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Analysis of subthreshold antiproton production in p-nucleus and nucleus-nucleus
collisions in the relativistic Boltzmann-Uehling-Uhlenbeck approach
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We calculate the subthreshold production of antiprotons in the Lorentz-covariant relativistic
Boltzmann-Uehling-Uhlenbeck (RBUU) approach employing a weighted test particle method to
treat the antiproton propagation and absorption nonperturbatively. We find that the antiproton
differential cross sections are highly sensitive to the baryon and antiproton self-energies in the dense
baryonic environment. Adopting the baryon scalar and vector self-energies from the empirical optical
potential for proton-nucleus elastic scattering and from Dirac-Brueckner calculations at higher den-
sity p ) po we examine the differential antiproton spectra as a function of the antiproton self-energy.
A detailed comparison with the available experimental data for p-nucleus and nucleus-nucleus reac-
tions shows that the antiproton feels a moderately at tractive mean field at normal nuclear mat ter
density po which is in line with a dispersive potential extracted from the free annihilation cross
section.

PACS number(s): 25.75.+r, 24.10.Jv, 24.10.Cn, 21.65.+f

I. INTRODUCTION

The production of particles at energies below the
&ee nucleon-nucleon threshold (subthreshold production)
constitutes one of the most promising sources of infor-
mation about the properties of nuclear matter at high
densities since the particles are produced predominantly
during the coinpressed stage at high density [1—4]. An-

tiproton production at energies of a few GeV/nucleon is
the most extreme subthreshold production process and
has been observed in proton-nucleus collisions already
more than 20 years ago [5—7]. Experiments at the JINR
[8] and at the BEVALAC [9,10] have provided, further-
more, the first measurements of subthreshold antiproton
production in nucleus-nucleus collisions. Since then the
problem was taken up again at KEK [11] and GSI [12]
with new detector setups. Various descriptions for these
data have been proposed. Based on thermal models it
has been suggested that the antiproton yield contains
large contributions from AN ~ p+ X, AA ~ p+ X,
and pp m pN production mechanisms [13—15]. Other
models have attempted to explain these data in terms of
multiparticle interactions [16].

In a first chance nucleon-nucleon collision model (as-
suming high-momentum tails consistent with data on
backward proton scattering) Shor et al. [17] succeeded in

reproducing the antiproton yield for the proton-nucleus
case; however, these authors underestimated the yield by
more than 3 orders of magnitude for nucleus-nucleus col-
lisions. This problem was partly resolved by Batko et aL
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[18] who performed the first nonequilibrium p-production
study on the basis of the VUU transport equation. Es-
sential for this success was that in A+ A reactions the
dominant production channel proceeds via an interme-
diate nucleon resonance which allows storing a sizeable
amount of energy that can be used in a subsequent col-
lision for the production of a pp pair. Later on, these
findings were also confirmed by Huang et al. [19].

These results have led to the suggestion that the quasi-
particle properties of the nucleons might be important
for the p production process which becomes more sig-
nificant with increasing nuclear density. Schaffner et al.
[20] found in a static thermal relativistic model, assuming
kinetic and chemical equilibrium, that the p abundance
might be dramatically enhanced when assuming the an-
tiproton self-energy to be given by charge conjugation
of the nucleon self-energy. This leads to strong attrac-
tive vector self-energies for the antiprotons. However, the
above concept lacks unitarity between real and imaginary
part of the p self-energy and thus remains questionable.
Besides this, even in the cr-u model the Pock terms lead
to a suppression of the attractive gr field [21], such that
the production threshold is shifted up in energy again as
compared to the simple model involving charge conjuga-
tion. Furthermore, the assumption of thermal and es-
pecially chemical equilibrium most likely is not fulfilled,
e.g. , in Si+Si collisions around 2 GeV/nucleon [22].

Preliminary results of a fully relativistic transport cal-
culation for antiproton production including p annihila-
tion as well as the change of the quasiparticle properties
in the medium have been reported in [23]. There it was
found that according to the reduced nucleon mass in the
medium the threshold for p production is shifted to lower

energy and the antiproton cross section prior to annihi-
lation becomes enhanced for Si+Si at 2.1 GeV/nucleon
by approximately a factor 70 as compared to a rela-
tivistic cascade calculation where no in-medium e8'ects
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are incorporated. However, all these transport calcula-
tions [18,19,23] suffered from an approximate geometrical
treatment of the very strong annihilation channel and a
neglect of the momentum dependence of the baryon self-
energies.

In our present work we therefore analyze the produc-
tion of antiprotons in the framework of the relativistic
transport theory (RBUU) where antiprotons are prop-
agated explicitly in the respective time-dependent po-
tentials and their annihilation is calculated nonperturba-
tively by means of individual rate equations.

First results have been published in [24]. Results of a
very similar investigation by Li et al. [25] have recently
become available and we compare frequently with the
outcome of this study.

In this respect we first discuss two simple models for
the p self-energy in Sec. II and present the general trans-
port equations for nucleons and antinucleons in Sec. III.
The numerical implementation of p production is pre-
sented in Sec. IV as well as a detailed analysis of the
production process with respect to the self-energies em-

ployed, the systematic with respect to projectile and tar-
get masses, and the individual baryonic production chan-
nels. In Sec. V we present the treatment of p propagation
and annihilation and discuss the geometrical aspects of p
absorption. The explicit comparison of our calculations
with the available experimental data for p+ A and A+ A
reactions is performed in Sec. VI, while a summary on
the p self-energies concludes the paper in Sec. VII.

II. MODELS FOR THE ANTIPROTON
SELF-ENERGY

The dynamics and the properties of particles in a
many-body system strongly depend on their mutual in-
teractions with the surrounding particles and are re-
fIected in their self-energies. While the real part of the
self-energy describes the change of the particle momenta
in the medium, all inelastic reaction channels as well
as elastic-scattering processes are accounted for by the
imaginary part of the self-energy Z(p„,p„j„).If the
self-energy Z is an analytic function of the particle en-

ergy e = po, its imaginary and real part are related up to
a constant by the dispersion relations:

R [Z()] = P™,—d',
7l 0

[Z()] P [ ( )ldi
p

A. A dispersive model

In the following we present a simple model for the real
part of the p self-energy using the dispersion relation (1).
In the low-density limit the imaginary part of the self-

energy (neglecting elastic scattering) is given by the in-

tegral:

2I Z„-(*,II@) = — d II~

x W(II,",II" )f(*,rl~),

where W(II~~, II&) is the probability of an antiproton with
momentum II& to annihilate in a collision with a baryon
of efFective mass m' and momentum II~&. f(z, ll~) is
the baryon phase-space distribution function at space-
time x, whereas the factor 4 in formula (3) arises from
the summation over the spin and isospin degrees of free-
dom. We simplify this expression by considering an an-
tiproton moving in infinite nuclear matter of density po
(= 0.171/fm ) at rest, i.e., IIgy = 0. Both the antipro-
tons and the baryons now are supposed to have effective
masses equal to the rest mass of the nucleon. This leads
to the following analytic expression for the p-annihilation
probability

II- —mN
W(11,",11")= (4)

where 0. b, is the total p-annihilation cross section. Due
to the above assumptions the integral over the baryon
phase-space distribution function and the summation
over the spin and isospin degrees of freedom in Eq. (3)
can be replaced by a multiplication of the annihilation
probability with po. The expression for the imaginary
part of the antiproton self-energy as a function of the
antiproton energy then reads

II„- —mN
1mZ„-(11,') =--

P P 2

ity at subthreshold energies is extremely low, the num-
ber of antiprotons produced in heavy-ion collisions and
proton-nucleus collisions is negligible compared to the
number of baryons involved in the reaction. Thus con-
tributions from elastic p-p scattering to the antiproton
self-energy can be neglected as well as contributions of
p-annihilation channels to the baryon self-energies.

