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For diferent Skyrme-type forces we investigate the equation of state of homogeneous nuclear
matter under the conditions appropriate to a collapsing star. We find that the stifFness of the
equation of state increases significantly as the symmetry coefficent J of nuclear matter increases
over the range of its experimental uncertainty. We present analytic expressions for the adiabatic
index I' permitting the elimination of all numerical derivatives.
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I. INTRODUCTION

Ke are involved in a program to develop a microscopic
theory of nuclear systems applicable to the wide vari-

ety of situations encountered at subnuclear and nuclear
densities during stellar collapse and type-II supernova
explosions. The main achievement so far has been the
development for the Grst time of a mass formula based
entirely on microscopic forces, the ETFSI-1 mass formula

[1—5]. The astrophysical interest of such a mass formula
lies in the fact that the r process of nucleosynthesis de-
pends crucially on the binding energies of nuclei that are
so neutron-rich that there is no hope of being able to
measure them in the laboratory. It is thus of the great-
est importance to be able to make reliable extrapolations
of masses away &om the known region, relatively close to
the stability line, out towards the neutron-drip line.

The ETFSI method is essentially a high-speed ap-
proximation to the Hartree-Fock (HF) method, with the
macroscopic part treated by the extended Thomas-Fermi
(ETF) method [6,7], and shell corrections calculated by
the so-called Strutinsky-integral (SI) method [1]. Pairing
is handled in the BCS approximation with a b-function
force. Although this is strictly a microscopic-macroscopic
mass formula, there is a much greater coherence between
the two parts than is the case with mass formulas based
on the drop(-let) model, since the same Skyrme force un-

derlies both parts. In fact, it has been shown [1,2] that
the ETFSI method is equivalent to the HF method in
the sense that when the two methods fit the same form
of Skyrme force to the mass data they give essentially
the same extrapolation. This presumably accounts for
the fact that with just nine parameters the ETFSI mass
formula fits the 1492 mass data for A & 36 with a rms
error of only 0.736 MeV [4].

In obtaining this fit particular attention was paid to
the nuclear-matter symmetry coeKcient J, since the
mass formula is intended to be applied especially in sit-
uations of large neutron excess [4]. The optimal fit to
absolute masses that we have obtained has J = 27.0
MeV (parametrization SkSC4), and the mass table [4,5]

is based on this value, but, as will be discussed in Sec. II,
the data are not very decisive on this point, and it is hard
to exclude any value between 26 and 32 MeV.

The main objective of this paper is to study the extent
to which this ambiguity in J is relevant to the equation
of state during the collapse stage that precedes a super-
nova explosion. As has been described many times (see,
for example, the review of Bethe [8]), when the iron core
of a massive star (M ) 8M~) starts to collapse, nuclei
that are stable under normal terrestrial conditions will
begin to capture electrons, forming thereby nuclei that
are highly neutron-rich and yet nevertheless stable under
the conditions of rising density. Eventually, as the nuclei
come closer and closer together, bridges will form be-
tween them, and the entire core of the star will resemble
a Swiss cheese, the holes being filled with a neutron va-

por. Finally, when the density is close to that of ordinary
nuclei, p 0.16 fm = 2.6 x 10 gcm, this so-called
bubble phase goes over into the homogeneous phase of
nuclear matter. (In this stellar situation the protons in
the nuclear matter are rigorously neutralized by the elec-
trons that are present: this neutralized nuclear matter,
which can exist in reality, is to be distinguished from
the hypothetical charge-free nuclear matter in which the
Coulomb forces are imagined to be switched off'. )

The electron concentration per nucleon Y, in this fi-

nal stage of the collapse, immediately prior to bounce, is
much higher than it would be but for the onset of neu-
trino trapping, which begins when the density has risen
to about 6 x 10 g cm, at which point Y, has fallen
from its original value of 0.464 (corresponding to s Fe)
to about 0.4. Thereafter the total lepton concentration
Yg remains constant, and in fact electron capture soon
comes to a halt. In this paper we are interested only
in what happens after this point has been reached, and
will suppose a constant electron fraction of Y = 0.33
and a constant neutrino fraction per nucleon of Y
0.07. Furthermore, once neutrino trapping has set in the
collapse will be essentially adiabatic, and thus isentropic,
insofar as thermodynamic equilibrium is maintained. For
the constant value of the entropy per nucleon during this
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stage of the collapse we shall take the fairly typical value
of s = 1.0 (with temperature measured in energy units,
entropy is dimensionless).

