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Potentials by inversion of sHe + cx phase shifts and bound state energies in 7Be

S. G. Cooper
Physics Department, The Open University, Milton Keynes, MK76AA United Kingdom

(Received 10 December 1993)

A method is introduced to determine a potential by inversion from both bound state energies and

phase shifts, based upon the iterative perturbative 8 matrix to potential inversion procedure. The
method is applied to determine the local potential reproducing low-energy He + o; phase shifts

as well as the l = 1 bound states and lowest l = 3 resonances in Be, for both the single channel

RGM and empirical data. An even-parity potential is determined from phase shifts up to t = 4,
which differs signi6cantly from the shape of the odd-parity term. The need for a pronounced parity-
dependent potential underlying the ROM is con6rmed, which strongly resembles that found in both
a+ p and o. + C scattering.

PACS number(s): 21.60.Gx, 25.10.+s, 25.55.Ci

I. INTRODUCTION

The elastic scattering and the underlying microscopic
description of the He + a system have been widely stud-
ied because of their relevance to the sHe(a, p)

rBe capture
reaction. An accurate theoretical value of the related as-
trophysical 8 factor is required for this reaction as an
important contribution to the solar neutrino problem.
The first microscopic description of the capture reaction
based upon the resonating group method (RGM), by Liu,
Kanada, and Tang [1],gave a reasonable agreement with
the experimental data and this agreement has been im-

proved in further refinements to the theory [2—4]. Some
success has also been achieved with descriptions of the
sHe(n, p)rBe capture reaction based upon local poten-
tial models [5—7], where these models are developed to
describe experimental properties of the bound state or
scattering He+o. system.

In spite of the success of the microscopic description,
local potentials still have an important role to play. All
microscopic models rely on an accurate representation of
the efFective nucleon-nucleon force and an inclusion of all
relevant multibody interactions. Complex nuclear sys-
tems are therefore dificult to describe accurately with
such models, whereas descriptions based upon local po-
tentials are considerably easier to formulate and can al-
ways be used in a first approximation. The question of
particular relevance to this work lies with the determi-
nation of the local potential. Usually such potentials are
derived either by fitting elastic scattering cross-section
data, or by inversion from phase shifts. However, in the
context of building a macroscopic model to describe ra-
diative capture, Baye and Descouvemont [8] suggest that
the local potential must be able to reproduce both the
correct phase shifts and the binding energies of the rel-
evant two-body system. A major purpose of this work
is to introduce an extension to the iterative perturbative
(IP) S matrix to potential inversion method [9] to allow
bound and resonant state energies to be fitted simulta-
neously with the inversion of phase shifts.

The technique introduced here uses the Born approx-

imation to formulate a corrective term which is added
to a potential approximately reproducing the energies of
one or more bound or resonant states. This procedure is
highly analogous to the use of the Born approximation in
the original IP procedure and the new extension is now
embodied in the program IMAGQ [10]. The Born approx-
imation works well in the calculations presented here and
few iterations are required to produce a convergent solu-
tion.

The method is applied to derive the local potential
which accurately reproduces both the subthreshold He
+ n phase shifts and the bound state energies of Be.
The calculations represent the first such direct derivation
of the He + o. potential from phase shifts and bound
state energies. The main objective of this work is to de-
termine potentials from phase shifts calculated by the
single-channel RGM [1,11],but the determination of po-
tentials from the subthreshold empirical phase shifts is
also discussed. Empirical phase shifts for 3He + a scat-
tering have been determined over a wide energy range,
for example [12—17], both above and below the threshold
at Li + p, establishing a fairly clear systematic behav-
ior for individual partial waves as a function of energy.
However, in the subthreshold region the uncertainties in
the phase shifts are too large to establish a potential ac-
curately by inversion.

The energy dependence of the phase shifts is crucial
to IP inversion at subthreshold energies, since there are
less than six contributing l values and the potentials are
necessarily parity dependent, as predicted by Tang et al.
[18]. The mixed-case techniques introduced by Cooper
and Mackintosh [19] and later extended for mixed-case
spin-1/2 scattering [20] are used for the phase-shift in-
version. These techniques stabilize the inversion as well
as allowing the derivation of an energy-independent po-
tential for a specified energy range. Calculations are also
presented to assess the degree of inherent energy depen-
dence in the potentials.

Parity-dependent local potentials have now been es-
tablished for many nuclear systems, for example, for p +
n scattering [20, 21] and for the o, + i2C system [19,
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22]. In all these cases the even-parity potential is of
significantly different shape to the odd-parity potential,
whereas most analyses for He + n scattering [6,7, 18] use
even- and odd-parity potentials which differ only in the
overall potential normalization. Here, the even- and odd-

parity potentials are determined in separate calculations.
Ambiguities in the odd-parity potential are reduced us-

ing the new inversion technique, due to the existence of
bound states and subthreshold resonances for odd-l val-

ues, whilst ambiguities in the even-parity potential are
reduced by the inclusion of partial waves for nonzero l

values into the inversion, following Liu et al. [5].
The paper is structured as follows: The next section

presents the method to fit bound state and resonance
energies simultaneously by IP inversion, with a brief ex-
ample in which potentials are determined to reproduce
specifically the lowest l = 1 and l = 3 states for He + o.

and t + n cases. Section III contains a short discussion of
the phase shifts used in subsequent calculations, before
the separate calculations fitting even-l and odd-l phase
shifts are presented in Sec. IV. In Sec. V, comparisons are
made with similar systems such as the n, p + n and o.