Since we assume particles and antiparticles to be differ-
ent particle species, the integration in the principal-value
integrals (1) and (2) extends only over positive energies.

In the relevant energy regime (1—5 GeV/nucleon) of
heavy-ion collisions and proton-nucleus collisions the self-
energies of baryons and antiprotons are known to be quite
different. The p self-energy is dominated by the antipro-
ton annihilation with baryons (p+ B ~ X) as shown by
low-energy antiproton-nucleon scattering experiments at
LEAR [26,27]. Since the antiproton production probabil-

and the real part of E at density po can be calculated &om
Eq. (3) by employing the dispersion relation (1). We
expect this expression to give a reasonable description
of ImZ& at least for densities up to po where possible
medium corrections to 0 b, are still small.

In order to estimate ReZ(e) at po we adopt the
parametrization from [13] for o~b» i.e. ,

so ( A'sp
o~b. =oo—

I z 2 +&
I8 ((s —sp) + A sp )
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p-p-annihilation
of the self-energies is not included at all, thus inherently
violating the dispersion relations (1, 2).

As an example, we consider the mean-field approx-
imation of the familiar cr —u model [30] where only
momentum-independent vector U„"(x)and scalar parts
U, (x) of the self-energies are taken into account. The
equation of motion for a fermion spinor then reads

50—
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FIG. 1. Free annihilation cross section for p+p —+ X. Dots:
experimental data from [28]; solid line: parametrization (6).

while the equation of motion for antiparticles is obtained
by applying the charge conjugation operator to this equa-
tion. As a consequence the scalar part of the self-energy
is the same for particles and antiparticles, while the vec-
tor part of the antiparticle potential changes the sign

with the constants cro ——120 mb, A = 50 MeV, B = 0.6,
and 8O ——4m~. Figure 1 displays this parametrization
in comparison to the experimental data for the free cross
section taken from [28] as a function of s —sp where s
is the invariant energy squared. The result of this calcu-
lation for ReZ(e) is displayed in Fig. 2 as a function of
the p-kinetic energy. In order to investigate the sensitiv-
ity of this result to the parametrization of the absorption
cross section, we used, in addition, different parameters
B (cf. Fig. 2) to vary the overall size of o b, . For an
antiproton at rest we find values for the real part of the
self-energy of —175 MeV up to —100 MeV. While we ob-
serve a steep rise for small kinetic energies, this Battens
out for higher energies and reaches an asymptotic value
of 0 to —10 MeV. Furthermore, the variation in the cross
section mainly affects the low-energy regime. The p self-
energies obtained in the &amework of this simple model
are well in line with the potential analysis for p+ A re-
actions by Janouin et al. [29].

B. Mean-field models

We now turn to the treatment of the antiproton self-

energies in mean-Beld models where the imaginary part

(8)

(9)

The combination of both parts of the antiparticle self-
energy to the Schrodinger-equivalent potential in the
non-relativistic limit leads to a strongly attractive po-
tential for the antiprotons when using the original cou-
pling constants from [30]. The value of the Schrodinger-
equivalent potential at p = po is approximately —700
MeV for e = 0 and becomes even more attractive with
increasing kinetic energy of the antiproton (—1300 MeV
for e = 2000 MeV).

A comparison of the results for the Schrodinger-
equivalent potential obtained in the framework of the o.-cu

model and the real part of the p self-energy resulting from
the dispersive approach shows strong differences not only
in the absolute values but also in their opposite behavior
as a function of the kinetic energy. The fact that the real
part of the antiproton self-energy cannot be described
consistently within different models urges us to treat it
as a free parameter in our transport model. We regard
the determination of this parameter in comparison with
the experimental data as the central goal of our work.

III. THE RBUU TRANSPORT APPROACH
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In this section we give a brief description of the RBUU
model. First we summarize the relevant equations deter-
mining the dynamics of baryons and then describe the
implementation of antiprotons in our approach.
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FIG. 2. Real part of the antiproton self-energy as a func-
tion of its kinetic energy using different parameters B in the
annihilation cross section (6).

A. Baryon dynamics

Since the covariant BUU approach has been exten-
sively discussed in the reviews [31,32] and in [33] we

only recall the basic equations and the corresponding
quasiparticle properties that are relevant for a proper un-

derstanding of the results reported in this study. The
relativistic BUU (RBUU) equation with momentum-
dependent mean fields or self-energies is given by (for
details, see Refs. [31—33])
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([II„—II„(P„'U")+ m'(8"„U,)]8"

+[—II„(B„U")+ m'(B„U,)]8„")f(z, p) = I„n, (10)

11„(,p) = p. - U„(*,

m'(z, p) = m + U, (z, p), (12)

where f(x, p) is the Lorentz covariant phase-space distri-
bution function, I, n is a collision term [cf., Eq. (19)],
and U, and U„arethe scalar and the vector self-energies.
The effective mass M' and the kinetic momentum II„are
defined in terms of the fields by

U, (x,p) = U, (z) + U, (x, p),
U„(,p) = U„( ) + U„ (,p),

(15)
(i6)

where the local mean fields are determined by the usual
Hartree equation

UP(z) = —g, o~(z),
UH( ) H( (17)

cleons in line with elastic proton-nucleus scattering we

follow Ref. [33] and separate the mean fields into a local
part and an explicit momentum-dependent part, i.e.,

while the quasiparticle mass-shell constraint is obtained
.'on(z)+& '( )+&.o'(*) =g.p. (*)

m„'urn(z) = g„j„(z). (is)

V(z, &) f(z, &) = 0,

with the pseudo potential

1
V(»&) —= -(Il'(»p) ™(zp)).

2
(i4)

The above equation implies that the phase-space distri-
bution function f(z, p) is nonvanishing only on the hy-
persurface in phase space defined by V(x, p) = 0.

In order to implement proper self-energies for the nu-

I

In the above equations the scalar density p, (z) and the
baryon current j„(z)are given in terms of momentum
integrals over the phase-space distribution function (cf.,
[33—35)). The potentials (16) and (15) correct the un-

physical strong repulsion in the @+A and A+A potentials
at high energies, obtained in the original Walecka model.
References. [33,34] give parametrizations which describe
both the experimental data and the density-dependence
obtained in Brueckner calculations very well.

Now we turn to the discussion of the collision term I, u
describing the baryon-baryon collisions (cf. [1,31,36]):

le le

x (f(z, II') f(x, II')[1 —f(z, II)][1—f(z, II )] —f(z, II)f(z, II ) [1 —f(x, II')][1—f(z, II', )]).

