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We have studied the quadrupole effects in pion elastic and inelastic scattering from Li. A single
channel a-t cluster model is used to calculate the wave function for the ground and the Srst excited
states of Li. The quadrupole effects are shown to be appreciably large in pion- Li elastic scattering.
We also calculated the second-rank tensor polarization and compared it with the recent experimental
data.
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I. INTRODUCTION

Although pion-nucleus scattering has been extensively
studied over the past two decades, these studies were
mainly concerned with spinless nuclei. Recently, how-
ever, the experiments &om polarized nuclei have been
carried out and the interest has grown for pion scatter-
ing from nuclei with nonzero spin [1—5]. In the elastic
scattering &om spin-2 nuclei, the asymmetry comes &om.
the interference between pion-nucleus spin-Hip and spin-
nonflip amplitudes and the spin effects have been dis-
cussed. For the nuclear targets having spin larger than
one, various multipole scattering efFects become to be im-
portant. In particular, for the case of deformed nuclei,
we expect that the spin-nonfiip quadrupole scattering
largely afFects not only the pion scattering cross section
but also the polarization observables. The deformation
efFects are expected to be appreciable in the second-rank
tensor polarization. Based on this expectation, an ex-
periment using the pion single-charge-exchange reaction
was carried out on an aligned Ho target leading to its
isobaric analog state [6]. The neutron deformation pa-
rameter was extracted from the asymmetry at forward
direction.

The main purpose of this paper is to investigate the
quadrupole efFects on the elastic and inelastic scattering
of pion &om deformed nuclei. In order to examine the
various possibilities in pion scattering, it is interesting to
study to what extent the quadrupole deformation afFects
the elastic and inelastic scattering. For this purpose, the
Li nucleus is well suited since its structure is thoroughly

studied through electromagnetic interaction and we can
minimize the ambiguities coming &om nuclear structure.

On leave &om Department of Physics, Nara Women's Uni-
versity, Nara 630 Japan.

Furthermore, experimental data are available at 164 MeV
[7] and at 143 MeV [8]. Very recently, a pion scattering
experiment on polarized 7Li has been carried out at the
Paul Scherrer Institute (PSI) [9].

Several theoretical calculations on pion-"Li scattering
were done, but these are based on a simple model; the col-
lective model [8] or the shell model [10]. As for the struc-
ture of 7Li, however, many theoretical studies [11—17]
showed that the electromagnetic properties of ground
and first excited states of ~Li are well understood &om
the viewpoint of the cluster structure and that a large
quadrupole deformation of these states is attributed to
the dominant a-t cluster configuration. These struc-
tures are well described by the resonating-group method
(RGM). Especially, the electromagnetic quantities of "Li
at q & 2 fm are well described by the RGM wave func-
tion [17]. Recently, a more elaborate calculation has been
carried out [18], where the effects of the additional con-
figurations are considered and it was shown that the a-
t component dominates in the ground and first excited
states while the other components give important contri-
bution to higher excited states.

In this paper, we derive the wave function of the
ground and the first excited states of vLi with the single-
channel a-t RGM. By the use of these wave functions, we
calculate the ground-state and transition densities. As a
monopole part of the pion-nucleus optical potential, we
use the semiphenomenological potential by Stricker et al.
[19—21] (MSU potential) for spherical nucleus with the
parameters Bo and Co for p terms determined by Gmitro
et al. [22]. The multipole part of the pion- Li optical po-
tential is constructed by folding the pion-nucleon t matrix
[23] under the first-order approximation. With this pion-
nucleus optical potential, we calculated the quadrupole
efFects in the elastic scattering of pion on Li. The in-
elastic scattering cross section leading to the first excited
state is also calculated under distorted-wave impulse ap-
proximation (DWIA) .