+ C and the underlying parity dependence is discussed
before conclusions are presented in Sec. VI.

II. POTENTIAL INVERSION FROM BOUND
STATE ENERGIES

A. Review of the IP inversion method

V; (r) = VsRp(r) + ) A.v;(r),

where the optimum expansion coeKcients, A; are deter-
mined by the inversion. The accuracy of the phase-
shift fit at any stage of the inversion is measured by the
"phase-shift distance" cr, given by

Nf,
2 g Star Sinv

a I
k=1

(2)

where k is a generalized partial wave index specifying l, j
(for spin half), and, in mixed-case inversion, E, the c.m.
energy. S&

' is the target S matrix to be fit by the inver-

The details of the iterative perturbative inversion pro-
cedure have been described in many previous articles [9,
19] and references therein, with the "Users manual for the
code IMAGo" [10] providing a comprehensive and up-to-
date account. Only the essentials of the method will be
repeated here, in order to show how the extension to fit
bound state energies is accommodated within the exist-
ing procedure.

First a potential must be chosen as the starting ref-

erence potential (SRP), VsRp(r). This potential should

be a reasonable approximation to the (unknown) target
potential, although in many cases the spin-orbit compo-
nent, and sometimes also the central component, may be
zero.

A potential perturbation is formed &om an expansion
over a finite set of basis functions, v;(r), i.e. ,

sion and SI,
" is the S matrix resulting &om solving the

radial Schrodinger equation for V;„(or initially VsRp).
The essential step in the method is the assumption of

a linear relation between small changes in the S&" and
small values of A;, following the Born approximation

bSg, = A,
~

—
~

v;(r) [ug(r)] dr,
im ) 2

hk, j p

where us (r) is the suitably normalized radial wave

function obtained by solving Schrodinger's equation for

VsRp(r) [initially; later V~„(r)] and k, is the usual

asymptotic wave number, = g(2pE) for reduced mass

p. A least squares minimization of o~ produces a set
of linear equations for the A; and the matrix inversion
is solved using singular value decomposition (SVD). The
phase shifts show a greater sensitivity to certain basis
functions, or in practice to particular linear combinations
of the basis set. The linear combination producing least
sensitivity corresponds to the smallest singular values in
the decomposed matrix, so that by removing these sin-

gular values &om the calculation of the set of A;, a diver-

gent solution can be avoided [23]. The insertion of the A,

into Eq. (1) then produces a new potential V;„(r) corre-

sponding to an decreased value of o' . The whole process
can then be repeated until the convergence in 02 is sat-
isfactory. Typically for nucleon scattering this takes & 5
iterations and sometimes two iterations are sufBcient.

The choice of both VsRp(T) and the basis functions
v, (r) necessarily introduces some degree of parameter
dependence into the IP procedure, which may lead to
significant uncertainties in the final potential if the in-

version basis is small. This parameter dependence can
be assessed by further calculations based upon alterna-
tive choices of VsRp(r) and v, (r) (for example, the basis
could be formed &om either zeroth-order Bessel functions
or Gaussian functions). The sensitivity of the potentials
to small changes can also be found by notch testing. In
this procedure, a small Gaussian notch is added to V;„„(r)
and the change in sigma is calculated as a function of the
position of the notch center.

A key advantage of the IP method lies in its simplicity,
allowing easy generalization to more complex scattering
cases. For example, Eq. (1) can be adapted to derive

imaginary and/or spin-orbit potentials where appropri-
ate and known errors in the target S matrix can be trans-
lated into suitable weighting in Eq. (2) [9], where rel-
evant. Similarly, Eq. (2) can include S-matrix elements
for more than one energy and subsets of the elements SI,

'
can be excluded from the inversion. In heavy-ion scat-
tering it may be essential to exclude small l values from
the inversion, because they do not contribute strongly
to the cross section and may result &om an underlying

highly l-dependent potential whose radial form is not of
interest [23]. More relevantly here, a parity-dependent
potential can be determined by excluding either all the
odd-l or all the even-l values in two independent inver-

sion calculations. In mixed-case inversion phase shifts
corresponding to more than one energy are included. By
using a parametrized form for the phase shifts, the inver-

sion can be restricted to energies within a very narrow
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range, i.e., an "energy bite" [20], so that, effectively, the
energy derivatives of the phase shifts are used to calculate
an essentially energy-dependent potential.

B. Bound state inversion procedure

The extension of the IP inversion procedure to include
the inversion from bound or resonance state energies is
based upon the standard iterative procedure to calcu-
late a single-particle bound state of angular momentum
l. The latter procedure has been widely used for many
years to represent single-particle form factors in strip-
ping codes such as DwUcK, [24] and has been extended
to calculate resonant states in the distorted wave Born
approximation (DWBA) by Comfort [25]. Cooper et aL

[26] showed how states of near zero, or even zero energy
can be calculated with suitable low-energy approxima-
tions for the Coulomb functions.