This collision integral describes the change in the phase-
space distribution function f(x, II) due to the collision of
two baryons with effective masses m', mz and momenta
II", II~&, respectively. The two baryons in the final state
of the reaction with masses m'+ and m&+ are labeled by
their momenta II' and II~. The h function guarantees en-

ergy and momentum conservation in the individual col-
lision, while W(II", II~&

~

II'", ll&") denotes the transition
probability for this reaction, which can be expressed in
the CMS of the colliding particles by the product of the
relative velocity of both colliding particles and the differ-
ential cross section for the reaction,

a 0 da.
IV(ll +1 I

11' 4 ) =I llo + lip I dfI In +n", ~n +n',"
1

(2o)

For the NN cross section, we use the parametrization
given by Cugnon [37] and therefore neglect the possible
in-medium corrections. However, the corrections due to
Pauli blocking are built in via the factors 1 —f We.
explicitly account for the following baryonic channels:

N+N —+ N+N, N+N w N+4,
N+2 ~ N+N, 6+6 ~ 6+6,

and propagate the 6's with the same self-energies as the
nucleons. For the parametrizations of the cross sections
of reactions including 6's, see [1].

B. Antiprotons in RBUU

The phase-space distribution function for the antipro-
tons f~(z, p„)isassumed -to follow an equation of motion
equivalent to Eq. (10), however, with scalar and vector
potentials of difFerent strength, i.e.,

Uf (x) = —g", o (Jr)z,

U;(*) = g."~"(z)~. (2i)

m*- = m + Uf (x) = m —gf o Jr(z),

IP„=gP„—U~(z) = gP„—gf(u (x)„.
(22)

(23)

According to the arg»~ents given in Sec. II, the coupling
constants g", and g", are treated as &ee parameters and
will be determined in a comparison of our calculations to

Thus the efFective mass and the efFective momentum of
antiprotons are given by
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experimental data (cf. Sec. VI). Since at subthreshold
energies antiprotons can be produced only in a very lim-
ited kinematical range, we can work here with scalar and
vector parts of the antiproton self-energies that are not
explicitly momentum dependent. We then obtain the fol-
lowing equation of motion for the antiproton phase-space
distribution function

II„"- 0„+II"-F„"+ m'- (O„m„'-)Og f„(z,I-I„-)
. 'p

= I,"„(z,II„-),

with

term I,&,t, describing the elastic antiproton scattering,
(ii) a erm I, &, describing the antiproton production,

and (iii) a term I b, responsible for in-medium p absorp-
tion. I,"& „describes elastic baryon-antiproton scattering
as well as elastic antiproton-antiproton scattering. While
this part of the collision integral I,

&&
can be formulated

similarly to the collision term describing baryon-baryon
scattering (19), the other terms represent extensions to
this integral.

Collision term for p production

F-" = t9"U" —t9"U""
p v v

and the mass-shell constraint

(11„'-m„")f (z, il„-)=0.

(25)

(26)

The basis for the description of the antiproton produc-
tion is the reaction

B+B+p+p+N+N= 1+2-+p+3+4+5, (27)

The collision term I~
&&

[rhs of Eq. (24)] includes (i) a
]

for which the corresponding covariant collision integral
reads

I", (z, II-)=, d II d II dsll d II dsllprod ~ P

x W(il"„11",
~

11"„11"„11"„ll„")b'(p", + p", —p" —p" —p", —11„"-)

x (f(z, II, )f (z, II,) [1 —f (z, II )][1 —f (z, II )][1 —f(z, II )]) . (2S)

We have omitted the Pauli-blocking factor for the an-
tiproton in the final state because the number of an-
tiprotons created during a heavy-ion collision in the sub-
threshold energy regime is negligible. For the same rea-
son, we neglect the eKects of reaction (27) on the phase-
space distribution function of the baryons.

S. Collision tet'm for p absorption

with W(il~i, II~~
~
IIx) denoting the transition probabil-

ity for the reaction (29). Integrating (31) over d4IIX
implies, in addition to the integration over all final mo-
mentum states of a particular reaction, a summation over
all possible annihilation channels

Irb, (z, Iir-) = —, , d Iii

In the collision integral I"b, we do not treat all possible
annihilation reactions separately, but sum up all channels
in the inclusive annihilation reaction

x W(ll"„II„")f(z,II, )f(z, II,-), (32)

B+p~X, (29)

where X denotes all possible final states (essentially pi-
ons) of the baryon-antiproton annihilation. The corre-
sponding energy and momentum conservation reads

where W(II~&, II"-) denotes the probability of an antipro-
ton with effective momentum II„"- annihilating with a
baryon with effective momentum II&.

IV. ANTIPROTON PRODUCTION IN RBUU

pg + pp pgt (3O)

where p& and p~ denote the 4-momenta of the baryon
and the antiproton, respectively, and p~ stands for the
sum of the 4-momenta of all particles in the anal state
of the annihilation reaction. Reaction (29) then leads to
the collision term

In this section we describe the numerical treatment
of antiproton production in our model and present a sys-
tematic analysis of the p-production mechanism in heavy-
ion collisions.

A. Numerical implementation

I.'..(z, II„-)=—,d'il, d'll

x W(ll~i, Ilp"-
] Ilx")b4(p", + p„"—px" )

x f(z, IIi)f(z, Ilr-), (31)

Since the production probability for antiprotons is very
small, the average time evolution of the nucleus-nucleus
collision is not afFected and it is justified to treat the p
production perturbatively [2,31]. In this approach the
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antiproton invariant difFerential multiplicity is obtained

by summing incoherently over all baryon-baryon colli-

sions and integrating over all residual degrees of freedom.
Assuming the antiproton production to take place via re-
actions of the type

B+B a p+p+N+N = 1+2 + p+3+4+5, (33)

(B stands for either nucleon or b) the invariant mul-
tiplicity as a function of the impact parameter can be
written as

dsP b d"0 - s
Ep —— ) d II'd II'd II', E' -, ,„,, [1 —f(z, II')][1—f(z, II')][1—f(z, II')], (34)

where the quantities II;(i = 1, ..., 5) denote the in-
medium momenta of the participating baryons. II~ and
E„stan-d for the p-efFective momentum and energy, while
s = (II~~ + Ilz) is the squared invariant energy avail-
able in the corresponding baryon-baryon collision. An
integration over the impact parameter then yields the
Lorentz-invariant difFerential production cross section

dsP(b)
E~ " ——2x dbb E~

We assume the elementary antiproton production cross
section cr~~~~+x (+a) in all baryon-baryon channels to
be equal to o„„~&+x(+s) and employ a parametrization
of the free cross section given by [18] (cf. Fig. 3; solid
line):

o~g „-+x= 0.01(+s —~so)' [mb], (38)

pP +pP pP+pP+pP+pP (37)

which in terms of efFective momenta and self-energies [cf.,
Eqs. (11) and (23)] yields

with ~sq ——4m~ and mN ——0.9383GeV/cz. The dashed
and the dotted line in Fig. 3 represent extreme alterna-
tive parametrizations that will also be used below.

While in free space the threshold for the elementary
production reaction is obviously 4 times the nucleon rest
mass in the medium, one additionally has to take into ac-
count the self-energies of aQ participating particles. The
conservation of energy and momentum has to be guaran-
teed, i.e.,

11", +U„([p ~, *)+II"+U,"((p ~, ) =II +U„((p [, )+II"+U„([p (, )
+II", + U„"(~p& ~, z) + II„"-+U„'&(z).