We also calculated the second-rank tensor polarization
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0„in pion scattering &om polarized Li and compared
with the recent experimental data. Due to its large de-
formation, the absolute value of the second-rank tensor
polarization takes large absolute values which is in con-
trast to the rather small vector analyzing powers ob-
served in pion scattering from polarized spin-2 nuclei

[1,2,4]. The vector polarization iTii is also measured
for pion-rLi scattering and is shown to be fairly small [9].
Because the various multipole components in spin-non8ip
and spin-fIip pion-nucleus amplitudes interfere, we feel it
better to consider the dominant quadrupole effects first:
scattering cross section and second-rank tensor polariza-
tion. We do not discuss the vector polarization iTqq in
the present paper.

In Sec. II, we describe the a tclust-er model. In
order to calculate the ground-state densities and tran-
sition form factors, we applied the complex generator-
coordinate method (GCM) and correctly eliminated the
spurious component of the center-of-mass motion in the
cluster wave function. We showed the details of the tech-
nique used to calculate the multipole densities. In Sec.
III, we discuss the pion elastic and inelastic scattering
from Li. We extend the pion-nucleus optical potential to
the case of the target nucleus with nonzero spin. We show
that the coupling of the pion partial wave induced by
the quadrupole deformation plays an important role for
the elastic scattering. The inelastic-scattering cross sec-

tion leading to the first excited state Li(2 ~ 2 .0.478
MeV) is calculated under DWIA and is compared with
the experimental data. The averaged second-rank tensor
polarization leading to the final ground and first excited
states are shown and are compared with the recent ex-
perimental data. We summarize the results in Sec. IV.

II. CLUSTER-MODEL CALCULATION

A. %ave function of ~Li

For the ground and the first excited states of ~Li, we

employ the RGM wave functions. As mentioned in Sec.
I, the ground and the first excited states can be well de-
scribed by the a-t cluster model. The internal wave func-
tions of a and t are assumed to be those of the harmonic-
oscillator shell model. The oscillator-size parameters for
o and t are determined so as to reproduce the rms charge
radii and are given as v = 0.546 fm 2 and vq ——0.413
fm . As an effective interaction we employ the Volkov
No. 2 force [24]. The Majorana parameter m is deter-
mined so as to reproduce the rms charge radius of the
Li; m, = 0.585. We neglected the spin-orbit and the

Coulomb interactions since these forces have little effect
on the wave function of I.i.

Table I shows the rms charge radius, quadrupole mo-

ment of the ground state, and B(E2:2 -+
2 t). Figure

1 shows the longitudinal form factors. In the present cal-
culation, proton and neutron form factors are taken from
Ref. [31]. Similar to the results by Kajino et aL [17], we

can see that the a-t cluster model reproduces well the
experimental values of these electromagnetic quantities.
The longitudinal form factors are well described at the
momentum transfer less than 2 fm which is sufficient

TABLE I. The results of the energy level, rms charge ra-
dius, and the quadrupole moment for the ground state of Li
calculated with cluster model described in the text. In the
last row, we show the reduced E2 transition rate to the 6rst
excited state. In the last column, the experimental values are
listed which are taken from Refs. [25—29].

Energy level (MeV)

g(rl) (™)
Q (fm')

B(E2;g) (e fm )

—2.?89

2.55
—4.454

9.868

Experiment
—2.467 (- )
-1.989 (2 )

2.55+0.07
/3. 8+1.1[

—4.1'
—4.44"
7+4

8.3+0.7'

Reference [25].
Reference [26].

'Reference [27].
Reference [28].

'Reference [29].

B. Ground-state and transition densities

In the practical calculation of the ground-state and
transition densities, we used the complex GCM technique

[33]. In this subsection, we briefiy explain this method
which is numerically accurate and probably wastes the
least computational time. The symbols A and B repre-
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FIG. 1. Longitudinal electromagnetic form factors of Li.
(a) Ground state, (b) first excited state Li(-:0.478 MeV).
The results are obtained with the RGM wave function. The
experimental data are taken from Ref. [30].

for our purpose since we are concerned with the pion
scattering below (3.3) resonance. It is noted that the n
Li configuration, which is neglected here, only slightly

reduces the absolute value of the C2 form factor as was
shown in Ref. [18].