The procedure for calculating either a bound state or
a low-energy resonance is as follows: For some initial
choice of potential, e.g. , VsRp(r), solutions to the radial
Schrodinger equation are calculated for the radial regions
inside and outside a suitable matching radius R . In
the external region the solution $2(r) is computed work-

ing radially inwards, starting from the Coulomb function

0& (R) or G~(R) for the bound and resonant state so-
lutions, respectively, at a radius R )) R, where the
nuclear potential is negligible. In the internal region,
the solution Pq(r) is evaluated working radially outwards
from an arbitrary value at the first radial point. [While
in most calculations the wave function is assumed to be-
have as r +, near r = 0, an approximation valid if the
nuclear potential is independent of radius for small r, by
setting Pq(0) = 0 and using the Numerov method of in-

tegration no such assumptions need be made near r = 0.]
The solution Pq(r) should contain the required number
of radial nodes. At r = R the difference between the
logarithmic derivatives of the two functions is evaluated
and, as for an arbitrary choice of potential and energy, a
bound state or resonance will not exist, the two logarith-
mic derivatives will differ. Either the potential must be
adjusted to reproduce the specified energy or the energy
adjusted to find the appropriate state for given VSRp.

An improved approximation to VSRp can be obtained
by adding to this potential a single basis function A;v, (r)
and then applying the Born approximation to solve for
A.q) 1.e.)

R (Pl Pl )
v*(r)[&~(r)l'«+, v'(r) [4"(r)1'« (4)

The complete procedure can now be repeated on an it-
erative process, with each successive stage starting from
the potential calculated at each previous step, until the
state energy is reproduced to satisfactory precision. In
most codes the overall potential depth, or, for spin-1/2
states, the sum of central and spin-orbit potentials, is
adjusted using this procedure.

Where several bound state and/or resonance energies
are now to be reproduced simultaneously, a larger poten-
tial basis can be used, as in IP phase shift to potential
inversion. To combine this new method with the phase-
shift inversion, consider a minimization of the following
quantity:

(5)

02 is as before, Eq. (2), and the second sum on the right
hand side (RHS) is over a set of bound states or reso-
nances; for each state n, gP~(r) and $2(r) represent the
internal and external solutions as described above, and
k„ is the asymptotic wave number. The adjustable fac-
tor R' introduces a bias between a precise fitting of
phase shifts and a precise fitting of the energies of the
states n. The factor 2/k„ is inserted only to give a closer
correspondence between the two terms on the RHS of
Eq. (5), i.e. , so that the two approximations in Eqs. (3)
and (4) have roughly equal weight in the inversion matrix
if R' 1.

The quantity o' can be minimized by the least squares
method, using the approximations given by Eqs. (4)
and (3). The introduction of the second term on the RHS
of Eq. (5) introduces additional equations which govern

I

the fitting of the single-particle states. SVD techniques
described in Sec. IIA are used here and the complete
process can be iterated until 0' converges.

In the following sections, the original measure e2 is
used to specify the fit to the phase shifts and the actual
energies of each state n are calculated separately, rather
than directly quoting the value of 0' for any calculated
potential V~„(r). The calculation of the state energies
corresponding to V; „(r) follows a procedure similar to
that based upon Eq. (4). For each state n, solutions PP (r)
and qP2(r) are calculated using the Schrodinger equation
with the potential V; (r) and, initially, the target energy.
A correction (bk2)„ to the state energy is calculated us-

ing the Born approximation and the whole calculation
is repeated iteratively until the two solutions pe and P2
match at the radius R

The code IMAGo has been adapted to include the new
techniques within inversion calculations. Since bound
states and resonances are treated on an equal footing,
the procedure can include cases in which VsRp(r) has an
unbound state although a bound state is required exper-
imentally, or vice versa. However, if tIP~(r) contains the
incorrect number of nodes, an appropriate potential cor-
rection will not be found by inversion and an improved
choice of VSRp is required.

C. Inversion from bound and resonance states only
in He/t + a

The method introduced in Sec. IIB will first be illus-
trated with inversion calculations based upon the bound
and resonant state energies alone [in practice Eq. (5) is
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FIG. 1. Central and spin-orbit potentials determined by
inversion of the bound states and lowest I'-wave resonances
in Be (dashed line) and Li (dotted line), and compared with
the starting reference potential Vsap (solid line).

used with a large weighting factor W], before combin-
ing the methods in Secs. IIA and IIB to calculate a
potential simultaneously fitting bound states and phase
shifts. In past analyses a more ad Roc procedure has
been used to determine potentials which approximately
reproduce several single-particle energies simultaneously,
for example, by adjusting the parameters of a fixed shape
potential. By using direct inversion &om the bound or
resonance energies, no fixed potential shape need be as-
sumed, although the accuracy of the resulting potential
is necessarily restricted by the number of states included
in the inversion. The example considered here is based
on the l = 1 bound states and the lowest l = 3 resonance
states in He + a and t+ o. scattering.

The form of VsRp(r) used was deliberately chosen to

be inaccurate, i.e., in all cases predicting energies which
are too high and giving positive energies for even the low-
est l = 1 states. The inversion is based upon a central
potential basis of three Gaussians and a spin-orbit ba-
sis of two Gaussians, with which to fit four bound state
or resonance energies. The inversion matrix is then un-
derdetermined, but by using SVD techniques only three
linear combinations of these basis functions are used at
any iteration and the inversion converges well within five
iterations.

