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Optical potential models used in quasielastic 40Ca(e, e'J') calculations
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Optical potentials obtained &om elastic proton scattering have been successfully used to de-

scribe the final state interaction in (e, e'p) reactions. However, spectroscopic factors extracted from

experimental data are often quite different depending on whether relativistic calculations or nonrel-
ativistic calculations are used. Since the calculation of the (e, e p) cross section requires the wave

functions of the outgoing proton in the nuclear interior, different optical potential models could
cause the differences in these calculations. We use a model which can take either nonrelativistic or
relativistic optical potentials while keeping all other aspects of the calculation the same, and 6nd
that a relativistic optical potential compared with a nonrelativistic optical potential can cause a
difference as much as 14%. We examined several optical models as well as the use of the Percy
factor in nonrelativistic calculations.

PACS number(s): 25.30.Bf, 24.10.Ht, 27.40.+z

Exclusive (e, e'p) experiments in the quasielastic re-
gion have been proven to be a good tool for studying
single-particle properties of the nucleus, and have pro-
vided a testing ground for difFerent nuclear models [1,2].
During the past few years, several high-resolution exper-
iments have been carried out on medium/heavy nuclei at
NIKHEF-K [2—6), Amsterdam. The analysis of these ex-
perimental data yields information on the single-particle
wave functions and spectroscopic factors of the target
nuclei. Generally, the analysis is carried out within the
framework of either a relativistic distorted wave Born
approximation (RDWBA) [7,8] or a nonrelativistic dis-
torted wave Born approximation (DWBA) or Impulse
approximation (DWIA) [9,10]. Both models can provide
good descriptions of the data. However the extracted
spectroscopic factors based on these two models are often
quite different: for example, for Ca and Pb target
nuclei, the relativistic model generally requires a spec-
troscopic factor which is about 10—20%%up larger than the
nonrelativistic model. The models require a bound-state
wave function (@s) and an optical potential (usually Rom
elastic proton scattering) for the outgoing proton wave
function (gy), to calculate the single particle nucleon
transition current

where J" is the &ee nucleon current operator. Since the
various components that go into these two model calcu-
lations are from different origins, any of the components
(for example, the bound-state wave function, the optical
potential for the final-state interaction, the form of the
current operator, the use of a Percy nonlocal factor, or
the electron Coulomb distortion, etc.) could be the rea-
son for the difFerence. In this paper we compare the use
of difFerent outgoing proton wave functions generated by
difFerent optical potentials which are or could be used in
these calculations.

In the relativistic DWBA calculations, a global phe-
noxnenological optical potential developed by Clark and
co-workers is usually used [ll). There are several new

versions of these global optical potentials [12] which give
equally good descriptions to the proton elastic scattering
observables. This means these difFerent potentials give
essentially the same asymptotic wave functions. If the
wave functions produced by these potentials are differ-
ent, the differences must be in the interior part of the
system. Since the (e, e'p) calculation uses not only the
exterior part of the wave function (phase shifts) but also
the interior part of the wave function, we can use RD-
WBA to compare these difFerent potentials. There are
also many difFerent nonrelativistic optical potential mod-
els one could use in the (e, e'p) calculations. The one
commonly used in the analysis of the experixnental data
is the Schwandt global optical potential [13]. We will
use the Schwandt potential to compare with the rela-
tivistic optical potentials. We have also used another
nonrelativistic optical potential developed by Kelly and
co-workers [14], which not only can describe the elastic
proton scattering but also the inelastic nucleon-nucleus
scattering.

In order to see the difFerences caused by the different
optical potentials (both relativistic and nonrelativistic)
in the (e, e'p) calculation, one needs to have a formalism
which can take both relativistic and nonrelativistic op-
tical potentials while keeping all the other components
(like bound-state wave function, etc.) the same. One
way to do this is to use the nonrelativistic formalism,
then in order to use the relativistic optical potential, one
needs to reduce the potential into a equivalent nonrela-
tivistic form. However, in doing the reduction, the wave
function produced by the Schrodinger calculation is of-
ten very different from the wave function produced by the
Dirac calculation. In the following we describe a Dirac
formalism which can take a nonrelativistic optical po-
tential into a relativistic equation and the wave function
generated (at least the large component) is the same as
the corresponding nonrelativistic wave function.