Of crucial importance for the collapse is the adiabatic
index, defined by

/BlnPI

k ~in~) s,v.

with the derivative evaluated under the conditions of con-
stant entropy and electron &action that we assume to
prevail. The stability of a star depends on the value of I'
in the core being larger than 3, collapse beginning when
I' falls below 3. However, as nuclear densities are ap-
proached in the core I' will rise above 3 again, with the
result that the collapse will come rapidly to a halt, and
be reversed into a bounce that may lead to a supernova
explosion.

For two reasons we shall confine ourselves in the
present paper to the final stage in which the core con-
sists of homogeneous nuclear matter. (i) It is in this
stage of the collapse that the highest densities are en-
countered, and therefore where the greatest sensitivity

I

to the symxnetry coefficient (and to other properties of
the nuclear force) may be expected. (Note, however, that
we do not consider the supernuclear densities that may
be briefly encountered immediately before bounce, since
our forces are quite inappropriate for this regime. ) (ii)
The calculations are simplest in the homogeneous phase,
and in fact can be performed analytically almost to the
end (note that the ETF and HF formalisms are identical
in this situation). Because of the double difFerentiation
that is involved in the computation of the adiabatic in-
dex I this should lead to a considerable enhancement of
the accuracy.

In Sec. II we present the forces that are used in this
study, while Sec. III is devoted to the derivation of the
analytical expression for the pressure and adiabatic index
in the homogeneous phase. The results and conclusions
will be found in Sec. IV.

II. THE FORCES

We limit ourselves to Skyrme-type forces, the most
general form considered here being

xi,~
= to(1+ zoP )b(r;z) + ti(1+ zxP ) (p; b(r;~) + H.c.) + t2(1 + z2P )—p;z b(r;~) p,~2h~

1
CR CX+-ts(I+»P )(o(&% + A, ) + b& )b("i) + —2~o(~'+ ~i)'p'g "b(r'i)p'i. (2.1)

TABLE I. Parameters of the ETFSI Skyrme forces.

SkSC4 SkSC5 SkSC6 SkSC10

to (MeV fm )
ti (MeVfm )
t2 (MeV fm )
t3 (MeVfm )

Xo

&1

X2

X3
Wp (MeVfm )

a
b

e(mass) (MeV)
e(S„)
~(qs)

-1789.42
283.467
-283.467
12782.3

0.790000
-0.5
-0.5

1.13871
124.877

0.333333
1
0

0.736
0.524
0.683

-1788.17
281.931
-281.931
12771.9

0.980000
-0.5
-0.5

1.38526
126.219

0.333333
1
0

0.762
0.535
0.699

-1792.47
291.964
-291.964
12805.7

0.370038
-0.5
-0.5

0.581085
126.014

0.333333
1
0

0.794
0.518
0.686

-1795.12
298.950
-298.950
1282?.7

0.159124
-0.5
-0.5

0.292918
127.137

0.333333
1
0

0.893
0.525
0.702

For the parameters a and b appearing in the density-
dependent term the usual choice is a = 0, b = 1, but for
the SkSC forces used in the ETFSI project (see Table I)
we have taken rather a = 1, b = 0. This latter choice
is more physically reasonable, since it implies that the
density dependence of the effective interaction between
two protons, for example, depends only on the proton
density (see Ref. [1] for a fuller discussion). The subscript
q in these terms denotes n or p, according to whether the
term in question relates to neutrons or protons.

The last terxn in Eq. (2.1), the two-body spin-orbit
force, gives no contribution to homogeneous nuclear mat-
ter, and thus has no role in this paper. For the same
reason we do not present the pairing forces with which
each of the Skyrme forces considered here has to be sup-
plemented for finite-nucleus calculations.