The separation of the l = 1 states in Be remains dif-
ficult to reproduce. An accurate fitting of these bound
state energies is only obtained either by using a spin-orbit
basis comprising of two relatively narrow width Gaus-
sians (of width = 0.6 fm and spaced at 1.9 and 2.5 fm),
or by allowing an oscillation in the spin-orbit potential.
Buck et al. [6] were also unable to reproduce the P and
the F state energies simultaneously with a single Gaus-
sian spin-orbit potential. However, beyond experiment-
ing with the position of the two spin-orbit basis functions
in the inversion, no further attempts have been made to
vary the choice and size of the bases to optimize the fit.
With the VsRp(r) used for the sHe + n states, including
the spin-orbit basis comprising the narrow width Gaus-
sians, the lowest P and F states in the t + a system are
also reproduced accurately. Calculations with slightly
different spin-orbit bases do suggest that the Li states
could be fit better with a spin-orbit potential of wider
width and the 7Be states better fit with a spin-orbit po-
tential of narrower width and this observation may reBect
state mixing in one or both of the cases.

Figure 1 shows the resulting potentials for both He
+ o. and t + n cases, with the rather sharply peaked
spin-orbit potentials, as well as VsRp(r) as used in these
calculations, which has effectively a zero spin-orbit com-
ponent. The two solutions show a remarkable agreement,
even in the spin-orbit potential, and perhaps rather bet-
ter than expected given the probable presence of some
degree of state mixing. The energies obtained for each
state n &om these two solutions are given in Table I and
agree with the experimental values to within 0.1 Mev.
%ith the small expansion basis the solutions are nec-
essarily parameter dependent and therefore not unique.
However, since the solutions are very smooth, alternative
solutions are likely to contain potential oscillations.

The above calculations are essential to calculate a
Vsnp(r) for the phase shift inversion in He + cx scatter-
ing. With an arbitrary choice of Vsnp(r), problems arise
in the original IP procedure because the linearity rela-

TABLE I. For the lowest odd-l states in t + o. and He + cx, experimental energies E „pt, and

energies E;„„and EsRp, calculated, respectively, for the potentials V;„„(r)and Vsap(r). All energies

are in MeV.

State

&3(2
+s]~
+my~

Eexpt
-1.159
-1.588
5.14
2.98

Be
Einvs
-1.143
-1.607
5.09
2.99

EsRp
1.90
1.90
8.70
8.70

Eexpt
-1.991
-2.468
4.211
2.162

Li
Eius
-1.981
-2.479
4.199
2.165

ESRP
1.365
1.365
7.565
7.565
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tionship, Eq. (3), breaks down in the region of narrow
resonances, such as the I"7g2 resonance at the excitation
energy of 4.57 MeV. By 6rst 6tting the resonance energy
directly using Eq. (4), the inversion works well.

empirical S-wave phase shifts are reasonably well approx-
imated by the hard sphere model [12], which is used to
assess potential differences between fitting the RGM and
fitting empirical phase shifts.

III. PHASE-SHIFT DATA

Only real phase shifts are included here, with which
to determine real central and spin-orbit potentials. The
empirical phase shifts for the subthreshold energy region
[12—14] are only well established for the S-, P , and-E
wave phase shifts (in cases where the D-wave phase shifts
were allowed to vary [12, 14], no significant departures
from zero were found). The threshold for breakup to sLi

+ p is at 5.608 MeV excitation energy (corresponding to
7.036 MeV for the sHe projectile), but just above thresh-
old the empirical values of g = ~S(l)] are still close to
unity. Hence although inversions will be presented for
laboratory energies up to 12 MeV, the neglected small
changes in g should not eKect the real potentials.

The single-channel RGM calculations contain the free-
dom to fine-tune the nucleon-nucleon potential to fit
appropriate experimentally established properties. For
example, the lowest I'-wave resonance energies are ac-
curately positioned to calculate bremsstrahlung cross-
sections [ll], now referred to as LTKl, or in [1], to be
denoted LKT2, the ~Be bound state energies are accu-
rately fitted in order to calculate the sHe(a, p)rBe cap-
ture reaction. The inversions will be mostly based on the
phase shifts given by LTK1. The RGM analyses have
not used prior information concerning the even l phase
shifts and all the one-channel RGM calculations produce
S-wave phase shifts which difFer signi6cantly from the
empirical values. This discrepancy is only corrected by
the inclusion of specific distortion effects [27]. The em-
pirical data are not sufficiently precise to permit judge-
ment on the RGM D-wave phase shifts, and the RGM
G-wave phase shifts are very small in the subthreshold
energy region (in LTK1 negative G-wave phase shifts are
given, probably due to accurately fitting the F-wave res-
onances). To ensure a continuity to higher energies, the
potential models must give reasonable phase shifts for
t = 4 and some inversions have included 6-wave phase
shifts calculated from the R-matrix 6ts of Furber et al.
[28]. The latter fits are based upon calculations extend-
ing up to 113 MeV (c.m. ) and include predictions for G-
and H-wave resonances which have been approximately
justified by the empirical phase shift fits of Ostashko and
Yasnogorodskii [17].