We start with the Dirac equation with spherically sym-
metric scalar S(r) and fourth-component vector V(r) po-
tentials (the SV model):
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[q„p~ —M —S(r) —q'V(r)]y = 0,

&om which we can derive the radial equations

(2)
C, ( ——

M+E+S —V
M+E (12)

dr
dg K

dr

++1f + (E+ M+ S —V)g,

g+ (M —E+ S+ V)f,r (4)

[p"p„—M —2U(r) —2p U(r) +io7 rT(r)]g' = 0, (6)

where T(r) enters the equation as a tensor and U(r) is
a combined scalar and vector; we call this the UT model
(in Ref. [17], it was called SVT model). Moreover

M+E
1d

T = ———ln(M+ E+ S —V).
2 dr

The radial equations become

+T(r)
~

F+ (E+M)G,
dr g r
dG (K-1 —T(r)

~
G+(M —E+U)F,

rdr

(9)

where the new radial functions F(r) and G(r) are related
to those Rom the SV model as

f =C„(F, g =C,,)G,

where

where f (g) is the upper (lower) component of the Dirac
wave function and K is the angular momentum quantum
number.

We use the transformation

1 o t'M+ E+ S —Vl
2 ( M+E r

(which is one of a number of possible nonunitary trans-
formations have been discussed extensively in Ref. [15])
after which the Dirac equation becomes

In nuclei S —V is negative and the factor C„~ has the
effect of reducing the large component f compared to F
inside the nucleus and enhance the lower component g
by the same amount (fg and FG are the same); out-
side S and V are zero and f and F will have the same
asymptotic properties.

The advantage of the UT form is that the large compo-
nent F obeys Schrodinger-like equations. In particular,
eliminating the lower component:

d2F 2 dF Ic(K+ 1)
dr2 + r dr r2

—2M [V„„+V, (—~ —1)]F + p2F = 0. (13)

We recognize r(r + 1) and (—K —1) as the eigenvalues
of L and cr L, respectively, so we have a Schrodinger
equation with energy-dependent central and spin-orbit
potentials:

M+ E 1 (dT, 2T)

T
V,

From the foregoing we note the following: First, since
there is no approximation involved, one may obtain
F either from the UT equations (9) and (10) or the
Schrodinger equation (13). The solutions can differ only
by an overall normalization constant. For example, in
Fig. 1 we show the dsr2 bound-state wave functions (F
and G) from solving Eqs. (9) and (10) as dashed lines,
and from solving Eq. (13), as a dotted curve. This shows
that the contribution from the lower component of the
UT wave function is unimportant, that the normaliza-
tion is essentially the same as the nonrelativistic calcula-
tion and emphasizes the equivalence of the Schrodinger
model and UT model. The SV solutions [Eqs. (3) and

(4)] are also shown for comparison. Second, although
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FIG. 1. The d5~q bound-state wave func-
tion I obtained from solving either the Dirac
UT equation (upper and lower components,
dashed lines) or the Schrodinger equation
(dotted line). For comparison, we also show

the wave function (upper and lower compo-
nents, solid lines) from solving the Dirac SV
model.
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the Schrodinger wave functions can be made equivalent
to Dirac UT solutions, to be compared with the more
common SV wave functions one must use the factor C, i
&om Eq. (12); in its efFect, this is comparable with the
Percy factor which is commonly included in nonrelativis-
tic calculations. Third, the residual small component G
is related by Eqs. (9) and (10) to the large coxnponent F

G = 1 dF (~+1 T)FE+M dr r (16)

which, aside &om the factor T which is commonly small
for nuclear potentials, is the same relation as for a &ee
particle. Thus it is a defensible procedure to enhance a
nonrelativistic wave function by introducing a lower com-
ponent using the Dirac &ee-particle relation, as is some-
times done to get an equivalent relativistic wave function
[16]. Fourth, the lower coxnponent G is affected only by
potentials which vanish in the nonrelativistic limit and
which, in the case of nuclear potentials, are very weak.
Thus negative-energy solutions, since G now is the large
component, will be little affected and vacuum polariza-
tion is minimal. In this respect the model is very different
&om the SV potentials where the effective central poten-
tial for negative-energy states not only survives in the
nonrelativistic limit but also is much stronger than that
for the positive-energy states [17].

We will use these connections to compare the use of
difFerent proton optical potentials (some nonrelativistic
and some relativistic) in the (e, e p) reaction. For the
Dirac SV calculation we take the final-state proton wave
function Qy = Q from Eq. (1). For the UT relativistic
calculation Qf = Q' from Eq. (6). For the nonrelativistic
potentials, U and T are obtained from Eqs. (14) and (15)
and Eq. (6) is again used. This way of comparing differ-
ent optical models has one particular advantage, all other
aspects of the calculation (the bound-state wave func-
tion, the current operator, etc.) can remain unchanged,
thus it can separate the relativistic effect from the ef-
fects due to the use of different potentials. Comparison
of the SV model with the corresponding UT model will
show the relativistic effect; comparison of different cen-
tral + spin-orbit type potentials ( whether relativistic or
nonrelativistic) can be done using the UT model.

1 d 0'

„Z:;dn. dn„dk,'' (17)

where (0,'„' ) is the off-shell electron-proton cross section
defined in Ref. [18] and p is the missing momentum
defined by p = p —q. In the plane-wave impulse ap-
proximation (PWIA), when all the electron and proton
distortions are neglected, the quantity p is the momen-
turn density of the bound proton.