With the abbreviation we obtain in shorthand form

&" =—U."(I » I z) + U."(I p4 I z) + U."(I ps I *)
+U:"(*)—U."(I p I *)—U."(I p I *) (39)

II", + rI", = rr,"+II,"+II,"+n„"-+a". (40)

When evaluating the threshold for the reaction in terms
of efFective momenta, i.e.,

ass) s ~ s ~ ~ ssa) s ~ s s sass) s s s s ssl

]01 a„-+rr,+rr, +a, =0, (41)

&0'—

10'—
we, in general, encounter a nonvanishing sum of the vec-
tor self-energies of all participating particles. This leads
to the following expression for the threshold

—10 2—

10 3—
~i, = g(m'- + m', + I', + I', + 6')' —A'. (42)

10 ~—
:c)

10-'—
I ss ~ I ~ ~ s s assai s a ~ s assai s s s s saI

0.1 10

Ws-I m (GeV)

FIG. 3. Inclusive antiproton cross section in a pp collision.
The solid line indicates the parametrization (36). The dashed
and dotted lines shower "extreme" alternative extrapolations to
the threshold. The experimental data are taken from [16j.

In the u-u model, where the p self-energies result from the
corresponding baryon self-energies by applying charge
conjugation, the quantity bP vanishes and Eq. (42) re-
duces to an expression equivalent to the &ee threshold
with the rest masses replaced by the effective masses of
the participating particles.

In order to derive an expression for the differential p
multiplicity, we assume, as in Refs. [16-18],that the dif-
ferential elementary antiproton production cross section
is proportional to the phase space available for the final
state:
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d"o — sE E & & „-, „,„+,= (rgb~ ~~~+„-(~s) b (II", +n", —n,"—n,"—F1", —Fl," —a ). (43)

Here, the b function guarantees the energy and momen-
tum conservation and ~a is the invariant energy available
for the quasiparticles in the initial state. R4(I/s) is the
4-body phase-space integral [38]; it has been included to
ensure that the differential cross section is normalized to
the total cross section.

B. Sensitivity to the elementary cross section

Due to these uncertainties it is justified to neglect
the Pauli-blocking efFects in the calculation of antipro-
ton production which turn out to reduce the produc-
tion probability by about 10 to 20% as shown in Fig.
5 for the special case of a central Au+Au collision at 2.1
GeV/nucleon. The eIFects of the Pauli-blocking increase
with decreasing beam energy and become less important
for lighter systems as, e.g. , Ne + Ne.

Now we turn first to the analysis of the antiproton
production mechanism itself and consequently neglect
all in-medium propagation and absorption eff'ects. For
the sake of numerical simplicity, we calculate here the p
production using the baryon self-energies obtained &om
the nonlinear cr-ur model [39] where the p self-energies
are determined by charge conjugation &om those of the
bar yons.

Since we are dealing with subthreshold particle produc-
tion, the antiproton cross section will depend strongly on
the behavior of the elementary cross section (36) close to
threshold. Since there are no experimental data avail-
able for +s —v/so & 1 GeV (cf. Fig. 3), we have to
rely on an extrapolation of the data to threshold. In or-
der to investigate the dependence of our results on the
parametrization of the cross section, we display in Fig.
4 the invariant differential production probability for the
reaction Si+Si at 2.1 GeV/nucleon for different extreme
parametrizations corresponding to the dashed and dot-
ted lines in Fig. 3. This uncertainty of up to one order
of magnitude has to be kept in mind when drawing any
conclusions from the comparison of our work with the ex-
perimental data. For our further analysis we will adopt
the parametrization (36).

C. Probing the high-density phase with p

In order to demonstrate the sensitivity of the antipro-
ton production to the equation of state (EOS) for nu-

clear matter, we display in Fig. 6 the invariant differ-
ential p-production probability for the reactions Au+Au
and Si+Si at 2.1 GeV/nucleon calculated for different
parametrizations of the EOS. The parameter sets NL1
and NL3 (cf. Ref. [39]) employ the same incompressibil-
ity K = 400 MeV, but differ in the effective nucleon mass
at p = pp (m'/m = 0.83 for NL1; m" /m = 0.7 for NL3),
while NL1 and NL2 employ the same effective mass, but
difFer in their incompressibility (K = 200 MeV for NL2).
For both systems, we observe a production probability
which is enhanced by roughly one order of magnitude for
NL3 as compared to that from NL1 and NL2. The rea-
son for this behavior is obviously the low-lying threshold
which goes along with the small effective nucleon mass
when using the parametrization NL3.

While there is hardly any sensitivity to the incompress-
ibility (NL1 versus NL2) in the light system, one can ob-
serve an increase of the production probability by a factor
of 3 with decreasing incompressibility in the heavy sys-
tem. The reason for this sensitivity is given in Fig. 7,
where we show the difFerential p-multiplicity d1V/dp as
a function of the baryon density p/po at the individual
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FIG. 4. Invariant differential production probability for
Si+Si at 2.1 GeV/nucleon in the CMS (0 = 0'; b = 0;
EOS: K = 200 MeV, m, '/m = 0.7 at p = p, ) using different

parametrizations for the elementary production cross section,
according to Fig. 3.
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FIG. 5. Effects of Pauli-blocking for Au+Au at 2.1
GeV/nucleon in the CMS (0 = 0, b = 0); Solid line:
Pauli-blocking included; dashed line: no Pauli-blocking.
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antiproton production point for Si+Si (dashed line; mul-

tiplied by a factor of 50) and Au+Au at 2.1 GeV/nucleon.
It is clearly seen that almost all antiprotons are produced
at p & 3po in the heavy system, while the majority of an-
tiprotons is created between 2po and 3po in the light sys-
tem. This difference is easily understood in terms of the
pileup of density in the heavy system. In the case of Au
+ Au reactions high densities are obtained for parameter
sets that describe a rather soft EOS [40]. Thus compared
to NL1 the parameter set NL2 leads to a larger density
in the reaction zone, resulting also in a higher antiproton
production cross section.

D. Variation with the impact parameter

Since central collisions lead only to minor contributions
to the inclusive cross section in heavy-ion collisions, it is

do. b)

db
= 2z b P(b = 0) S(b), (44)

where S(b) represents the geometrical overlap of two nu-
clei with mass number Aq and A2 as a function of the
impact parameter. Assuming Aq ) A2 the overlap func-
tion S(b) reads

of interest to study the p multiplicity as a function of the
impact parameter b. For this purpose we show in Fig.
8 the calculated differential antiproton multiplicity for
Si+Si at 2.1 GeV/nucleon multiplied by 2vrb as a function
of b (solid line). This quantity can be approximately
fitted by (dotted line)

S(b) =
2 Rt arccos

b'+ Rl —R2 B2 6'+ R2 - Rl
2R b

'"'"""
2R b

(b +Rr —Rr)+ (b +Rr —Rr) )/b(R +Rr)br rr— br —(Rrr —Rrr)rI for Rr —Rr & b( Rr yRr,

i04:-

IO'

Si + Si
and

S(b) = 1 for b & Rt —R2, (45)
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systems this reduces to
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FIG. 6. Differential p-production probability for Si+Si
(top) and Au+Au (bottom) at 2.1 GeV/nucleon in the CMS
(0 = 0', b = 0) using difFerent parametrizations for the HOS;
NL1: K = 400 MeV, m'/m = 0.83; NL2: K = 200 MeV,
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FIG. 7. Production probability as a function of p/po for
Au+Au (solid line) and Si+Si (dashed line; enhanced by a
factor of 50) for 2.1 GeV/nucleon; 0, = 0', b = 0.
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1.2x10
TABLE I. Relative contributions of the diferent reaction

channels integrated over N~ + N2.
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FIG. 8. p-multiplicity for Si+Si at 2.1 GeV/nucleon as a
function of the impact parameter b weighted with 2mb; calcu-
lation: solid line; analytic formula: dashed line (cf. text). ]

A more systematic analysis with respect to Aq and A2
shows that an optimal Gt to the impact-parameter de-
pendence is obtained for the radius parameter a = 1.1
fm.