To allow an unrestricted choice of energies in the phase
shift to potential inversion, the RGM phase shifts have
been fitted with either effective range parametrizations,
or, for the D-wave phase shifts only, R matrix fits. This
fitting process was made separately for each partial wave,
with an objective to obtain fits to the RGM phase shifts
of greater accuracy than is generally achieved by inver-
sion, as opposed to deriving meaningful fitting parame-
ters.

The empirical phase shifts are too scattered to provide
an accurate basis for inversion and serve only to restrict
the possible shape of the underlying local potential. The

IV. RESULTS OF INVERSION CALCULATIONS

A. Inversion parameters

Generally the inversion calculations are fairly insen-
sitive to the choice of VsRp(r). However the spin-orbit
potential presents a challenge to the inversion because,
in all cases, it is an order of magnitude or more smaller
than the central potential. Most calculations start with
a zero spin-orbit potential, and perturbations are added
to the spin-orbit potential only after first determining
a good approximation for the central potential. Corre-
spondingly, as a fraction of the potential value, the uncer-
tainties in the 6nal spin-orbit potential are much larger
than for the central component. A small Gaussian basis
is generally used.

The Ip approximation of Eq. (3) works well in the fol-
lowing calculations except near the I"~g2 resonance as dis-
cussed in Sec. IIC. The simple smoothing techniques,
introduced in Ref. [20], have been used in some calcula-
tions to remove long-range surface oscillations. Usually,
such oscillations can also be removed by restricting the
radial range of the inversion basis.

The Coulomb potential used is given by 4e2/r erf(Pr)
as obtained Rom the RGM calculations [5, 29], with P =
0.552.

B. Odd-parity potential

In this section, local potentials are presented, calcu-
lated to reproduce both the phase shifts of LTKl and
the bound state energies. While the bound state ener-
gies given by LTK1, —1.09 and —1.95 MeV for the Pqy2
and Psy2 states, respectively [30], differ slightly from the
experimental values, the inversion must be based on the
actual energies given by the RGM. Otherwise there is an
inevitable compromise between accurately reproducing
the bound state energies and precisely fitting the energy
dependence of the phase shifts.

The inversion procedure is most stable when performed
in several stages; first, only the bound state and reso-
nance energies are included in the calculation, as in Sec.
IIC, and an accurate 6t to these energies is obtained.
Subsequently the weighting factor TV is decreased in one
or more stages to 1 (but with even-1 phase shifts ex-
cluded from 0 2) and the inversion basis enlarged, so that
the overall phase shift 6t is gradually improved whilst a
good fit to the bound state energies is maintained. The
RGM bound state and resonance energies alone can be
very precisely reproduced with a Gaussian spin-orbit po-
tential of greater width than that presented in Sec. II C.
The resulting potential provides a reasonable fit to the
odd-parity phase shifts, although the fit to the P-wave
phase shifts becomes less accurate towards higher ener-
gies.
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In Fig. 2, the potential obtained from fitting only the
bound and resonance state energies (solid line) is corn-
pared with three potentials resulting &om full inversion
calculations, for which o = 0.108, 0.117, and 0.109. The
latter potentials are calculated using different choices for
both V and the inversion parameters and are deter-
mined &om inversion of phase shifts for energies up to
12 MeV (in steps of 0.5 MeV) to cover the I"s~2 res-
onance. All the potentials shown in Fig. 2 reproduce
bound and resonance state energies to within 0.1 MeV.
In this same energy range, the potential inverted from
the single-particle states alone gives 0 = 1.15. However,
only small changes to the latter potential are required to
reproduce the full energy dependence of the phase shifts
accurately and the resulting solutions do not reveal a sig-
nificant parameter dependence. Differences between the
central potentials shown in Fig. 2 are noticeable only for
small radii and notch tests show that even the P-wave
phase shifts show little sensitivity to this radial region.
The comparative differences in the spin-orbit potentials
are proportionally larger due to the much smaller mag-
nitude. The differences between the phase shifts calcu-
lated from any one of the three solutions in Fig. 2 and the
parametrized RGM odd-l phase shifts are ( 1' for the

entire energy range. Comparable fits to the phase shifts
can be obtained if the bound state energies are excluded
&om the inversion, but the resulting spin-orbit potentials
have significantly larger uncertainties than is illustrated
by the range of solutions in Fig. 2.

If the inversion is restricted to subthreshold energies,
the accuracy of the calculations is slightly improved, but
any changes to the potentials fall well within the uncer-
tainties due to the parameter dependence as illustrated
in Fig. 2. Any underlying energy dependence in the po-
tential should be small and this prediction is confirmed

by calculations in which the phase shifts are fitted very
precisely at energy bites centered at 2, 4, and 6 MeV. The
resulting three potentials, including the spin-orbit com-
ponents, show only very small differences &om the poten-
tial determined by inversion &om the full subthreshold
energy range.