In Fig. 2 we show the results of knocking out a proton
from (a) the dsi2 state and (b) the 2sxi2 state of Ca us-
ing different relativistic optical potentials. The solid line

Before we discuss the specific efFects on (e, e'p) we make
some general observations. Equivalent potentials are gen-
erally deemed unsatisfactory if a smooth potential gen-
erates an oddly shaped equivalent which could certainly
happen here. In a sense what is mathematically equiv-
alent may be physically implausible. But smooth 8, V
potentials of the Wood-Saxon (WS) shape lead to smooth
U, T potentials and ultimately to smooth V„„,V, poten-
tials. For example, the V, potential shape is related to
the derivative of the WS shape, i.e., is surface peaked but
not given precisely by the Thomas relation. A Coulomb
potential in the original SV equation gives an equation
which is asymptotically Coulomb plus Thomas spin-orbit
coupling but there are other long-ranged contributions
&om the same term which means that the phase-shift
equivalency does not extend to Coulomb phases.

The results we will present below were calculated using
the same relativistic bound-state wave functions (derived
from a Hartree calculation —the n-u model). Since we

just want to look at the effect of using different relativis-
tic and nonrelativistic optical potentials for the knocked-
out proton, the electron is treated in the plane wave
Born approximation. The electron incident energy is 500
MeV and the kinetic energy for knocked-out proton is
135 MeV. All the results were calculated using parallel
kinematics, i.e., the proton is ejected in the same direc-
tion as the momentum transfer to the nucleus. These
conditions are chosen because they correspond to known
experimental results &om NIKHEF. One usually presents
the experimental data in the form of a reduced cross sec-
tion [1]:
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FIG. 2. Calculation of knocking out a pro-
ton from (a) dsi2 state and (b) 2sxi2 state of

Ca using diferent relativistic optical poten-
tials.
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(90fit2) represents the results of using the 1990 global
optical potential (fit2) [11].The dotted line (edaica) rep-
resents a potential which has been fitted only to the Ca
data [12]: the results are evidently very close. All the
other curves (edail, edai2, edai3) are from the use of the
1993 global optical potentials [12]. The difference be-
tween all these curves is no more than 2'Po which is much
smaller than any corresponding experimental error. So
we can conclude that the diferent versions of the rela-
tivistic optical potential cannot be distinguished by the
(e, e'p) reaction. However, we need to make two points
here: (1) all these difFerent versions of the relativistic op-
tical potentials are forms of the relativistic Scalar-Vector
(SV) model; if a non-SV dominant model (like UT model)
is used, the difference can be larger; (2) the conclusion is
based on calculations at one proton kinetic energy (135
MeV), one needs to look at over a much broader range
in order to generalize the conclusion. In later compar-
isons to the nonrelativistic models we will only show one
relativistic curve (90fit2).

In Fig. 3 we show the results of knocking out a pro-
ton from the d3~2 state of Ca using both relativistic
and nonrelativistic optical potentials. The thick solid line
represents relativistic optical potentials. The thin dashed
line (kelly) represents the nonrelativistic Kelly poten-
tial [14] and the thin dotted line (schwa) represents the
Schwandt potential [13]. We can see that the Schwandt
potential gives a strength which is more than 14%% larger
than the relativistic potential around the peak. The
Kelly potential (which is obtained by fitting to the inelas-
tic nucleon-nucleus scattering) gives a strength about 6%%uo

larger. We show the corresponding UT calculation, de-
rived using Eqs. (7) and (8) from the SV potentials, as the
thin solid line (ut). The difFerence between the UT (ut)
and SV (90fit2) calculations is caused by the relativistic
factor C„l. One can immediately see that the agreement
between the calculations from the Kelly potential and
the relativistic UT potential is very good, which tells us
that the main difference between the Kelly potential and
the Dirac (SV) potential is just a relativistic effect. The
calculation from the Schwandt potential does not agree

well with the UT calculation. Basically the calculation
from the Schwandt potential gives the wrong shape. In
other words, if one applied the relativistic factor C, 1 to
the nonrelativistic calculations, one would have nonrel-
ativistic calculations comparable to the relativistic (SV)
results.

In nonrelativistic calculations, it is common to reduce
the interior wave function by a Percy factor. The factor
used in the analysis of the experimental data performed
at NIKHEF [6] has the form

where V is a local optical potential, p is the reduced
mass, and P a nonlocality range parameter determined
some time ago by Percy [19]. The value commonly used

is ~2~&, ——1/115 MeV ~. Including this factor in the
Schwandt and Kelly potentials, we get the results shown
in thick dotted and dashed lines in Fig. 3. It is remarkable
that the effect of the Percy factor on the Kelly potential
(compare thin and thick dashed lines) is very much the
same as the effect of C„l in the relativistic potentials
(compare thin and thick continuous lines). We would
like to address the question of whether these factors are
equivalent.