We examined the dependence on the choice of the var-

ious input parameters. Instead of reproducing the rms
radii of 0. and t, we adopted the saturation condition
for each cluster to determine their size parameters. In
this case the oscillator-size parameters are v = 0.524
fm and vg ——0.391 fm with Volkov No. 2. We
also examined the Hasegawa-Nagata (HN) effective in-

teraction [32]. The results are, however, quite insensitive
to the choice of those input parameters. Therefore, we

use the Li wave function derived with the parameters
v~ = 0.546 fm 2, vq ——0.413 fm 2, and m = 0.585 with
the Volkov-2 effective interaction.
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sent the mass numbers of the two clusters and, at the
same time, specify the clusters themselves. In order to
calculate the elastic- and inelastic-scattering cross sec-
tions, we have to calculate the ground-state and transi-
tion matrix elements of the following density operators:

To be specific, we show how to calculate the transition
density pf,. (r) which is a matrix element of the operator

p! l(r) in Eq. (I). The calculation of the other operators
are the saxne. For sixnplicity, we omit the isospin indices
in this subsection.

First, we expand the n-t relative wave function

v)& (R) with the harmonic-oscillator basis

where rz is the relative coordinate of jth nucleon &om
the center of mass of the nucleus

A

) r;
i=1

A + B

(R) = ) C~, $1v~ (R; f),
N

where p is the oscillator-size parameter. With this ex-
pansion, the transition density pf;(r) can be written as

pf'(r) = ([[4' 4'g~ ]sy @) ]JyMy lp(r)l&[[4'" 4p']s, 0&', ]J,M;).

= ) (SflfS fmf] JfMf)(S l;S„m;lJM)(C& &
)'C&'& (SfS,fNflfmflp(r)lSS„N l m),

where (I))'"t and P~
~ are the internal wave functions of o. and t and A is the antisymmetrizer. Then the problem is

how to calculate the following matrix elements in harmonic-oscillator basis:

(SfS fNflfmflp(r)lS*S 'N'I™')= ([4'"'84''t, ']S~S,,WNgly f(&)lp( )l&[[4~"'80'e"']s,s„lm), , (p)])

In order to do this, we use the Bargmann-transformation kernel given by

(R, Z) = (
—

) exp (
——(R —x 2/pZ) + eZ (6)

We define the complex GCM matrix element as follows and it can be expanded by using the harmonic-oscillator
decomposition of the Bargmann-transformation kernel

([y.'"' g y',"]s.s, ,r, (z) lp(r)]A[[4.'"' g y,'"]s,.s„.r, (z')]

) ) [f&,&,~, (Z)]'(SfS,fNflfmflp(r)lS;S„N l;m;) f~, (,~, (Z'), . (7).

Ngl pm' N;l;m;

where tv (Z) is the harmonic-oscillator wave function in Bargmann representation. The matrix elements in Eq. (5)
can be obtained as the expansion coefficients of the complex GCM matrix elements. To calculate the complex GCM
matrix elements, we introduce the GCM wave function

@SS (XA, XB) = +[(1'1 (rl XA), . . . , 4'A (rA —XA), (t'A+1( A+1 XB), . . . , 4'A+B(rAyB —XB)]SS,
I (A) (A) (B) (B)

(A+ B)!

where XA and XB are the generator coordinates specifying the location of two clusters. (t), and P,. are the single-
particle wave functions of harxnonic-oscillator type. Using the above wave function, the real GCM matrix element of
the density operator is given by

pf;(XA, XB,XA, XB,.r) = (@s~s ~(XA, XB)lp(r)l'(Ils, s, (X'A, XB)) .

