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Scaling behavior in first-order quark-hadron phase transition
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It is shown that in the Ginzburg-Landau description of first-order quark-hadron phase transition
the normalized factoral moments exhibit scaling behavior. The scaling exponent v depends on only
one effective parameter g, which characterizes the strength of the transition. For a strong first-order
transition, we find v = 1.45. For weak transition it is 1.30 in agreement with the earlier result on
second-order transition.
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I. INTRODUCTION

It has been suggested after extensive studies in the
lattice gauge theory [1—3] that the /CD phase transition
may be second order or a weak first order, depending
upon the number of quarks in the problem. If there are
only two massless quarks, indications are that the tran-
sition is second order, whereas if there are three massless
quarks, then it is first order. For a realistic strange quark
mass, the situation is soxnewhere in between, and may be
near the tricritical point [4].

While nonperturbative calculations can shed some
light on the order of the phase transition (PT) they can-
not at present make any predictions that can be tested
in heavy-ion collisions where the quark to hadron tran-
sition is to take place. It is therefore important to find
phenomenological consequences of PT that can directly
be measured in the experiment so as to check the nature
of the transition. It would also indirectly verify the for-
mation of quark-gluon plasma (QGP), since there would
not be any PT without the prior existence of a QGP. The
fluctuations of hadron multiplicities at varying resolution
scale can readily be measured in heavy-ion collisions. The
nature of the fluctuations should reveal some aspects of
the dynamical processes in which the hadrons are pro-
duced. In the case of second-order PT we have found
a scaling behavior in the &amework of the Ginzburg-
Landau theory [5]. Furthermore, we determined a nu-
merical scaling exponent v that is independent of the
details characterizing the PT [6]. Current experiments
on pp and AA collisions all give values of v larger than
the critical value 1.304, signifying the absence of PT [7].
However, in quantum optics the production of photons
at the threshold of lasing has long been known to be a
process describable by second-order PT [8], and a recent
experiment has verified v = 1.304 to a high degree of
accuracy [9].

The purpose of this paper is to extend the consider-
ation to first-order PT. We shall continue to use the
Ginzburg-Landau (GL) formalism and investigate the
question of scaling behavior. The dependence of v on
the details of the PT will be discussed.

It should be mentioned that the investigation reported
in this paper complements the work done in Ref. [10],

which also studies the first-order PT. There, no thermal
equilibrium is assumed, and the focus is on hadronic clus-
ter formation as explored by a cellular automaton. Here,
we use the Ginzburg-Landau forxnalism which is both a
mean-field theory (when expressed in terms of fields) and
a phenomenological theory (when expressed in terms of
phenomenological order parameter); it does not matter
whether the hadrons produced form clusters or not.

II. FIRST-ORDER PHASE TRANSITIONS

If the number of flavors of massless quarks is 2, there
are cogent reasons to believe that the /CD transition
is second order [1—4]. The Ginzburg-Landau free energy
density may be written in the form

1 2@2 + lp(@,2)2 + 1(~@)2

where 4 is a four-vector (o, n'), consisting of the o and
m fields. When the strange quark mass is brought
down &om infinity, the systexn goes through a tricritical
point [4,11],since it is known that for the massless quarks
the chiral phase transition is first order [12]. When the
renormalization effect on the coupling A due to the intro-
duction of the strange quark makes A small or negative,
then it becomes necessary to include the sixth-order term
in 4, so (1) should be replaced by

1 2C, + lp(C2)2+ 1 (C2)2+ 1(py)2 (2)

When A is sufficiently negative, the value of 4 where T
is at the minimuxn jumps discontinuously and the system
undergoes a first-order PT.

Expressed in terms of the fields 4, the Bee energy T
does not enable us to determine the multiplicity distribu-
tion of the pions produced in a heavy-ion collision. For
that what is more pertinent is the phenomenological GL
free energy X[/], which on the one hand has the struc-
ture of (1) or (2) that contains the mechanism of second-
or first-order PT, but on the other hand is expressed in
terms of some phenomenological order parameter P that
is closely related to the hadron multiplicity. In [6] that
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was done for second-order PT, where we considered f (t) = 1 —2(1+g)t + t',

&[4] = al+I'+ b141'+ el&41'.

P is a complex number that is related to the hadron den-
sity

(i4)

so = l@l'

for a pure coherent state, characterized by

al&) = &I&)

(4) g= — 1+ b

2y ak)

Since f (t) has two real roots when g is positive, the min-
imum jumps from t = 0 to a value between the two roots
when

P„=Z-' V P' e- ~~~ (6)

where

F[P] = d~rP[P]
v

Z Z)
—F[&j

where a is the hadron annihilation operator. The quark-
gluon system undergoing PT need not be in a pure coher-
ent state. The multiplicity distribution P„ is therefore to
be determined from the Poisson distribution P„[P] (for
a pure coherent state) by a functional integration over P
with a Boltzmann factor specified by P[P], i.e. ,

b ( —2Vak (i6)

for a and k both positive. This is a manifestation of the
first order PT. In Fig. 1 we show t f (t) for several values
of g.