E. Baryonic decomposition

It is well known from transport calculations [18,40]
that heavy mesons and antiprotons are dominantly pro-

duced via multiple baryon-baryon collisions where espe-
cially nucleon-resonance channels play an important role.
To gain further insight in the mechanism of p production,
we analyze the relative contribution from various chan-
nels in more detail by counting the number of collisions

1' + N2 that the two baryons have undergone before
producing an antiproton in a mutual collision and de-
termine the corresponding production probability as a
function of Nq + N2 for the channels NN, NA, and A4
separately. The resulting distributions are displayed in
Fig. 9 for the reactions Si+Si, Ca+Ca, and Au+Au at
2.0 and 2.5 GeV/nucleon. The full histograms denote the
channel NN ~ p+ X, the open histograms denote the
channel NA ~ p+ X, and the hatched histograms the
AD m @+X,respectively. Table I shows the relative con-
tributions integrated over Nq+ N2. From Table I we can
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FIG. 9. Contributions to the production
from different channels: NN (filled his-

tograms), NE (open histograms), and AA
(hatched histograms) for Si+Si, Ca+Ca, and
Au+Au at 2.0 GeV/nucleon (left column)
and 2.5 GeV/nucleon (right column).
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FIG. 10. Relative contributions to the p production from
different channels as a function of the beam energy for Ca+Ca
(Is = 0); NN (dotted line), NA (solid line), and EA (dashed
line).

display in Fig. 10 the relative contributions to the p yield
for Ca+Ca as a function of the beam energy. The contri-
bution from the NN channel is below the 10% level for
Eb, ( 2.5 GeV/nucleon. While for higher energies the
AN channel dominates the production of antiprotons,
the AA and the AN channel are approximately equally
important in the energy regiine between 2.4 GeV/nucleon
and 2.0 GeV/nucleon. Below 2.0 GeV/nucleon the b,b,
channel is clearly the dominant one.

From the analysis of this section we can conclude that,
as far as antiproton production is concerned, the nucleon
resonances act as energy reservoirs that can release their
energy in baryon-baryon collisions to allow for p produc-
tion. That the resonances are populated in sufEciently
large numbers is a consequence of the formation of reso-
nance matter [43] in relativistic heavy-ion collisions.

F. Sensitivity to in-medium p properties

extract a general trend: The NN channel is obviously of
minor importance. In heavier systems the contributions
from resonances to the p production are generally higher
as compared to lighter systems. This correlates with the
higher density pileup in heavy systems. The resonances
become, furthermore, more important with decreasing
beam energy.

In order to study this phenomenon in more detail, we

I I ~ I I I
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FIG. 11. Differential p-production probability for a central
Ni+Ni collision at 1.85 GeV/nucleon (OoMs = 0') as a func-
tion of the antiproton momentum. Top: 6xed Uo ———98 MeV
at p = po and varying Uf at p = po. —159 MeV (solid), —100
MeV (dashed), —40 MeV (dotted), and 0 (dashed-dotted).
Bottom: fixed U," = —159 MeV at p = po and varying Uo
at p = po. —98 MeV (solid), —72 MeV (dashed), 0 (dotted),
and +72 Me V (dashed-dotted) .

The threshold for the elementary p-production reaction
according to (42) depends on the in-medium properties of
the antiprotons. In order to investigate this dependence
we calculate the p-production probability for Ni+Ni at
1.85 GeV/nucleon (central collision) for a variety of dif-
ferent antiproton self-energies: In the calculation shown
in the upper part of Fig. 11 the p-production probability
was determined using a fixed vector part of the antipro-
ton self-energy (Ug = —98 MeV at p = po) while varying
the scalar part UP (see figure caption). The results dis-
played in the bottom part of Fig. 11 were obtained by
varying the vector part while keeping the scalar part U,"
fixed at —159 MeV at p = po. The same analysis per-
formed for systems other than Ni+Ni lead to quite similar
results. Thus we conclude that the antiproton produc-
tion cross section exhibits an extreme sensitivity to the
in-medium p properties. This sensitivity will be used be-
low to obtain approximate values for the p self-energy in
comparison to experimental data.

V. IN-MEDIUM P PROPAGATION AND
ABSORPTION

The antiprotons produced in individual baryon-baryon
collisions can be annihilated while propagating out of the
dense nuclear medium. Since we expect the p annihila-
tion to dominate the antiproton spectra, a proper treat-
ment of this reaction channel is crucial for a comparison
with experimental data. In order to be able to treat the p
absorption and propagation sufBciently well, we employ
a new numerical method which allows us to calculate the
propagation as well as the antiproton absorption nonper-
turbatively. We neglect the elastic scattering of antipro-
tons with the surrounding baryons; according to Ref. [25]
this elastic scattering only causes a flattening of the an-
tiproton momentum spectra. The numerical details of
our method are presented in Appendix A. In this section
we concentrate on the efFects of in-medium absorption
and propagation of the antiprotons.

During a heavy-ion collision or a proton-nucleus reac-
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tion the antiprotons are created with effective masses m„*
and momenta II„"-.These particle properties change ac-
cording to the surrounding medium as the antiprotons
leave the reaction zone. At the end, one observes free
antiprotons with canonical momenta p„"-.Since the prop-
erties of the antiprotons are determined by their optical
potential, one expects significant effects of the p prop-
agation on the p spectra. %e analyze these effects in
Figs. 12 and 13. Figure 12 shows the variations in the
p spectra due to different antiproton self-energies for a
central Si+Si collision at 2.1 GeV/nucleon at OI b = 0'.
The production probability is identical for all cases. The
calculations shown in the top part of this figure were
performed for Ur = 0 and difFerent vector parts (see Fig.
12). The bottom part of this figure shows the result of
calculations for U„"= 0 and varying scalar parts of the
antiproton self-energy. Comparing both figures we con-
clude, as for the p production itself, that the effects of the
scalar and vector part of the self-energy on the p spectra
are qualitatively and quantitatively similar. Attractive
potentials result in a reduction of the p momenta as the
antiprotons leave the reaction zone, while repulsive po-
tentials lead to enhanced p momenta.

Figure 13 displays the same analysis for p+Cu at 4.0
GeV at O~ b ——O'. Again, the production was calcu-
lated identically for all three cases. Comparing the p
spectrum obtained for free propagation (U„~= 0) with
the one obtained using a weakly attractive optical po-
tential (U„~= —90 MeV) one observes a slight shift of
the spectrum towards lower momenta. This shift is eas-
ily explained by the loss of kinetic energy that occurs as
the effective mass m„'- increases to the value of the rest
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FIG. 12. Effects of the in-medium propagation on the P
spectrum of Si+Si at 2.1 GeV/nucleon under 0' in the CMS.
Top: U~ = 0 and Uo~ = —72 MeV (dashed), 0 (solid), and +72
MeV (dotted) at p = po. Bottom: U~~ = 0 and Uf = —100
MeV (dashed), 0 (solid), and +100 MeV (dotted) at p = po.
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FIG. 13. Effects of the in-medium propagation on the p
spectrum for the reaction p+Cu at 4.0 GeV, b = 0, O~ q

——0'
for difFerent optical potentials: U„~= 0 (dotted), U„p= —90
MeV (solid), and U„~= —560 MeV (dashed).

mass when the antiprotons leave the reaction zone. Us-
ing a strongly attractive optical potential (U„~= —560
MeV) one realizes in addition to this shift a reduction of
the spectrum due to the propagation effects. Contrary
to heavy-ion collisions the target-nuclei in proton-nucleus
collisions are not destroyed during those time scales when
the antiprotons move into the continuum. This means
that the target nuclei build a potential barrier which the
antiprotons have to overcome when leaving the nuclei.
The low-energy antiprotons cannot overcome this poten-
tial wall and get trapped in the nucleus, which leads to
the observed reduction in the p spectrum.