The forces of principal interest in this work are labeled
SkSC4, 5, 6, and 10, all of which have been obtained
within the ETFSI &amework by fitting to the 1492 mass
data for A & 36. The first of these forces has already been
published [4], but not the other three, so for completeness
we list the parameters for all four forces in Table I (the
pairing force, not shown here, is the same for all four
parameter sets, and thus is as in [4]). The parameters
tq, t2, zq, and x2 are related in such a way that the effec-
tive nucleon mass M* is equal to the real nucleon mass
M for all four forces, a choice which not only simplifies
the ETF formalism for finite nuclei but is also close to
optimal for fitting to nuclear masses. The last three lines
of Table I give the rms error in the fit to the data on (i)
the absolute masses, (ii) the neutron-separation energies
S„,and (iii) the beta-decay energies qxx, respectively.

The only essential difference between these four forces
is that in fitting them to the mass data they are con-
strained to different fixed values of the symmetry coef6-
cient J, shown in Table II. We see &orn Table I that the
absolute-mass fit is optimal for J = 27 MeV (set SkSC4),
but that acceptable fits to the absolute masses are found
for J as small as 26 MeV (SkSC5), and as large as 30
MeV (SkSC6); outside this range of J the fits to the ab-
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TABLE II. Nuclear-matter parameters of forces used in
this paper.

TABLE III. Error in calculated masses of doubly
closed-shell nuclei (M,~~, —M,„~t).

SkSC4
SkSC5
SkSC6

SkSC10
SkM
RATP

J (MeV)
27.0
26.0
30.0
32.0
30.0
29.3

M;/M
1.0
1.0
1.0
1.0

0.79
0.67

K (MeV)
234.7
234.4
235.4
235.8
216.7
239.6

K,„(MeV)
-334.9
-392.9
-203.5
-136.6
-155.9
-191.2

16O
40C
48C
132S
208 Pb

-1.8
-1.0
0.4
1.1

-2.0
-1.2
0.6
1.5

-2.5
-1.0
0.7
0.8

-3.1
-1.2
0.9
0.6

0.1
-1.0
-4.1
-8.0
-0.1

0.4
2 ' 5
-1.7
-4.7
-0.2

SkSC4 SkSC5 SkSC6 SkSC10 SkM RATP

g= 1 —2Y, . (2.2)

We have also written

K(rI) = K„+K,r (2 3)

solute masses deteriorate. However, we note that even
for J = 32 MeV (force SkSC10) the fits to the astro-
physically relevant quantities S„and Qp are as good as
for the other forces, so this force is not to be rejected a
priori, and we shall in fact find it to be of some interest.

These four forces are thus well suited to our study of
the sensitivity of the equation of state to the symmetry
coeKcient J. However, it is of interest to compare these
forces not only with each other, but also with some of the
other Skyrme forces that have been widely used for some
years. We will consider just two: the very popular SkM*

[9,10] (note that the former paper refers to this force
as "SkM modified"), and the astrophysically motivated
RATP [11] (both of these forces have a = 0, 6 = 1).

In Table II we list for all six of these forces some of the
relevant nuclear-matter parameters. M,* is the effective
nucleon mass in the charge-symmetric case, g = 0, where

where K(q) is the incompressibility of nuclear matter
with fractional neutron excess g, calculated at the equi-
librium density of symmetric nuclear matter. Thus K„
refers to the symmetric case, and is what is usually re-
ferred to simply as the incompressibility coefBcient; Ksy~
then gives a measure of how the incompressibility varies
as a function of neutron excess.

In Table III we show for all six forces the errors in
the calculated masses of the known doubly closed-shell
nuclei (the SkSC forces are calculated with the ETFSI
method and the other two with the HF method). The
most notable feature of these results is the fact that force
SkM* performs significantly worse than the other forces
for highly neutron-rich nuclei.

