n&!n, !

(4-9)

where ur(n) is the symmetrization enhancement for emit-
ting n identical particles described in Eq. (2.7). The
symmetrization-weighted multiplicity distribution is then
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0.00
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0.00:
0 50 100

FIG. 7. Multiplicity distributions assuming particles are
created pairwise according to a binomial distribution with a
cutoK of 120 and a mean of 30 when statistics are neglected
(circles). Assuming b, = 3.0, symmetrization-corrected dis-
tributions are shown for R = c7 = 1.54 fm (crosses), 1.22
fm (diamonds), and 1.07 fm (squares). For suKciently com-

pact phase-space distributions, symmetrization can greatly
enhance the probability of high-multiplicity events.

FIG. 8. Multiplicity distributions assuming particles are
created pairwise according to a binomial distribution with a
cutoff of 120 and a mean multiplicity of either 20 (circles) or
40 (diamonds). Assuming b, = 3.0 and R = c7 = 1.22 fm,
symmetrization-corrected distributions are shown for means
of 20 (crosses) or 40 (squares). Significant enhancement to
the multiplicity distribution will only occur for distributions
with suKcient multiplicity in the base distributions.

1 (N~~/2). (N/2)
Z [(N „—N)/2]!(N/2)!
x(1 —p)( -* )~ ts(N) (4.10)

where Z is a normalization and p is the fraction of the
maximum N „usually emitted when symmetrization
is neglected. The example in Fig. 7 uses N „=120
and pN = 30. Symmetrization corrections were cal-
culated assuming 6 = 3 and that R and v were chosen
to give breakup densities of 0.5 fm, 1.0 fm, and 1.5
fm . One sees that for dense systems emission through
isoscalar pairs could be double what one would expect
without symmetrization.

The average number of pions emitted in a hadron-
hadron collision at 250 TeV energy would be about
40 [15], roughly half the multiplicity of a CENTAURO
event. Assuming the incident cosmic ray was to travel
through the center of a nucleus instead of colliding with
a single nucleon, the expected multiplicity could easily
surpass 60. If the expected multiplicity was 60, and half
of the pions came through isoscalar pairs, symmetriza-
tion could aH'ect the expected multiplicity through the
isoscalar-pair channel as shown in Fig. 7. One might then
expect 60 pions to be emitted in isoscalar pairs, while an-
other 30 came from other channels such as long-lived res-
onances. Furthermore, the enhancement into isoscalar-
pair channels might come at the expense of emission
through other channels.

The most questionable part of the preceding scenario
is the assumption that 30 pions could be emitted as
isoscalar pairs in the absence of symmetrization. Figure
8 illustrates how the multiplicity distribution is affected
assuming 20 or 40 pions was the original average multi-
plicity in this channel. One sees that, for symmetriza-
tion to play a big part in pushing emission through such

isoscalar-pair channels, the channel must be responsible
for a large &action of the emission, roughly half, in the
absence of symmetrization.

From the calculations described in the next section,
one sees that large isospin imbalances can be expected
to occur assuming 60 pions are emitted through isoscalar
pairs. Despite the arbitrary nature of the examples dis-
cussed above, several clear conclusions can be reached.
First, the assumption that pions are emitted in isoscalar
pairs or perhaps isoscalar quadruples is essential to ex-
plaining isospin imbalances. Secondly, if microscopic
models could explain roughly half of the pions be-
ing emitted through such channels without exploiting
symmetrization, symmetrization could enhance emission
through these channels such that they comprise a large
fraction of the emission. Intuitively, I End the &action
of 1/2 unreasonable, but only by a factor of 2. However,
given the much more exotic nature of other explanations
where coherent sources are proposed, it does not seem im-
prudent to proceed given these qualifications. Detailed
study of hadronization might clarify this issue.

V. ISOSPIN DISTRIBUTIONS

The principal mystery of CENTAURO's is the isospin
imbalance. Several events have been observed with a
great excess of charged particles, probably pions, at Cha-
caltaya [1]. One event with an excess of neutrals has
been observed at Mt. Fuji [3]. For the calculation in
this section, we assume that 60 pions &om isoscalar-pair
channels are emitted according to the symxnetrization-
weighted relativistic Bjorken model described earlier.
Certainly some pions would be emitted in other channels
with very balanced distributions. But if the 60 isoscalar-
pair pions comprise the majority of pions, any large im-
balance in their isospin composition would be reBected
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in the overall composition.
Isospin weights were calculated by weighting the

various isospin compositions by their symmetrization
weights:

1
P(no) =-

2
(N/2)! t' 1„,„,„,l(3(„(,) )IAg Dy AO

x(u(2n )u)(2n„)~(2no).

0.1

For symmetrization to strongly distort the isospin dis-
tribution, breakup densities must be large. Figure 9
shows the isospin distribution for three densities, p
0.5, 1.0, and 1.5 fm . The stopping parameter 6 is
taken to be 3.0. The probability of observing a given
number of neutral pions out of sixty pions is also shown
in Fig. 9 for the case where symmetrization is neglected.
One sees that breakup densities must be of the order of
p „& 1.0 fm if large imbalances are to occur. One
should keep in mind that these values re8ect the max-
imum of the density profile and that average breakup
densities would be less than half of these values.