Figures 12 and 13 clearly show that the antiproton in-
medium propagation has an impact on the differential p
spectra. Therefore it is important to apply the complete
mean-field dynamics of the RBUU model when describing
the propagation of antiprotons.

Now we turn to the in-medium antiproton absorp-
tion (p + B ~ X). Due to the fact that there is
no information available on the in-medium cross sec-
tion, we have to rely on the free cross section in the
parametrization from [13](6). In our transport calcula-
tion we replace the &ee s —so with that determined from
the in-medium properties of the colliding particles, i.e. ,
s = (Ilo + IIo&) —(IIp + II~)2 is the squared invariant
energy available in the elementary antiproton-baryon col-
lision, while so ——(m„'-+m&)2 denotes the squared sum of
the effective masses of the colliding particles. The dashed
line in Fig. 1 represents a cutoff at 100 mb, which is
introduced to simulate possible in-medium screening ef-
fects. The value of 100 mb for the cutoÃ is in line with
the annihilation radius for proton-antiproton annihila-
tion derived in an optical model calculation [41]. Figure
14 shows the number of antiproton-baryon collisions as a
function of the corresponding value of cr b, for a central
reaction Si+Si at 2.1 GeV/nucleon. Since only a small
&action of all events lies in. the region of 100—192 mb, our
results do not depend significantly on the cutoff. Simi-
lar studies for proton-nucleus collisions show even less
sensitivity to this cutoff since the antiprotons move with
higher momenta with respect to the target nucleus.
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FIG. 14. Number of antiproton-baryon collisions for a cen-
tral Si+Si reaction at 2.1 GeV/nucleon as a function of the
corresponding elementary p-annihilation cross section.

In order to study the p-absorption effects on the an-
tiproton spectra &om heavy-ion collisions, we have per-
formed calculations using difFerent Gxed absorption cross
sections in comparison to the dynamically determined
cross section (6). Figure 15 shows a full calculation for
the system Si+Si at 2.1 GeV/nucleon at 0, = O'. The
top line denotes the calculated p probability without ab-
sorption using the baryon self-energies obtained &om the
nonlinear 0'-~ model with p self-energies obtained via
charge conjugation from the baryon self-energies. The
lower lines represent calculations with difFerent constant
absorption cross sections, while the solid line results &om
a calculation using the parametrization (6). This figure
clearly re8ects the dominant role of the in-medium ab-
sorption of antiprotons, which leads to a reduction in p
probability by approximately two orders of magnitude;
these absorption rates agree with those determined by
Li et al. [25]. Furthermore, the spectral distribution
obtained when using the parametrization (6) is—except
for small deviations at low antiproton momenta —almost
identical to the distribution obtained for a constant cross 0.010—

~
I

~

Ni + Ni

~
I

I

section of 70 mb. This value corresponds approximately
to the mean value of the distribution displayed in Fig.
14.

In this context we note that in proton-nucleus reac-
tions the corresponding mean value of the elementary p-
absorption cross section is approximately 50 mb, which
leads to absorption factors of 10 —30 depending on the
size of the target nucleus and the beam energy. The dif-
ference in antiproton absorption between heavy-ion col-
lisions and proton-nucleus reactions is mainly due to the
different kinematics in both cases: During a heavy-ion
collision most of the antiprotons are created in the CMS
of the collision, which implies that the relative velocity of
the antiprotons and the surrounding baryonic medium is
low. This leads to a small 8 —so for the annihilation re-
action and results in high values of the absorption cross
section (see Fig. 1). In contrast to this situation the
antiprotons produced in proton-nucleus collisions move
with momenta of around 1 GeV/c through the baryonic
medium, which leads to smaller annihilation rates. An-
other difference in both types of reactions is that the p
absorption in proton-nucleus collisions takes place at a
maximum density po, while the antiprotons produced in
heavy-ion collisions experience higher densities (cf. Fig.
7), which again leads to an increase in the absorption
probability.

Finally, we study the impact-parameter dependence of
the antiproton absorption. For this purpose we have to
investigate a physical quantity that does not show the
impact-parameter dependence of the antiproton produc-
tion mechanism. The ratio R of the differential p proba-
bility calculated including absorption and the differential
production probability meets this requirement. In Fig.
16 we display R for Ni+Ni at 1.85 GeV/nucleon, Ne+Ni
at 2.0 GeV/nucleon, and Si+Si at 2.1 GeV/nucleon as
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FIG. 15. Antiproton spectra for the reaction Si+Si at 2.1
GeV/nucleon (b = 0, eoMs = 0 ) using difFerent elementary
annihilation cross sections: upper line: no absorption; dotted
line: o I„——60 mb; dashed-dotted line: cr I„——70 mb; solid
line: parametrizatiou (6); dashed line: o h, = 80 mb.

FIG. 16. Quotient R as a function of the impact parameter
scaled with 6

„
for the systems Ni+Ni, Ne+Ni, and Si+Si

at 1.85 GeV/nucleon, 2.0 GeV/nucleon aud 2.1 GeV/nucleon.
Dots: RBUU-model; solid lines: fits according to Eq. (47).
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TABLE II. Parameters A, B, and C for the St (47) of R.

A
B
C

Ni + Ni
1.0022

0.9
0.05

Ne+ Ni
1.0025

0.9
0.04

Si + Si
1.0122

0.9
0.06

R(b/b )=A„—(1+e ) (47)

a function of b/b where b denotes the impact param-
eter and b

„
is the sum of the corresponding radii of

target and projectile. The ratio R is evaluated for zero
antiproton momentum in the CMS of the corresponding
heavy-ion collision. The dots represent the values of R
calculated in the RBUU model and the solid lines corre-
spond to fits to these numerical data using the function
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The parameters A, B, and C are given in Table II. Ex-
cept for peripheral collisions (b/b „)0.6), the ratio
R is determined by the constant A for all systems. This
means that the p-production spectra for b/b „(0.6 are
reduced due to the absorption mechanism by a constant
factor determined by the size of the system. The parame-
ters B and C are similar for all systems considered. This
leads to the conclusion that the absorption mechanism is
similar for all systems and can be understood by means
of simple geometrical considerations.
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FIG. 17. Scalar and vector self-energies U, (p) and Up(p)
for nucleons at different densities in units of po 0.17 fm

VI. COMPARISON WITH EXPERIMENTAL
DATA

m,
' = m+ U, (] p, i, z), (49)

11," = p,
" —U."(I p' I *) (48)

After the systematic analysis of the in-medium antipro-
ton production and absorption mechanism we now turn
to the comparison of our calculations with the most re-
cent data from KEK and GSI. In order to perform this
comparison, we describe the p self-energies on the basis
of the a-p/-model with &ee coupling parameters gi' and
g„".The comparison with the experimental data will al-
low us to approximately determine these parameters and
then provide Grst information on the antiproton potential
in the dense medium. The quasiparticle properties, i.e.,
the nucleon self-energies U, (z, p), U„(z,p) of the baryons
participating in the p-production reaction are taken &om
Refs. [33—35]. U, (z, p) and U„(z,p) are fixed to repro-
duce the saturation properties of nuclear matter, the em-
pirical proton-nucleus optical potential, as well as the
density dependence of U, and U„&omDirac-Brueckner
theory [36]. For orientation the actual values for U, (p)
and the zero'th component of the vector field Up(p) are
displayed in Fig. 17 for pp( 0.17 fm ), 2pp, and 3pp.