While our main concern is with the neutralized nuclear
matter encountered during stellar collapse, it is of some
interest to set the stage by considering a somewhat dif-
ferent astrophysical situation: a neutron star. Since in
this case there has been suKcient time for neutrinos to
escape and for beta-decay equilibrium to be established,
much larger neutron excesses will prevail, and we may
expect a significant dependence on the symmetry coe%-
cient J of the force. Figure 1 shows for each of our forces
except SkSC5 (J = 26 MeV) the energy per nucleon e in
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FIG. 1. Energy per nucleon e as a function
of density p in neutron-star matter.
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FIG. 2. Proton-electron concentration Y,
as a function of density p in neutron-star
matter.
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neutron-star matter at zero temperature as a function of
the density p, while in Fig. 2 we give the corresponding
values of the proton-electron fraction Y, . A strong de-
pendence on J is apparent in Fig. 1, and in fact these
curves bear a close resemblance to those found for pure
neutron matter in Ref. [3), where it was pointed out that
a comparison with neutron-rnatter calculations based on
realistic nucleon-nucleon forces [12] favors a value of J
significantly higher than the 27 MeV that optimizes the
mass fit. Moreover, we see from Fig. 1 that force SkSC4
(J = 27 MeV) implies a nonphysical collapse of neutron
stars (we thank J. M. Lattimer for this remark), while
forces SkSC6 and 10 are quite acceptable from this point
of view. In this paper we leave the value of J open, but
since we found that SkSC5 has an even stronger collapse

I

than SkSC4 in neutron stars we discard it in the follow-

1ng.

III. FORMALISM

A. Equation of state

To determine the total pressure Pq, t of homogeneous
neutralized nuclear matter as a function of the temper-
ature T and the density p one must first determine the
total energy density

(3.1)

The first term here is the contribution associated with
the Skyrme force (2.1),

FP 1 ( 1 i 2 (1
&...= ) .~q+ -to

I
1+ -*o

I

p' —
I

—+*o 1).s,'2M' 2 ( 2 ) (2 )
1 ( 1 ) 1 +2 1 ( 1 'l 2 (1+-at, I+ -» Ip p~p~+ —(I —*s)) (2pe)

+' + —bt,
I

1y-xs Ip' —
I

—+»
I ) p' p ~

6 ( 2 ) " 16 12 ( 2 ) (2 )
(3.2)

where the efFective mass M' is given by and the kinetic-energy density (divided by h /2M~) by

52 h2 1 ( 1 ) ( 1
2M 2M 4

+- t.I-+*.I-t I-+*.
I ~,4 &2 ) E2 )

(3.3)

(2M;l '

2~'( n') (3.4)

In the latter equation we have introduced the Fermi in-
tegral
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OO ~CJ
I (v~) = dx

o 1 + exp(x —pg)
(3.5)

(actually, this is negligible within the approximations al-
ready made). Finally, corresponding to Eq. (3.11) we
have for the neutrino kinetic-energy density

(2M,*) '

2''
i

h' )
(3.6)

(0' ) —1), where v~ is determined by the density accord-
ing to

in which

87r2 (~) ( 3 po
(3.i4)

(3.15)

pq = -p(1 + qn),
2

(3.7)

where q = +1 for n and p, respectively, Eq. (3.2) becomes

(Note that the spin degeneracy of the electron is 2 and
that of the neutrino is 1.)

Turning now to the entropy density, since an
independent-particle picture is being adopted for the par-
ticles we can write

8 = ) 8q+8, +8„. (3.16)

+—& ((2+ )(1 —'9 )+(1— )~ + ('O)}p
48

+—bts(3 —(2xs+ 1)g }p +,
48

Here we have for the entropy density of each type of
nucleon

where
5 h2

q (3.17)

Also Eq. (3.3) becomes

h2

2M* 2Mq 16
+ —[3tg + t2(5+ 4z2)

+qg(&2(1+ 22:2) —&y(1 + 22:y)}]p.

(3.9)

(3.io)

This, taken with Eq. (3.6), means that the only way in
which the nuclear entropy depends on the force is through
the eH'ective mass. In other words, to decouple the tem-
perature from the density in adiabatic processes it is nec-
essary to take a force with a diferent efFective mass. For
the entropy density of the leptons we have

The second term in Eq. (3.1) is the electron kinetic-
energy density, given by

21 go~
3 (hc)'

(3.is)

where

4vr2 (L-)s ( 3 @02, j (3.ii)
and

2
I ov T

6 (hc)
(3.19)

po. ——lic(3vr'Y. p)
' (3.12)

With the density of the Helmholtz free energy given
by

is the electron Fermi energy, and we have neglected terms
O(m2c4/y02 ) and O(7r4T4/p4o ). The corrections associ-
ated with the nonzero rest mass of the electron amount
to less than 0.001%%uo over the range of densities that in-
terest us, while even for temperatures as high as 20 MeV
the higher-order temperature corrections do not exceed
0.5% (see, for example, Appendix C of Ref. [13]). With
nuclear matter always being electrically neutral in stel-
lar conditions there will, of course, be no direct Coulomb
term, but there will be an exchange term given by

+tot = ~tot T~tot

the pressure will be given by

= P„„,+ P, + P. + P...