Although the GL parameters a, b, and k are not known
functions of T, we know that at the transition temper-
ature T, (16) would be an equality and g = 0. How-
ever, depending on how the latent heat released is dissi-
pated, the system may have to supercool, and g would
be positive for hadrons to form. In the absence of de-
tailed knowledge about the values of those parameters,
let alone their dependences on the hydrodynamical vari-
ables of the problem, we shall regard g as a parameter
that characterizes the nature of the first-order PT.

The exponential factor in (6) involves a spatial inte-

1—
pe[4] = —,(nv)" exp( —nv),

0.05
0. 't

nv = d'r(Cia'(r)a(r) I&) =
v v

(10) 0. 4"

0.2"
Knowing the GL parameters a, b, and c, one can calculate
P„and learn about the fluctuations ft.'om the average near
the critical point.

The phenomenological consequences of this approach
to second-order PT and the scaling behavior that can be
deduced and experimentally tested will be summarized
in the following section. We proceed now to the modifi-
cation of the formalism appropriate for first-order PT.

To consider first-order PT, in a step parallel to the
change of X from (1) to (2), we now also add a sixth-
order term to (3) and write

-0. 2--

—0.4"

0 p.3 0.6

&[+] = a141'+ b141'+ kl+I'+ cl 741'

with the recognition that the klpls term becomes im-
portant if b is negative. The average hadron multiplic-
ity is determined by the location of the minimum of the
first three ternis of the right-hand side of (11), which we
rewrite as

. 5

where

al&l'+ bl&l'+ kldl' = (a'Ik)"'tf(t) (12)
FIG. 1. The function tf(t), defined in Eq. (13), for several

values of g.
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gral of X[/] over a volume V. In heavy-ion collisions the
hydrodynamical expansion of the quark-gluon system re-
lates spatial positions in the system to specific cells in
the momentum space in which the detected hadrons pop-
ulate. Thus the cell size that is under experimental con-
trol aKects the multiplicity distribution P„ofhadrons de-
tected. The theoretical and experimental investigations
can be done in any dimension of that space: y, lnpT, and

P in d = 3, or any projections of it in lower d.
The factor e !4'! suppresses large fluctuations of ~P~

f'rom the most favored ~Pp[ at the minimum of the well
in Fig. 1, depending on the cell size V = b". The larger
V is, the smaller the fluctuations will be allowed. Hence,
if we focus on the multiplicity fluctuation as a function
of V, we would be studying the properties of P[P] near
the well minimum. The characteristics of X[/] in the
neighborhood of the well minimum does not difFer dras-
tically from that of (3) in the case of the second-order
PT. Therein lies the clue to the search for observable
consequences of the first-order PT that may share the
same scaling behavior already found for the second-order
case [4].

OO

fq —(n(n —1) ~ ~ ~ (n —q+ 1)) = ) P (22)
(n —q)!

we have from (6), (9), and (10)

f =z f174 (
d rfP(r)f [

e
)E v

(23)

It then follows from (17) that

Pq = fqlfi. (24)

independent of all parameters in the theory, and can be
regarded as a numerical signature of second-order PT.
For photon production at the threshold of lasing in a
homogeneous laser c = 0, the value in (20) has been
verified to an accuracy within IFo error [9].

Our task now is to examine whether the scaling be-
havior described above persists to be valid when the PT
is first order. If so, what is the corresponding scaling
exponent v?

Defining

III. SCALING BEHAVIOR

Let us first summarize for the case of second-order PT
what possesses the scaling property and what the uni-
versal exponent v is. Since the GL parameters are not
known for the quark-gluon system, it is important that
measurable predictions should be as &ee of sensitive de-
pendence on those parameters as possible. It turns out
that the measure of fluctuations that can convey such
features is the normalized factorial moments

Note that if e +!4'! were replaced by h(P —Pp), cor-
responding to a pure state, then fq = (h~~pp~2)q and
Fq ——1. Thus any nontrivial property of Fq is a measure
of the dynamical fluctuations due to PT as prescribed by
the GL X[/].

We proceed by considering, as in [6], the case of a
homogeneous system (c = 0), relying on the result of [14]
to regard the correction due to the c g 0 term in (11) to
be small also. In that case P is independent of r and we
have

(n(n —1) (n —q+ 1))
(n)q

(17)
where

fq ——b qIq/Ip,

Fq oc F2'

with Pq satisfying the remarkably simple formula

/3q = (q —1)".