This can be easily calculated by noting that the operator p(r) can be written as

A+B"'=(
) J" ( ) A+B

exp
l

—iq. '
l ).e*

A+B& (IO)

and the exponential exp[ —iq rf/(A+ B)] appearing in above equation can be absorbed into the single-particle wave
functions in bra- or ket-state.
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In the case that the oscillator-size parameters of the clusters are different, we have to explicitly eliminate the spurious
center-of-mass component in the GCM matrix element which couples the center-of-mass motion to the intercluster
relative motion. In order to do this, it is suKcient to integrate with respect to the center-of-mass generator coordinate
in the bra-state

&Aug + Bv~ l
p, ;(X,X'; r) dX&pf (X'Q XQ X&, X&,r),4z.

where X=X~ —Xg and X~ = (AX~ + BX~)/(A + B), and the same for X' and X&. After the integration in
Eq. (11), the GCM marix element does not depend on the generator coordinate X& and is free &om the spurious
center-of-mass component.

From this real GCM, we can immediately obtain the complex GCM matrix elements by the suitable replacement
of (X,X') by complex variables (Z, Z') [33].

For the n-t system, the complex GCM matrix element can be generally written as

Ze2 + Z/2
py;(Z', Z'; r)exp

~ ~

= ) g~exp[ —a~Z' —b~Z' + c~Z' Z' + d~Z' r + e~Z' r —f~r ], (12)

where a~, b~, and fz are positive constants. Note that the coefBcients g~ depend not only on the type of the density
operator but also on the spin variables (S;,S„) and (Sy, S,y). The exponential part of the right-hand side of Eq.
(12) can be expanded as

t' d' e'l
exp —

/
f ————/r

8a 8b)

d'5) Q~, &, , ] r; —
f (fN, g, , [sgn(d) V 2aZ])*

N1 lyme

( e'&
ON. i,~. ~

ri —
b ~

fzv, i.~.[sgn(e)~&bZ ]gt71g 'I

4b Q g77Lg

Ng l m2

). [f~.~. .(V I
lzc)]'f Ni. .[sgn(c) V lclZ']

Nplsm3

3/2

exp[ —aZ' —bZ + cZ'. Z + dZ' r+ eZ r —fr ] =
~

4~~ah&

(13)

where sgn(d) = d/~d] indicates the sign of "d," etc. Comparing the harmonic-oscillator expansion of the complex GCM
in Eq. (7), we obtain the following expression for the transition densities calculated with the cluster wave function:

(SfS fNflymy~p(r)~S;S„N;1;m, )

(g, b, ) "' ( d,' e,' 'l
exp — f, — ' — ' r

8a~ 8b~ )
min(Nf, N, ) Nf —N N; —N N

) ) ) ) ( )(I,+lg+l+I')/2

N=0 l=(0,1) l'=(0, 1) l"=(0,1)

e,'~ ( d,'&
x [sgn(e)] [ gns(d)]'R~, . ~ ~ r; Rw~ N,t—

(Ny + ly + 1)"(Ny —ly)!!(N; + l, + 1)~'(N; —l;)'&

(N; —N + P + 1)!!(N, —N —l')!!(Ny —N + l + ].)!!(Nf —N —l)!!

(1'l"00[i;0)(ll"00~ly0)(2b~) * ~ (2a-) ~ ~ c.
(N + l" + 1)!!(N —l")!! f ~ a~ c

ly
x ) (l'l00]lq0)(l;lcm;mq]1~my)W(l;l~l'l; lql")Y&* (r),

/2lg + 1
(14)

where R~ ~(r; p) is the radial part of harmonic-oscillator wave function with oscillator-size parameter p and the
summation with respect to / runs Nf —N, Nf —N —2, . . . , G or 1, etc.
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III. PION ELASTIC AND INELASTIC SCATTERING

The ground state of Li has a large quadrupole deformation. It is, therefore, necessary to take into account the
multipole scattering efFect in pion- Li elastic scattering. Gibson et al. [8] assumed the DWIA and the strong-coupling
rotational model for the ground and the first excited states. Then the monopole contribution to the elastic-scattering
cross section is obtained by subtracting the inelastic-scattering cross section Li(2 ~ 2,0.478 MeV) &om the
experimental data of the elastic scattering. But it is not obvious whether DWIA is a good approximation or not to
calculate the quadrupole eKects in the elastic scattering.