(3.20)

(3.21)
1(3) &

e'(p~ + p:)
(vr)

(3.13)

in an obvious notation (because of the neutron-proton
interaction it is not possible to define independent partial
pressures for neutrons and protons separately).

Using Eqs. (3.2) and (3.17) we have for the nuclear
pressure
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P„„=——p —
!

—) &~ +Tp !
—

!
—).vqpq + —(3 —(2zo+1)n'} p

2, (8) (1 . g' l , (81
3 I Bp)T„p 2M' ) (Bp)T ~p ) 8

+—its(a+1) ((2+z3)(1 g )+(1 z3)f +2(g)}p
+ + —bt&(a+1) (3 —(2zs+1)g }p

+ .
48 48

The first two terms here become, using Eq. (3.4),

2 . 52 2 . (81 ( 5' l . (8)

(3.22)

2 ti 1 s ( 8 ) (2M') ' (2M*) ~ (BI~(vq)) (Bv, l
3 -2Mq 3x (Bp)

T, ( ~ ) ( 5 ) I
Bp ), &BP)

(3.23)

(note that Mq, and thus vq, depend on both p„and p„). Now using a well-known property of the Fermi integrals

(see, for example, Eq. (6.26) of [10]) we have

(BI& (vq) ) 3 (Bvq )I. (vq) !—
Bp j 2 $8P)T

whence, in view of Eq. (3.6), a strong cancellation occurs in Eq. (3.23), and we are left with

A2

P„„,= —) 7-q+ p) ~,Xq+ —' (3 —(2zo+1)g'}p'

+—ats(a+1) ((2+ zs)(1 —g ) + (1 —zs) f~+2(rl)} p
+ + —bts(a+1) (3 —(2zs+ 1)rP}p +,

48 48

in which, with Eq. (3.10), we have

(3.24)

(3.25)

Then

( 8 ) ( h' ) 1 ( h'
x, =—

qBP) z„g2M') p g2M' 2Mq )
(3.26)

ts 2 2

2Mq) 8! ~, + —(3 —(2z, + I)g }p
. (5 a''- -&-! 32M

q q

+—ats(a+ 1) ((2+ zs)(1 —q ) + (1 —zs) f~+2(rI) }p + + bts(a+ 1—) (3 —(2zs + 1)g }p
+ .

48 48
(3.27)

The two lepton pressures are

1+—
12m2 (~) q 3 p,o, )

(3.28)

'"s '+—
24~2 (~) ( 3 po„)

The Coulomb-exchange pressure is

P„=——
!

—
!

e (Y,p)'.1 (3& '
2 E~)

B. The adiabatic index

(3.29)

(3.30)

The differentiation of the equation of state that is im-
plicit in definition (1.1) of the adiabatic index can be

performed analytically in the case of homogeneous sys-
tems. Using standard properties of partial derivatives we
have

(BlnP, , l p (BP, , )
Blxlp j Pt~t ( Bp )

p (BPt t, 't

Ptot I ( Bp )T
(BP, , I (Bs, ,)
&»), & Bp )~ E»), „

(3.31)

where 8t t denotes the total entropy per nucleon. The
four derivatives appearing here can be obtained quite
straightforwardly from the preceding results.

The following two intermediate results occur in the
case of the nucleonic terms. First, using Eq. (3.24) we
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find

(a~q) 1 (2Mq ) (avql
3p, T '

I

—5&qXq
(ap)&,, 2 & h ) hap) T,,

(3.32)

Second

(ar ) 5Tq 3 (2Mq ) (av )

(avq )
4 ap) r, q

into which we substitute Eq. (3.26) and

(aI. (vq) ) dI. (vq)

ap ) dvq

34'' Pq ( h'

T2I, (v ) p (2M* j

in which

(av, )
EaT) p,,

6~' ( h' l'
T!I,(v, ) (2M; j (3.35)