(18)

(19)

In the case of a homogeneous medium (for which c may
be set to 0) we obtained [6]

v = 1.304. (20)

This value is independent of a, b, and the dimension d.
Even when the gradient term in (3) is taken into account
the value of v is not changed significantly; it may be
summarized as being in the range [14]:

v = 1.316+ 0.012. (21)

Thus we have a scaling exponent v that is essentially

where ( ) is an average over P„. I"q was originally sug-
gested by Bi@as and Peschanski for the study intermit-
tency [13]. Although there is no intermittency in the
strict sense for the GL problem, i.e., power-law depen-
dence on the bin width h, I'q does possess the scaling
behavior

(26)

J = dt tqe-"~&'~,
0

(28)

We note that the coeflicients in (25) and (26) all get
canceled in the normalized moments, i.e.,

Fq: Iq Iz Io:Jq Jy (29)

Thus Fq is a function of z and g only. The parameter g is
Dot subject to experimental control, but m is proportional
to b", which is the cell volume that can be varied to
e6ect measurable variation in Fq. The dependence of Fq
on x cannot be directly tested because of the unknown
parameters a and k. However, the dependence of Fq on
F2 as b is varied is accessible to experimental verification,
and can be theoretically calculated by varying x for every
fixed g.
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FIG. 2. Scaling behavior of Fq for several values of g.

It is straightforward to determine I"q by use of (27)
and (29). In Fig. 2 we show the results plotted in lnF~
vs lnF2 for q = 3, . . . , 6 and for several values of g. Ev-
idently, they all exhibit linear dependences, describable
by the power law (18). Thus we have found the same
scaling behavior of Fq as we did for second-order PT,
except that now the slope Pq depends on g, and only g.
For every fixed g, it is found remarkably that Pq again
satisfies extremely well the simple formula (19), as shown

in Fig. 3. The dependence on the scaling exponent v on

g is shown by the dots in Fig. 4. The error bar on the

g = 0.6 point indicates the extent of the deviation of the
corresponding plots in Fig. 2 &om exactly straight lines.
The solid line in Fig. 4 is a smooth fit of the dots, and the
dashed line is for v = 1.304, the result for second-order
PT.

We see that, at large g, v is approximately equal to
1.3. From Fig. 1 it is clear that as g is increased, the well
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FIG. 3. Pq vs q. Dots are the slopes determined from Fig. 2, and the curves are determined from the formula Pq ——(q —I)".
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FIG. 4. The values of v(g) are determined from Fig. 3
(dots). Solid line is a smooth-curve St and the dashed line is
for v = 1.304 [6).

of X[/] becomes deeper and resembles more the familiar
dip associated with a[/[ +b[P[ for the second-order case
with a ( 0 and 6 ) 0. For that reason the value of v for
such a large value of g is about the same for either or-
der of PT. However, if an extensive and prolonged mixed
phase is to exist in the system, the relevant value of g
would be smaller, since for g close to zero the free en-
ergies for the quark and hadron phases are more nearly
equal. If that is the case, then our result indicates that
v should be larger, but does not exceed 1.45. Since at
present our theoretical understanding of nonperturbative
/CD cannot yet lead to a determination of the value of g,
we cannot predict a unique value of v. What we can state
is that if in a future experiment in heavy-ion collisions v
is found to be less than 1.45, then we have a strong rea-
son to suggest the possibility of the occurrence of a PT
worthy of closer examination. So far all experimental
values of v for nuclear collisions are greater than 1.45 [6],
implying no PT. Barring other complications that have
not been taken into account in this consideration, an ac-
curate determination of the experimental value of v, if it
is ( 1.45, may even reveal which order of PT that the
quark-gluon system has undergone.

ing features of the first- and second-order cases. The
Ginzburg-Landau phenomenological theory is well suited
to describe the problem of our concern, since it is coarse
grained enough compared to the underlying Geld theory
to be able to address the hadronic observables in an ex-
periment, while it is at the same time fine grained enough
compared to the hydrodynamical studies to be able to ac-
count for the Huctuations in phase space. Furthermore,
the GL theory is capable of describing both the Grst- and
second-order PT.

Although the GL free energy density E[P] has many
terms, each with a parameter that is not known &om
first principles, only one effective parameter g turns out
to affect our result. That is due to our choice of the nor-
malized factorial moments Fq to measure the multiplicity
fiuctuations. Their dependences on F2 with the cell size b

treated as a parametric variable, exhibit scaling behavior
just as in the second-order case. For reasons that are not
self-evident, the slopes Ps satisfy the (q —1)" description
extremely well, rendering the scaling exponent v a simple
and effective characterization of the nature of dynamical
Quctuation due to the PT. Depending on g, the value of
v varies &om 1.45 to 1.30.

One can see &om Fig. 1 that when g is as large as
0.6, the well is so deep that it hardly describes a two-
phase system that is necessary for a strong first-order
PT. Thus one may regard a weak first-order PT to be
one describable by a GL X[/], in which the parameters
vary with temperature in such a way that g is effectively
large as the system goes through phase transition. On
the other hand, for a strong 6rst-order PT the system
would remain in a state describable by a small g during
the phase transition. What our calculation has shown
is that the two cases have distinguishable values of v:
1.30 to 1.45 &om weak to strong. This simple criterion
is made highly relevant to heavy-ion experiments by the
fact that the v is measurable in the laboratory.

IV. CONCLUSION
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