The Percy factor was introduced to allow for the non-
locality associated with the nuclear potential. The dom-
inant contribution is from the central potential V„„,
which corresponds roughly in the SV model to S+ V.
The relativistic factor C„l, using Eqs. (8), (12), and

(15), can be related to the combination S —V or to the
nonrelativistic spin-orbit potential; explicitly

C„l ——exp MrV, dr
r

Thus these two factors are not the same and can be as-
cribed to different physical origins; nor are they really, in
closer examination, of comparable size. In Fig. 4 we show
the real parts of these two factors (the imaginary parts
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FIG. 3. Calculation of knocking out a proton from d3/2
state using both relativistic and nonrelativistic optical poten-
tial. Note this is shorn on a linear scale for clarity.

FIG. 4. The real part of the Percy factor (dotted line) cal-
culated using the Kelly potential and the real part of the rel-
ativistic factor calculated using either the SV potential (solid
line) or the Kelly potential (dashed line).
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are 2 orders smaller) calculated using Eqs. (18) and (19)
and the Kelly potential. It is also interesting to note that
the C„i (solid line), calculated using the SV potential,
agrees quite well with the one from the Kelly potential.
This leaves open the question of whether one should in-
clude both factors in nonrelativistic calculations. To jus-
tify this one would have to show that one could include
a nonlocal effect in relativistic calculations in a fashion
similar to that of Percy (this is under investigation).

In Fig. 5 we show the same calculations as in Fig. 3
but knocking out a proton from 2sq~2 state. We can see
that in this case, differences around the first peak &om
using different optical potentials are very small. Most
of the differences show around the second peak. That
is because the 2sqy2 state is distributed differently &om
the d3~2 state in r space. Also here again the results
&om the Kelly potential agree quite well with the UT
calculation while the results &om the Schwandt potential
do not agree well.

In conclusion, we described a model which can enable
us to compare the nonrelativistic optical potentials with
the relativistic potentials in the (e, e'p) calculation while
keeping all the formalism relativistic. Different versions
of the relativistic global optical potential developed by
Clark and co-workers make a difference less than 2% in
the (e, e'p) calculations. The Kelly potential gives about
the same result as the relativistic UT potential. The
Schwandt potential gives the same magnitude as the UT
potential but the shape is difFerent. If we compare the
nonrelativistic calculations to the relativistic calculations
(SV) directly, for dsg2 state, using the Schwandt poten-
tial can cause an enhancement as much as 14% around
the peak while the Kelly potential can cause 6%%uo, which
is caused mainly by the relativistic effect. The Percy fac-
tor used in the nonrelativistic DWIA calculation plays a
less significant role than the relativistic factor C„~. Since
the relativistic factor can explain partially why the spec-
troscopic factors extracted based on the nonrelativistic
calculations are lower, we suggest, for comparison pur-
poses, the relativistic factor should be included in the
optical model wave functions.

The transformations we describe above can also be ap-
plied to bound-state wave functions; one might question
whether it is consistent to change the final proton state
in this way without making the corresponding transfor-
mation in the initial state. To understand this one must
remember that the constraints imposed on the two states
are rather different. For the &ee states we need to repro-
duce the proton scattering results which means we are
constrained to reproduce the right set of phase shifts; we
do this by adopting a transformation which leaves the

103
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FIG. 5. Same as Fig. 3 but knocking out a proton from

28qyq state. In this case a logarithmic scale is used to show
difFerences at lower peek.

asymptotic form of the wave function unchanged. The
same transformation, applied to a bound state evidently
leaves the binding energy unchanged. This may seem de-
sirable but it is not essential. The initial proton wave
function is actually an effective single particle wave func-
tion formed by the overlap ( ~ Xz q]~Xz) between the
entire initial and final nuclear wave functions and is not
necessarily a solution of a single particle equation at all.
On the other hand making the transformation &om SV
to UT form changes the radius of the particle distribu-
tion seriously, and hence would violate the more sensi-
tive criterion that we reproduce the right nuclear radius
(our Hartree and Hartree-Fock wave functions do this).
We could use corresponding nonrelativistic Hartree -Fock
calculations but this would introduce a whole new range
of options, and in any case, are not used in the experi-
mental analysis: there the effective single-particle wave
function is treated as an unknown and adjusted to fit the
data. Thus the question of the appropriate treatment of
the initial proton wave function is complex and reduces
to the question of what one considers to be the right set
of nuclear observables to match. Ultimately one should
compare all assumptions which go into a wholly nonrel-
ativistic calculation with those used in the relativistic
calculations (currently being undertaken [20]).
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