X 1 + —
2 XqP (3.33) Then for the nuclear term in the pressure we have

and

(ap„„.) 5 (M; q (5 3M,*I (a, &=) —
I

—1 I7qXq+ I

———
I pqT I I

+ &0(3 (2&o+1)n ) p
2 (Mq ) (2 2Mqj i, aP )T„4

+—ats(n + 1)(cr + 2) ((2 + xs)(1 —g ) + (1 —&s)fr+2(rI)) p48

+—|t,(cr + 1)(u+ 2) (3 —(2zs+ 1)ri ) p
+

48
(3.36)

I

while for the neutrino terms

(ap„„,)
aT j

. (5 (5 h' h')t) 2T l(32M, 2M

+
I

——-M' IS"TI qT' I j. I~»)(5 3 M l (avq)
(2 2 Mq) (aT)

(as„„.l
& ap)T, ,

1 5' ( h

p~ 6pT ( 2M*

3 (avq 5
+—

pq

h,
' l

2Mq )

(3.3s)

and

(as „,l 1 . 5 h2 (avqb

g BT ) 2p~- T'2M' ' ' gBTy

As for the nuclear term in the entropy per nucleon we
Gnd

(ap )
&ap)~, ,
(ap )
( aT )

& ap) T,„
(as. l
qaT), „

1 p4o„( 1 m2T'l

is+'(hc)sp ( 3 po2„)
''", l1+-

2
I"ov

18(h )s

Po T
18(hc)s p2

I"ov

6(hc)s p

(ap,.It

& ap )T,„
(ap,.l

aT

4P,.
3 p

IV. RESULTS AND DISCUSSION

Finally, for the Coulomb-exchange pressure

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(ap. )
hap)T, „
(ap, )

(as, i

(as i
(aT), „

p4 ( 17r2T210
9vr' (hc)sP ( 3 Po2, ) '

~oe
9(hc) s

Woe

9(hc)s p2'

~oe
3(hc)s p'

For the electron terms we have

(3.39)

(3.40)

';3.41)

(3.42)

(3.43)

Using the formalism of Sec. III we compute for all of
our forces the adiabatic index I of homogeneous nuclear
matter with an entropy 8 = 1.0 per nucleon, Y = 0.33,
and Y = 0.07. Figure 3 shows our results over the range
of densities for which nuclear matter can be expected to
be homogeneous and the Skyrme-type forces appropri-
ate: towards the lower end of the range there will be a
transition to the bubble phase, while at the upper end of
the range the densities are supernuclear.

Confining our attention at first to the forces SkSC4, 6,
and 10 (J = 27.0, 30.0, and 32.0 MeV, respectively), we
see that there is a significant correlation between I and
J, in that the greater the value of J the greater the value
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FIG. 3. Adiabatic index I' of homoge-

neous neutralised nuclear matter (s = 1.0,
Y,

' = 0.33, Y„' = 0.07), expressed as a func-
tion of density p.
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of I' at a given density. This can easily be understood
in terms of the correlation between J and Key~ that is
apparent in Table II: since K is the same for all three of
these forces the incompressibility K(il), defined by Eq.
(2.3), will be greater the greater the value of J.

Turning now to the force RATP, one finds in this case
that I' lies much higher than for the force SkSC6, even
though the symmetry coeKcients and incompressibilities
of the two forces are almost the same. What we are
seeing here is the role of the eHective mass M*, already
discussed in Ref. [14]. The point is that the lower the
value of M' the higher will be the temperature for a
given entropy and density, as can be seen very simply
from the quasidegenerate limit of Eq. (3.17),

matter of a collapsing star does change appreciably as J
is varied over the range of its experimental uncertainty,
as determined by the fit to the nuclear binding energies.
In the present context this question would seem to be
as important as the correct choice of the effective mass.
From the forces considered here it appears that an in-
crease in the symmetry coeKcient leads to a stiffening of
the equation of state. To eliminate this significant ambi-
guity in the equation of state it will be necessary to find
some way to fix J with greater precision than is possi-
ble &om a fit to the nuclear masses alone. Nevertheless,
fitting the force to nuclear masses remains a necesaary
condition for a reliable equation of state describing the
collapse phase.
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To summarize, we have shown that even if the sensi-
tivity to J is not as strong as in the case of neutron-star
matter (Figs. 1 and 2), the equation of state of the nuclear
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