Instead, we have calculated the multipole contribution explicitly by extending the optical potential to nonspherical
nuclei. Due to its large quadrupole deformation of ~Li, we expect that the coupling of the pion partial waves induced by
quadrupole deformation is important. In order to take into account this coupling effect, we expanded the pion-nucleus
wave function as

4~+l(ka: II,) = 4x ) i'R, (r)&' (k)(l&mf.
~

J&.)[&i 8 C'r]

l,m, J,J,

where k is the momentum, t,
' the isospin wave function

of the incident pion, and 4r is Li ground-state wave
function with spin I. The radial parts of the pion wave
function R&~(r) satisfy the coupled equation

d2 2 d l(l+1)+ ———
dr2 r dr r2

2~ ) Utt, Rl, (r) + VcR~ (r) (16)
)ll

here tu = v k2 + m„ is the pion total energy and Vc the
pion-nucleus Coulomb potential. The pion-nucleus opti-
cal potential consists of monopole and multipole parts.
For the monopole part, we adopted the optical poten-
tial by Stricker et al. [19—21] (MSU potential) which was
extensively applied to the low-energy pion-nucleus scat-
tering. Since we are concerned with the energy region
T = 130—160 MeV, we have to extrapolate the absorp-
tion parameters Bo and Co to higher energy. We adopted
the parameters determined by Gmitro et aL [22]. Their
approach is somewhat difFerent from that of Stricker et
al. The first-order optical potential is supplemented by
the phenomenological p2 terms which simulate the pion
absorption and the higher-order effects. The coefficients
Bo and Co for these p2 terms are determined from fit
to the experimental data of the pion-nucleus elastic scat-
tering. They obtained the energy-dependent parameters
which are almost independent of the mass number of
the target nucleus at 4 & A & 40. At low-energy re-
gion, their parameters are close to the values of MSU
potential. Gmitro et al. used the separable form for
the oH-'shell extrapolation of the pion-nucleon scattering
amplitude which is diferent from that of MSU poten-
tial. Generally speaking, however, the elastic- and the
inelastic-scattering cross sections are rather insensitive
to the ofF-shell model of the optical potential.

We constructed the quadrupole part of the optical po-
tential under the first-order approximation

A

Ur)
—— Yj |S@g t~ Yj 4g

j=1

Here t~ is the scattering amplitude between pion and
the jth nucleon, and is given approximately by the &ee

I

pion-nucleon scattering amplitude. It is sufficient to take
terms up to p wave:

t, = -4~ ) [b&"&+ c~"&k, . k,
2(d

%=0,1

+id~"la, (ky x k;)]

x(r T) " b(r —r') .

The coefficients bl"l, c~"l, and d~"l are expressed in terms
of the pion-nucleon phase shifts and & is the reduced en-

ergy of the pion [19]. We adopted the phase shifts in
Ref. [23]. The momentum variables in Eq. (18) are re-
placed by the derivative operator acting on the pion wave
function. The explicit form of the multipole terms in the
optical potential is found in Ref. [34]. The pion partial
waves couple through the multipole densities. In partic-
ular, the large quadrupole density strongly couples the
pion partial waves l and l + 2 and this gives appreciable
efFects for the elastic-scattering cross section. The cou-
pled differential equation Eq. (16) is solved numerically
under suitable boundary condition.