Phase shifts and bound state energies from other RGM
calculations can also be easily fitted by inversion, yielding
calculations of similar accuracy to those reported above.
Figure 3 compares a potential determined by inversion
from the subthreshold odd-E phase shifts of LTK1 with
a potential similarly determined &om the phase shifts of
LKT2. The two models give slightly different predictions
for the P-wave phase shifts and very different predictions
for the centroid of the E-wave resonances. The largest
difFerences in the equivalent local potentials are found in
the relative magnitude of the spin-orbit potential, with
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FIG. 2. Central and spin-orbit potentials for He + o (i)
determined by inversion of the bound and resonance state
energies only, giving o = 1.14 (solid line), and (ii) in three
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s phase shifts and the bound state energies, giving o. = 0.108
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cally equivalent to two RGM analyses of He + a, LTK1
(solid line) and LKT2 (dashed line).
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only very small corrections required in the central poten-
tial to adjust the centroid of the resonances.

The inversion procedure can also determine a potential
&om the empirical phase shifts and experimental bound
state energies, whilst retaining the narrow spin-orbit po-
tential. The resulting central potentials are very similar
to those given in Fig. 2. Since accurate 6tting of the
phase shifts entails reproducing the experimental noise,
it is unclear whether the very narrow spin-orbit poten-
tial is required to reproduce the empirical phase shifts
accurately.

C. Even-parity potential

The inversion on even-/ values is rather less straightfor-
ward than that on odd-l partial waves. No even-I bound
states exist, although putting 3He + o. in a common oscil-
lator potential gives rise to Pauli forbidden states in both
S and D waves. By speci6cally excluding these forbid-
den states, the potential solution can be restricted to lie
within that family of solutions which contain the correct
number of wave function nodes.

The subthreshold S-wave phase shifts alone are ex-
tremely easy to 6t. A series of calculations have been
made using Gaussian central potentials with fixed width,
1.6, 2.0, or 2.4 fm, and with the depths varied to re-
produce the S-wave phase shifts of LTK1 accurately up
to 12 MeV (laboratory). In Fig. 4 the D and G-wa-ve

phase shifts calculated &om the resulting potentials are
compared with the appropriate RGM phase shifts (solid
line). Clearly the higher l values are fit much better with
the Gaussian potentials of smallest width. In fact, while
the G-wave phase shifts may be too small to be fitted
accurately by inversion, the calculations of Furber et aL

[28] imply that at 12 MeV, b ( 1'. Notch tests on the
resulting potentials reveal a strong association between
the l value and the radial region of greatest sensitivity;
i.e., the S wave is most sensitive to radial regions near 0
fm and near 2 fm, the D wave is most sensitive to r 1—
2 fm, and the G wave shows a much sxnaller sensitivity
which is strongest for radii r ~ 3—4 fm.

Starting &om the single Gaussian central potential de-
rived above with a width of 1.6 fm, the 6t to all sub-
threshold energies phase shifts is slightly improved, in a
second inversion stage, using a larger inversion basis as
well as a spin-orbit potential. The two separate stages
are necessary to give a stable inversion. The phase shifts
corresponding to the improved potential are compared
with the parametrized RGM phase shifts in Fig. 5, for
both the S- and D-wave phase shifts. Note that the D-
wave phase shifts are still less than 2.5 in this energy
region. The final potential is shown in Fig. 6 (solid line)
and discussed below. Whilst the two sets of phase shifts
in Fig. 5 show a more noticeable disagreement at higher
energies, the new solution presents a significant ixnprove-
ment on the approximate local potentials suggested by
Liu et al. [5].

To improve the accuracy of the subthreshold phase
shifts Gts beyond the agreement illustrated in Fig. 5
requires either pronounced oscillations, or energy-
dependence, to be introduced into the potential. As in

Sec. IVB, the energy dependence is investigated by cal-
culating potentials for energy bites centered at 2, 4, and 6
MeV with widths +0.4 MeV. The potentials determined
&oxn inversion of all subthreshold phase shifts is used for
VsRp(r), to ensure a continuity with energy, and the in-
version basis is restricted to r & 3 fm, to both maintain
a reasonable fit to the G-wave phase shifts and also to
restrict the parameter dependence of the potentials. The
energy-dependent solutions 6t the S- and D-wave phase
shifts extremely accurately in the region of each energy
bite. The potentials are shown in Fig. 6, along with the
solution for the complete subthreshold energy range. As
in the odd-parity case, the central potential contains little
energy dependence, and only small corrections need be
added to the potentials to 6t the S-wave phase shifts ac-
curately for each energy bite. The proportionally much
larger changes required in the spin-orbit potentials ex-
plains why the inversion covering the wider energy range
fails to reproduce the energy dependence of the D-wave
phase shifts.