Before we present the results of the calculations using
these expressions for the baryon self-energies, we give a
brief description of the numerical method used to im-
plement these self-energies into the antiproton produc-
tion process. Since we deal with explicit momentum de-
pendent self-energies [U, (z, p), U„(z,p)] for the baryons,
their effective momenta and masses are given by

while the corresponding quantities for the antiprotons
read

II„"-= p„"-—U~ "(z),
m„'- = m+ U,"(z).

(50)

(»)
The elementary p-production events occurring at loca-
tion x are evaluated in the corresponding local rest frame
(LRF) of the nuclear matter [j„=(p, 0, 0, 0)]. In this
kame the spatial components of the vector self-energies
vanish by definition. This implies that the vector com-
ponents of the effective and the canonical momenta of
all particles are the same (48, 50). The spatial compo-
nents of the quantity b," defined in Eq. (39) also vanish.
Energy and momentum conservation then yields

rt', + II', = rI', + II', + II', + II„'+a',
P& + P2 P3 + P4 + P5 + Pp-

(52)

(»)
In order to calculate the p-production probability we

first have to evaluate the threshold vtsp in the LRF. In
the CMS of the particles in the final state the threshold
is obtained for the kinematical situation with all parti-
cles at rest. Thus in the LRF these particles move at
threshold with identical velocities. The momenta of the
baryons and the antiproton do not necessarily have to be
equal because the effective masses of the nucleons and
the antiproton can differ &om each other. In order to
guarantee momentum conservation, we use the following
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ansatz for the effective masses of the baryons and the
antiprotons

~'(I p~ I) +p

mp
IPP I

=
3 .

() ()+ . I »+» I.

(54)

(55)

Since each baryon mass depends itself on the momentum
of the corresponding baryon, these equations are itera-
tive equations for the absolute value of the momenta.
Using these efFective masses the threshold for antiproton
production in the LRF reads

~s, = g(ss;+n;+~op —(sn, +n, )~. (56)

p production takes place if the invariant energy +a
[s = (Iloi + Ilo2) 2 —(II2i + II&~)2] of the baryons in the
initial channel lies above the threshold ~so. According
to definition (43) the elementary antiproton production
cross section is a function of the invariant energy ~s'
available for the particles in the final state of the pro-
duction reaction

simple geometrical estimates.
When adjusting the constant gi' such that the scalar

potential (17) becomes slightly attractive ( —50 to —100
MeV at po) the reproduction of the data improves at all
energies significantly, which is exemplified for 4.0 GeV by
the dashed line in Fig. 18. In the above comparison we
cannot distinguish between scalar and vector antiproton
self-energies because both yield similar results for the p
spectrum if the same Schrodinger-equivalent optical po-
tential is achieved. Furthermore, when using antiproton
self-energies in line with the relativistic mean-field theo-
ries [30], i.e., changing only the sign of the nucleon vector
potential, we overestimate the p yield by more than an
order of magnitude at all energies for both systems.

We now turn to the nucleus-nucleus case. The cal-
culated antiproton invariant differential cross section for
the reaction 2sSi+2sSi at 2.1 GeV/A and Ni + Ni at
1.85 GeV/nucleon is shown in Fig. 19 in comparison to
the experimental data of Ref. [9] and Ref. [12]; the up-
per lines represent the results of the calculations for &ee

v"=)t'(rr;+s;+rr;+rr;-) —(p +p +p +p-).
(57)

Using (52) and (53) this reads

1/ —
)tpp) y sl +0)2 (py y pg)2 (58)

This equation shows that in order to calculate the pro-
duction probability one has to know the momenta of the
particles in the final state of the elementary production
reaction when employing momentum-dependent poten-
tials U, (x, p) and U„(z,p) for the baryons.

Since we are dealing with subthreshold particle pro-
duction, the main contribution to the production cross
section will arise &om events with colinear baryon mo-
menta because this kinematical situation minimizes the
kinetic energy of the baryons. Based on this argument
we assume for the momenta of the baryons in the final
state

t0D

~ 107

0
10-3

C9

1.0 1.5 2.0

p (Gev/c)
2.5

I l I l I
f

I l I l ~ l I
f

I l I

1
pj (pl + p2 pe)).3

We have applied the above-mentioned formalism to
evaluate the antiproton cross section for the reactions
p+ C and p+ Cu at bombarding energies of 5, 4, and
3.5 GeV. The corresponding invariant cross sections in
comparison with the data of Ref. [11] are shown in Fig.
18 as a function of the momentum of the emitted an-
tiproton in the laboratory kame at 0 = 0 assuming free
antiprotons, i.e., gJ', g" = 0. The calculations slightly un-
derestimate the experimental data, but already approxi-
mately reproduce the shape of the momentum spectra as
well as the dependence on bombarding energy and mass.
The p reabsorption amounts to a factor of 12 in the case
of C and to a factor Qf 19 for Cu, roughly in line with

CL

D
)0-5

U

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.I

p (GeV/c)

FIG. 18. Invariant cross section for antiproton production
in the reactions p+ C (top) and p+ Cu (bottom) at 0 = 0'
as a function of the antiproton momentum p in the laboratory
system. The experimental data are taken from Ref. [llj and
correspond to bombarding energies of 5.0 GeV, 4.0 GeV, and
3.5 GeV. The full lines represent calculations for free antipro-
tons. The dashed lines indicate the result for an antiproton
self-energy of —100 MeV at 4.0 GeV.
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antiprotons without including any reabsorption. When
taking care of antiproton annihilation according to Eq.
(A2) the yields drop to the lower full lines. In the case of
Ni+Ni the data are now underestimated sizeably. How-
ever, using attractive scalar (or vector) self-energies at
p = po of about —100 to —150 MeV we reproduce the
data for Ni+Ni, for Si+Si, however, we miss the data
point at p = 1 GeV/c.

We thus use a potential of —100 MeV at p = po to
predict the difFerential p-excitation function in Ni + Ni
collisions from 1.4 to 2.5 GeV/nucleon (Fig. 20), a sys-
tem that will be explored at GSI in the near future [42].