The results of the elastic-scattering cross section are
shown in Fig. 2 and are compared with the experimental
data. For the case of T = 134 MeV, the elastic- and the
inelastic-scattering cross section to 6rst excited state are
not separately measured. The results for T = 134 MeV
are, therefore, the sum of these transitions. The dotted
lines indicate the monopole contribution. As is seen, the
contribution from quadrupole scattering becomes to be
appreciable around the scattering angle 8 & 60 . We also
showed the results obtained by switching off' the coupling
of partial waves. The coupling of the pion partial waves
considerably enhances the cross section around the back-
ward direction and it is necessary to take into account
this effect properly for the case of the pion elastic scatter-
ing &om deformed nucleus. In the present cluster-model
calculation we neglected the spin-orbit interaction and,
therefore, the quadrupole density of the ground state
and the quadrupole spin-nonBip transition density have a
simple relation. Neglecting the small spin-dependent ma-
trix element and assuming DWIA, the quadrupole scat-
tering contribution to the elastic scattering is given by
the inelastic-scattering cross section leading to first ex-
cited state which is similar to the case of rotational model
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[8]. But our results of the full calculation differ consider-
ably &om that of DWIA for the elastic-scattering cross
section. It was shown that the DWIA and the optical
potential treatment give almost the same results for the
spin-flip amplitude in pion-~sC scattering [5] and this is
due to the weak spin-dependent interaction in pion scat-
tering. In contrast to this, the quadrupole effects are
fairly strong and the DWIA is not sufhcient and the treat-
ment of the optical potential is necessary including the
partial-wave coupling. We examined the sensitivity of
the elastic-scattering cross section by slightly changing
the parameters Bo and Co for p terms. But the results
are quite insensitive to it.

Next we show the results of the inelastic-scattering
cross section leading to the 6rst excited state. In DWIA
treatment, the inelastic transition amplitude can be given
by

Tfj — 41&
y kj 41

2

where 41 and 41~ are initial and anal states for nucleus.
and {t, are the incident and outgoing pion wave

functions, respectively.
The effects concerning the nuclear structure are in-

f Q3
I

01

rE

1
Q q

p-1

1Q 3

eluded in the spin-nonflip (p&,. ) and the spin-flip (p&,. )
transition densities. These are given by

(20)

In the practical calculation, we have carried out the
multipole expansion of the inelastic transition am-

plitude as in Ref. [35]. The pion distorted waves

are generated by the pion-nucleus optical potential
with spherical part only. The results are shown in

Fig. 3 for T = 143 and 164 MeV. In the inelastic

transition"Li(vr, vr')rLi(z .0.478 MeV), the spin-nonflip
quadrupole contribution dominates the cross section and
we obtained a good agreement with the experimental
data without introducing effective charges. As was shown

in Ref. [8], the simple collective-model description fails

badly to explain the experimental data: the theoreti-
cal values are about an order of magnitude smaller than
the experiment at backward direction. The results cal-
culated with the shell model are also shown in Fig. 3.
We used the Cohen-Kurath wave function with (8—16)
POT two-body matrix elements [36]. If we introduce the
quadrupole effective charges [37], the agreement with the
experimental data becomes much better than the collec-
tive model. The theoretical value, however, still slightly
underestimates the cross section especially at backward
direction. In order to see the size effect of the clusters, we

have calculated the extreme case with the oscillator-size
parameters v = v~ ——0.32 fm which was examined by
Kajino et al [17]. Figu. re 4 shows the cluster-size depen-
dence of the pion inelastic-scattering cross section. Ob-

viously, the cluster-size effect becomes to be appreciable

10~

E

b]c! qp-

10'

E

g]c 10

T~=143MeV' , ~ T~=143MeV

10 10-1

1 01

E

t]C gp-t

102

T71 164MeV I T~ 164MeV

Q
3
0 50 100 0

e, [deg]

I

50 100 150 10'

FIG. 2. Pion elastic-scattering cross sections from Li. The
monopole contribution (dotted lines) and the results of the full

calculation with quadrupole densities (solid lines) are shown.
The dash-dotted lines are the results calculated by switch-
ing ofF the coupling of the pion partial waves induced by
quadrupole deformation. For the case of T = 134 MeV,
the inclusive cross section leading to ground plus first ex-
cited states are shown. The experimental data are taken from
Refs. [1—3].

0 50 100 0 50 100 150

~c rn [deg]

FIG. 3. Inelastic-scattering cross section leading to the first
excited state Li(n+, m+) Li( —:0.478 MeV). The solid lines

are the results with the cluster-model wave function. The
dotted lines are obtained by the shell model without us-

ing efFective charges. The experimental data are taken from
Refs. [1,2].
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10'
,.