A similar form of energy dependence to that reported
in the preceding paragraph is obtained for inversions &om
the phase shifts of LKT2, which is not surprising as the
two models do not give signi6cantly diH'erent results for
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FIG. 4. D- and G-wave phase shifts, plotted as a function
of energy, for Gaussian potentials of widths 1.6 fm (solid line),
2.0 fm (dashed line), and 2.4 fm (dotted line) compared with
published RGM phase shifts of LTK1 (solid circles).
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the S- and D-wave phase shifts. However, the differences
between the two potentials determined by inversion from
the subthreshold phase shifts of LTK1 or LKT2 are very
similar to the differences found between the solutions de-
termined from the two models for the odd-parity case,
as shown in Fig. 3. That is, the two central potentials
show an almost perfect agreement, whilst a much smaller
spin-orbit potential is required to fit the phase shifts of
LKT2 than for LTK1. (The volume integrals and rms
radii of the two potentials are tabulated in Table II and
discussed in Sec. V B below. )

Large ambiguity problems are found if the empirical S-
wave phase shifts are fitted with the single Gaussian cen-
tral potentials considered above, but the resulting poten-
tials have less attraction than the potential determined
&om the RGM. However, negative D-wave phase shifts
are obtained in the subthreshold energy region for all
choices of the Gaussian width. Negative D-wave phase
shifts are both predicted by RGM calculations, with and
without specific distortion effects, and justified to some
extent by the empirical phase shifts. The Gaussian po-
tential with width 2.4 fm is incorrect if the G-wave phase
shifts are less than 1' at 12 MeV, as suggested by exn-

pirical analyses at higher energies. When the G-wave

phase shifts are included within the phase-shift analy-
ses, the variations Born zero remained less than 2 at
18 MeV (laboratory) [12]. Also, R-matrix fits have been
made to the established 9/2+ resonance, higher in en-

ergy than the range considered here [17], which imply
even smaller phase-shift values in the subthreshold en-

ergy region. Only small adjustments in the potential
are required to reproduce both S- and D-wave phase
shifts simultaneously, if the potential solution is based
on the Gaussian with smaller width. The even-parity
potential is therefore poorly determined by the empirical
phase shifts, but reasonable restrictions on the potential,
imposed to fit the G-wave phase shifts, still lead to an
even-parity potential of significantly decreased radial ex-
tent than that of the odd-parity potential (which can be
well approximated by a Gaussian of width 2.4 fm). The
empirical phase shifts at least partially confirm the shape
of the even-parity potential derived &om the one-channel
RGM.

V. COMPARISON WITH OTHER NUCLEI

A. Even-parity potential

0

—10—

Since the evidence &om the empirical phase shifts is
insufhcient to confirm the shape of the even-parity po-
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FIG. 5. S- and D-wave phase shifts, plotted as a function
of energy, for the RGM phase shifts, LTKl (solid line), and
phase shifts corresponding to the best sxnooth potential de-
termined by inversion from subthreshold phase shifts of I TK1
(dashed line).

FIG. 6. Central and spin-orbit even-parity potentials de-

termined from phase shifts covering (i) the complete sub-

threshold energy range (solid line), and (ii) energy bites cen-

tered at 2 MeV (dashed line), 4 MeV (dotted line), and 6
MeV (dash-dotted line).
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tential deduced from the one-channel RGM, it is inter-
esting to investigate the systematics between various nu-
clei for this potential. In Fig. 7 the even-parity potential
determined by inversion over the complete subthreshold
region, i.e., the solid line in Fig. 6, is compared with the
even-parity p+ o. potential determined &om RGM phase
shifts for an energy bite of 12 MeV [21] and the potential
fitting the single-channel o.+a RGM phase shifts of Liu
[31]. The latter potential is close to the two-Gaussian
equivalent local potential proposed by Liu, but has now
been modified by IP inversion to reproduce all the sub-
threshold RGM phase shifts accurately up to I = 6. For
n+n scattering the small difFerences between the single-
channel RGM phase shifts and the empirical phase shifts
should not be important and the n+n potential displayed
in Fig. 7 is very similar to the potential obtained by Buck
et al to fit. the empirical phase shifts [32]. The close cor-
respondence between a11 three systems suggests a con-
sistent pattern for the potential separately fitting even-I
phase shifts in this mass region. Possibly the sHe + n
potential is not quite in line with other cases; i.e., the
rms radius may be too small, so that the omissions in
the single-channel RGM may be exaggerating the shape
of the He + o, potential.

B. Parity-dependent potential

A parity-dependent potential of the form Vi (r) +
(—1) V2(r) can be calculated from the odd- and even-
parity potentials. Only the central potentials are con-
sidered here, so that the efFects of both energy depen-
dence and the sensitivity to inversion parameters should
not affect the shape of the resulting parity-dependent po-
tential. Potentials Vi(r) and V2(r) corresponding to the
potentials determined Rom the subthreshold phase shifts

and the bound state energies of LTKl are shown in Fig. 8.
The p + n parity-dependent potentials determined from
both empirical phase shifts [20] and RGM phase shifts
[21] in both cases for an energy bite at 12 MeV, and
the parity-dependent potentials fitted to subthreshold o.
+ i2C phase shifts [19] are also shown in Fig. 8. In
all systems the parity dependence is far &om a simple
renormalization of either the even- or odd-parity poten-
tial. The parity-independent term is smooth in all cases
and increases in magnitude in an approximately system-
atic way with the mass of the target and projectile. By
contrast, the parity-dependent terms V2(r) contain posi-
tive and negative regions, but there is a quite remarkable
similarity in the shape and magnitude for the different
cases. In all cases the magnitude of V2(r) is smaller, but
far from insignificant, in comparison with Vi(r).