The di6'erent value for the attractive antiproton field at
p = pg in p+ A and A+ A reactions is due to the fact that
in p+ A collisions the antiprotons move with momenta of
1—2 GeV/c with respect to the nuclear medium, whereas
in A+ A collisions the antiprotons have smaller momenta

—10
O

O
(0

CD

~ 10
E 1.85

CL
P)

n 10-5
UJ

1.6

I ~ I ~ I

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

p (GeVicj

FIG. 20. Invariant cross section for antiproton produc-
tion in the reaction Ni + Ni st 2.5 GeV/nucleon (solid),
2.0 GeV/nucleon (dashed), 1.85 GeV/nucleon (dotted), 1.6
GeV/nucleon (dotted-dashed), snd 1.4 GeV/nucleon (dot-
ted-dotted-dsshed). All calculations were done using sn at-
tractive p potential of —100 MeV at p = po. The experimental
data are taken from [12].
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1P-5
LLJ
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in the nucleus-nucleus center-of-mass frame. In view of
uncertainties of our present studies with respect to the
elementary production cross sections close to the thresh-
olds, we provide areas for the antiproton Schrodinger-
equivalent potential at p = po in Fig. 21, as extracted
from the comparison with the experimental data for p+A
and A + A reactions. These areas are far from the val-
ues expected by charge conjugation from the familiar u-
ur model [30] (dashed line) and thus exclude relativistic
mean-field models with the same parameter sets for nu-

cleons and antinucleons. However, our extracted values
are well in line with a Schrodinger-equivalent potential
(solid line in Fig. 21) as calculated from the dispersion
relation [see Eqs. (1) —(5)]. Crucial for this result is
the correct momentum dependence for the p + A po-
tential in the entrance channel. If we use the original
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FIG. 19. Invariant cross section for antiproton production
in the reaction Si+ Si st 2.1 GeV/nucleon (top) sud Ni +
Ni st 1.85 GeV/nucleon (bottom) for 0 = 0' ss s function
of the momentum of the emitted antiproton in the labora-
tory system. The experimental data have been taken from
Refs. [9] sud [12], respectively. The upper lines indicate the
calculated cross section for free antiprotons without reabsorp-
tion whereas the lower solid line is obtained when including

p annihilation. The dashed line represents the cross section
adopting an attractive potential of the antiproton of —150
MeV.
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FIG. 21. Comparison of our extracted values for the
Schrodinger-equivalent antiproton potential from p + A and
A + A reactions with the prediction from the cr-u model
(dsshed line) snd the dispersive potential sccordiug to Eqs.
(1)—(5) (solid line).
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Walecka model without the momentum-dependent cou-
pling strength we are forced to compensate for the strong
repulsion with much deeper antiproton potentials.

The primordial antiproton production rates and the
reduction due to absorption obtained here agree well with
those obtained by Li et aL [25]. These authors also get
agreement with the data for Si+Si, however, by using
the very deep p potential obtained by charge conjugation
from the Walecka model and the corresponding strong
repulsion in the entrance channel; using the same model
we also reproduce the data as well as their calculations
within a factor of two. However, the entrance channel
potential is much too repulsive, as mentioned in Sec. III
B1, so that an unphysically deep antiproton potential is
needed to compensate for this repulsion. This fact shows
that the conclusion of Ref. [25]—that the agreement of
their calculation with the data supports the assumption
of a very deep G-parity transformed nucleon potential for
the antiprotons —is not justi6ed.

It has become clear that the baryonic production chan-
nels at subthreshold energies involve dominantly one or
two nucleon resonances and that the production proceeds
at the highest densities that can be reached in a nucleus-
nucleus reaction. Only at these high densities the rela-
tive population of nucleon resonances (= 30'Fo as shown
in [43]) as well as the nucleon-resonance collision rate are
high enough to allow for p production. Otherwise the
resonances decay to a nucleon and a pion before colliding
with another baryon such that the energy stored in the
resonance gets lost for the production.

We note in closing that the antiproton production
studies at the AGS [44—46] around 15 GeV/nucleon, al-
though far above the free production threshold, might
yield further information on the dynamics and self-
energies of antiprotons at even higher densities.
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APPENDIX A: THE WEIGHTED TEST
PARTICLE METHOD

In the following we present the weighted test particle
method used to implement the antiproton production,
absorption, and propagation in the RBUU model. It is
especially suited for the simulation of processes with low
production probabilities and/or high in-medium absorp-
tion cross sections for which conventional test particle
methods fail because of low statistics.

Assuming that during a calculation N elementary
baryon-baryon collisions with sufficient energy for an-
tiproton production occur, we de6ne for each collision
i (i 6 fl, . . . , N j) a three-dimensional momentum grid
in the reference frame (CMS of the heavy-ion collision or
lab system). In order to calculate the production prob-
ability for each collision i, we transform this grid into
the system that fulfills Eq. (41) or into the LRF [see
Eqn. (48) to (59)]. After calculating the invariant difFer-

ential p-production probability m&'& for each grid point
p = (kAp, leap„, mbp, ) the xnomentuxn grid is trans-
formed back into the reference frame. To obtain the to-
tal invariant differential production probability without
absorption for a heavy-ion collision or a proton-nucleus
reaction, one has to sum up the contributions from all
the N elementary production reactions

(Al)
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In order to calculate the antiproton probability includ-
ing propagation through the dense medium and absorp-
tion, we start out with the momentum grid described
above. For all N baryon-baryon collisions contributing
to the antiproton production we place a test particle rep-
resenting an antiproton on every point of the momentum
grid. This yields additional j (j = k t m) test par-
ticles for each of the N baryon-baryon collision events.
The effective masses and momenta of these test parti-
cles are determined according to both the location on
the momentum grid and the spatial coordinate where the
baryon-baryon collision takes place. In addition, we at-
tach variable weights to the test particles. The weight

of the h th test particles "created" in the ith colli-
sion denotes the invariant differential production proba-
bility m&'& at the corresponding grid point. The result

of this procedure is an ensemble of test particles repre-
senting the produced antiprotons that contain informa-
tion about the differential p distribution for each relevant
baryon-baryon collision. The entire test particle distribu-
tion together with the corresponding weights represents
the phase-space distribution of the antiprotons produced
in a heavy-ion collision or a proton-nucleus reaction.

We now describe how we treat this ensemble of test
particles in order to calculate the antiproton propaga-
tion and absorption: Each test particle is propagated
by means of the equation of motion for the antiparti-
cle phase-space distribution function (24). At the end of
each time step the absorption rate for the test particles
is calculated according to their weights. In order to per-
form this task we convert the collision integral (32) into
a differential equation for the test particle weights

I(i) 4 d3II
d IlxmBW(p+ B w X)6' (ll„"-+IIB —IIX)f(z", II')tnh,

x, Hp

(A2)

where z is the space-time coordinate where the annihilation takes place. II&, II~, m„'-, and m& denote the effective
momenta and masses of the antiprotons and the baryons, respectively. This differential equation leads to the following
changes in the test particle weights in time steps At,

tn'(t, +g)„'= m'(t, + b,t)„'
tj+1

= tU'(t, )„'exp(')

tj

d3IIB
mBW(p+ B m X)f(z", II~)dt

IIB
(A3)

Solving the integral in the exponent of (A3) by means of the local density approximation (LDA) [47j leads to

aVN, - IIO IIO
(A4)

with Nt being the number of test particles per nucleon used to model the baryon phase-space distribution, and AV
being the normalization volume used in the RBUU model to evaluate densities and currents. Equation (A4) allows
for a nonperturbative evaluation of high absorption rates without a reduction of the number of test particles.

At the end of the simulation we project the weight of each antiproton test particle obtained in the final time step
tf of our calculation on the three-dimensional momentum grid (see above)

(A5)

and sum up all contributions in order to obtain the invariant differential antiproton probability for the corresponding
heavy-ion collision or proton-nucleus reaction.
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