T~—50MeV T~—100MeV T~—143MeV

10'

10; ~+
I

1P3
0 50 100 p 50 1pp 0 50 100 150

8, [deg]

FIG. 4. The cluster-size sects for the pion inelastic scat-
tering Li(s+, s+) Li(~:0.478 MeV). The solid lines are the
results with oscillator-size parameters v = 0.546 fm and
v~ ——0.413 fm . The dotted lines correspond to the results
with size parameters v = vt, ——0.32 fm

around the large-q region.
For the polarization observables, we compare the re-

sults with the second-rank tensor polarization 0, de-
fined by

e = ——r2o —/3/2T22,

where we adopted the Madison convention [38]. The re-
sults are shown in Fig. 5. In the recent experiment at PSI
[9,39], the final spin-doublet states are not separately ob-
served. Hence, we took the average of the polarization
leading to ground and first excited states as

the detailed comparison is difBcult, our results are not in-
consistent with the experimental data. The second-rank
tensor polarization e„just corresponds to the difference
of the number of pious scattered by the target nucleus
with spin projection I, =

2 and I, = 2, where the quan-
tization z axis is chosen to be perpendicular to the scat-
tering plane. In a classical picture, the symmetry axis of
the pancake-shaped Li is perpendicular to the scattering
plane in the case of I, =

2 while the symmetry axis is in

the scattering plane for I, = 2. It is, therefore, appar-
ent that the quadrupole effects are appreciable for 0„
and it takes large absolute values for the deformed nuclei
like ~Li. It should be noted that the second-rank tensor
polarization takes large absolute values even at forward
direction where the reaction mechanism is simpler. Sim-
ilar effects were used to extract the neutron deformation
parameter &om pion single-charge-exchange reaction on
an aligned Ho nucleus [6].

In the present paper we have not discussed about the
vector polarization iTqq. Considering that the a-t cluster
model is also successful in explaining the magnetic form
factor of Li, it would be interesting to study the vector
polarization based on a cluster model and compare them
with the results obtained with the shell-model calculation
[9]. In this case, it should be stressed that we have to
treat the quadrupole effects properly which are expected
to inBuence the vector polarization. The calculation of
the vector polarization is now under way.

IV. SUMMARY

Although the error of the experiment is fairly large and
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FIG. 5. The second-rank tensor polarization 0 for the
inclusive transition leading to ground plus Srst excited states
of Li. The experimental data are taken &om Ref. [39j.
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We have investigated the quadrupole scattering effects
in the pion elastic- and inelastic-scattering cross section
for ground and first excited states of Li. The RGM
wave function with n tconfiguration -is employed for the
ground and the first excited states of ~Li, which is known
to describe the electromagnetic properties quite well. We
calculated the multipole part of the pion-nucleus optical
potential under the first-order approximation while the
monopole part is calculated by phenomenological MSU
potential.

For the elastic-scattering cross section, it is found that
the quadrupole effects are appreciably large, especially,
for the backward angles (8 & 60'). We also showed that
the effect of the coupling of the pion partial waves in-
duced through the quadrupole density is considerably
large for such a deformed nucleus and that the proper
treatment of the quadrupole efFects is important.

For the inelastic transition to the first excited state, the
spin-noDQip quadrupole contribution doxniu. ates the cross
sections. It is to be noted that the experixnental data
can be well described without introducing the efFective
charges. If we use the shell-model wave function for Li,
it is necessary to introduce effective charges and still the
theoretical value slightly underestixnates the experimen-
tal cross section. The cluster-model wave function pro-
vides us with consistent description for the spin-doublet
states.
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We also compared our results with the recent experi-
mental data of averaged second-rank tensor polarization
0„. Though the detailed comparison is difficult due
to the large experimental errors, the theoretical and ex-
perimental results are consistent. Prom the theoretical
viewpoint, it is expected that the quadrupole effects are
appreciably large in second-rank tensor polarization 0„
and that O„has large value even at forward angles.
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