The volume integrals per nucleon, J, as usually de-
fined, and rms radii for both the even and odd-parity po-
tentials, locally equivalent to LTK1, and the values for
the average potential Vi(r) are listed in Table II, which
also includes, for completeness, the values for the poten-
tials determined &om the phase shifts of LKT2. Whilst
the large difFerences between the rms radii of the odd-
and even-parity central potentials can be expected &om
Figs. 2 and 6, the very large difFerences in the corre-
sponding volume integrals may seem surprising. How-
ever, it is the values for the parity-independent term
which should be compared with the systematics for heav-
ier nuclei. There is also the expected close correspon-
dence in the volume integrals and rms radii of the central
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p+ n empirical phase shifts (dashed line), He + n (dotted
line), and n+ C (dash-dotted line).
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TABLE II. Volume integrals J (MeV fm ), and the rms radii (r ) ~ (fm) for the even-parity
potential, the odd-parity potential, and the parity-independent term Vz(r) determined by inversion
from the subthreshold RGM phase shifts of either LTK1 or LKT2.

Odd parity
LTK1

~

LKT2
Central potential

J 639.0 629.0
(r')'~' 3.26 3.25
Spin-orbit potential

J 8.34 4.31(")" 2.28 2.31

298.0
2.19

298.0
2.19

1.15
2.36

0.611
2.33

Even parity
LTK1

~

LKT2
~

469.0
2.96

V, (r)
LKT2

463.0
2.94

potential between the models LTK1 and LKT2. The vol-
ume integrals for the odd- and even-parity potentials are
very close to the values derived &om fitting @+a RGM
phase shifts, particularly for the single-channel RGM, al-

though, not surprisingly in the present case, the rms radii
are larger. The volume integrals for the spin-orbit poten-
tials, as expected, show a large dependence upon which
RGM model is used.

VI. CONCLUSIONS

A method has been introduced to allow the determina-
tion of a potential by inversion Rom both the subthresh-
old phase shifts and a chosen set of bound state energies.
That is, a local potential can be determined for both
the positive and negative energy regions. The procedure
has been incorporated within the IP inversion program
IMAGo. Low-energy resonance states are treated almost
identically to the bound states, so that resonance ener-
gies can also be directly fitted by the new procedure. This
forms an important addition to the IP procedure for the
positive energy region since the original method may fail
in an energy region containing narrow resonances.

The new method has been applied to determine a
parity-dependent local potential from both low-energy
He + o, phase shifts and bound state energies in Be, cal-

culated by the single-channel RGM. In the subthreshold
energy region bound and resonance states exist only for
odd-l values, but the potential uncertainties are reduced
by including these energies within the inversion, partic-
ularly for the very small spin-orbit potential. The even-
parity potential is derived Rom the phase shifts alone
and D-wave, as well to some extent G-wave, phase shifts
are shown to be necessary to define the shape of this po-
tential, confirming a suggestion of Liu et al. [5]. The
existence of a parity-dependent potential, though not
the precise radial shape, had already been established
for this system. Contrary to the previous calculations
of the He + o. potential, the results found here show
the even-parity potential to have a much smaller rms ra-
dius then the odd-parity potential, with the latter hav-
ing a smaller depth at the nuclear center. The resulting
parity-dependent potential is then strikingly similar to
the potential found underlying both empirical and RGM
subthreshold p + o, phase shifts. In the He + a case,
the potentials are very nearly energy independent, except

for the very small even-parity spin-orbit potential whose
magnitude increases steadily with energy.

The shape of the parity dependence underlying the em-
pirical phase shifts is less well determined, since a well-
established local potential is obtained only for the odd-l
values. Whilst the S-wave phase shifts alone can be re-
produced with a wide range of potential shapes, the ill-
determined D- and G-wave phase shifts can only partially
restrict the possible form of the even-parity potential.
Forcing an energy continuity in the potential to ensure
reasonable predictions are obtained at higher energies for
the established G7~2 resonance requires the even-parity
to have a significantly smaller rms radius than the odd-
parity potential. Hence inversion of the empirical phase
shifts provide some support for the potential determined
by inversion of RGM results.

It is now important to evaluate the parity-
dependent potentials derived here in calculations of the
sHe(a, p) Be capture reaction, following the suggestion
that the most appropriate local potential for certain
macroscopic reaction calculations [8] is one which can re-
produce both bound state and phase shifts. At present,
calculations are in progress to apply the potential local-
equivalent to the RGM phase shifts in calculations of the
astrophysical S factor. The calculation of this factor is
strongly dependent on the wave function of the S wave

[5], but requires an accurate calculation of the complete
parity-dependent potential.

The possibility of an underlying energy dependence is
a major problem when fitting data over a wide range of
energies, particularly in the present case where the en-

ergy range extends to negative values. One signature
of this energy dependence occurs where accurate inver-
sion necessarily entails the introduction of long-range po-
tential oscillations. Using the IP procedure, particularly
with a parametrized form for the phase shifts, this en-

ergy dependence is easy to investigate. However, there
is then an inevitable compromise between the approxi-
mate fitting of the phase shifts over a wide energy range
and the accurate fitting of phase shifts with an energy-
dependent potential. Which of the two choices is ap-
propriate is likely to be determined by the subsequent
use made of the potential. The approximate energy-
independent potential is probably more useful for input
into other structure models or reaction calculations, but
the energy-dependent potential is more suitable for in-
terpreting the implied systematics.
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