The dependence of the isospin distributions with re-
spect to the stopping parameter was a prime motiva-
tion for this study. The simple Gaussian model worked
out previously did not incorporate collective expansion.
Given the fact that the isospin composition is a global
measurement and that many of the pions come &om
sources with large relative velocities, it was not obvious
that the breakup density and temperature were the lone
criteria for determining the strength of symmetrization
effects.

Figure 10 shows isospin distributions for four values of
the stopping parameter assuming R and r were chosen
to yield the same central breakup density. The broad-
ening due to symmetrization is more apparent when 4
is small. But the difference due to different values of 4
is small compared to variation induced by changing the

0.0'
0 20 40

S ~
~ ~

n0

FIG. 10. Given sixty pions, the probability of producing
no neutral pions. For each value of 4 the proper time ~ and
transverse radius R are chosen to correspond to a maximum
density of 1.0 fm . The rapidity spreads 4 were chosen
to be 1.0 (crosses), 3.0 (diamonds), 6.0 (squares), 10.0 (up-
right crosses), and the base distribution (circles). The effects
of symmetrization in broadening the isospin distribution are
modestly weaker when there is less stopping, given that ~ and
R are chosen to yield a 6xed maximum density.

breakup density by 10%%up or 20'%%uo. From this we conclude
that, even if pions are emitted over many units of rapid-
ity, symmetrization can strongly increase the chances of
events with large imbalances in the isospin composition.
However, if 6 is large the value of R and 7 necessary
to create large breakup densities becomes small. From
viewing Fig. 2, one sees that, if R and w are constrained
by the dynamics to never be larger than 1.2 fm, values of
6 larger than 4.0 do not permit p „to exceed 1.0 fm
Thus the principal reason that stopping allows stronger
symmetrization effects is in the fact that densities be-
come higher for fixed values of R and 7..

0.8

0.1

0.0:~ ——
0 20

n0
40

~ ~

FIG. 9. Given 60 pions, the probability of creating no neu-
tral pions. The probabilities are shown assuming E =3.0, and
that the maximum breakup densities are 0.5 fm (crosses),
1.0 fm (diamonds) and 1.5 fm (squares). The base distri-
bution where symmetrization is ignored (circles) corresponds
to a low break-up density.

VI. CONCLUSIONS

Confident predictions of symmetrization phenomena
can not be made without detailed microscopic knowl-
edge which is currently not available. Assuming that
CENTAURO phenomena occur when a hadron collides
with a nitrogen nucleus in the atmosphere, one needs
to know both the expected values of dN/dy Appropri-.
ate parameters for the transverse size are unknown as
well, but should certainly be in the neighborhood of 1
fm. If dN/dy, R, and w are known, we can begin to esti-
mate symmetrization efFects. Furthermore, with respect
to calculating the chance of observing large isospin imbal-
ances, an understanding of the microscopic mechanism
for converting partons (gluons) into hadrons is essential.
In particular, one needs to know if a significant &action
of hadrons can be constrained to having been formed in
isoscalar pairs, or perhaps quadruples.

Despite the inescapable vagueness due to choosing var-
ious parameters, we can reach several firm conclusions.

(1) Symmetrization effects can be strong, even when
the sources of particles are spread over several units of
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rapidity, provided breakup densities are in the neighbor-
hood of 1.0 fm s. These high densities are not unphysical
given that the cosmic ray hits the center of an atmo-
spheric nucleus.

(2) In order for imbalances of the isospin distribution
to occur due to symmetrization, constraining the emis-
sion of a large portion of the pions to be isosinglet pairs
must be justified. If in the absence of symmetrization
eHects half of the pions come &om such channels, sym-
metrization can push the &action emitted in isosinglet
pairs to a clear majority.

(3) If symmetrization effects are strong, several signals
should exist in the spectra as well. Even in the pres-
ence of collective expansion, the dominant species of pion
should be more concentrated at low transverse momenta
and at midrapidity than the underpopulated species.

(4) Laboratory experiments should be performed with
nuclear targets. The most efBcient means of producing
higher densities is with heavier targets rather than using
more energetic beams. If the key to producing CEN-
TAURO behavior is overpopulating phase space, a 2.0
GeV proton beam incident on a fixed lead target might
work as well as a 250 TeV cosmic ray incident on a light
atmospheric nucleus.

Other models of CENTAURO behavior are based
on assumptions that pions are emitted from coherent
sources, whereas the calculations contained in this paper

are based on assumptions that sources are incoherent.
In this sense our goal is to see if spectacular behavior
in the laboratory can be explained by models that do
not assume new physics. Our answer is yes, given the
qualifications that breakup densities are high and that
most pions are emitted through isoscalar pairs. The first
assumption does not seem unreasonable, especially if it
can be shown that CENTAURO behavior occurs only
when phase-space densities are high. Given the sort of
statistics one would expect &om terrestrial experiments,
phase-space densities can be inferred from interferome-
try and singles measurements [16]. The second assump-
tion regarding isospin constraints is more questionable.
Detailed microscopic models of hadronization might clar-
ify the issue. It is essential that this line of research is
followed. Before CENTAURO behavior can be shown
as proof of novel mechanisms, it must be demonstrated
that such behavior is not the result of common mecha-
nisms combined with the indisputable fact that pions are
bosons.
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