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Analytic extension of the nuclear algebraic potential
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An analytic extension of the nuclear algebraic potential in the complex energy and angular
momentum planes is discussed and an approximation for the algebraic potential in agreement with
the known analytic properties of the S matrix is proposed. The invariance of the energy spectrum
of the Coulomb part of the interaction is established. The results are applied to the Regge pole
analysis of the C + Mg elastic collision at Ei b ——23.0 MeV.
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The algebraic scattering theory (AST) of Alhassid and
Iachello [1] built upon the dynamical symmetry SO(3,1)
has been applied, with success, in analyses of heavy ion
scattering [2—6]. In this theory the 8 matrix has the
form of a ratio of two gamma functions with arguments
as in the case of pure Coulomb scattering but modified
by adding nuclear algebraic potentials vt(E), which are
complex and both energy and E dependent. Of particu-
lar interest to us is the application of the AST to analyze
the scattering data &om collisions of heavy ions at ener-
gies near to the Coulomb barrier. Such studies have been
made previously by Lepine-Szily et aL [2,3]. In a previous
paper [6], using a numerical procedure that calculates ex-
actly the algebraic potential for a given S matrix, we were
able to propose a three-parameter shape for vt(E) that
qualitatively reproduces the S matrix of a regular Woods-
Saxon (WS) potential in the Schrodinger equation. Such
a shape was able to fit both the diHractive behavior of the
elastic channel as well as, by its derivative, the coupling
among channels [7]. The interest in low energy heavy
ion collisions stems from the importance in the scatter-
ing processes not only of difFractive phenomena but also
of effects that reflect in resonances and Regge poles at-
tributes in the scattering matrix. In the complex energy
plane, resonances of the (now) S function are described
by pairs of poles and zeros with the poles placed in the
lower half plane [8]. In contrast, Regge poles [9,10], inti-
Inately connected to resonances, correspond to poles and
zeros associated also in pairs, but with the poles located
in the first quadrant of the complex angular momentum
plane. In this paper we investigate the consequences of
these analytic structures of the S matrix on the algebraic
potential proposed in Ref. [1].

One important feature of the algebraic potential is to
leave»~~odified the original Coulomb energy spectr»m,
irrespective of the n~~mber of Regge poles or resonances
added to it. This invariant property shows that the orig-
inal poles of the symmetry do not disturb the poles in-
troduced by the algebraic potential.

The WS shape commonly used for vt(E) is not in
agreement with the known analytic properties of the S
matrix. The WS shape has poles in the k plane, and
these simple poles in the algebraic potential produce es-
sential singularities in the 8 matrix that are spurious to
its analytic representation. In this paper we propose a
new shape for the algebraic potential which is an inte-
gral function of E in the right side of the complex plane.
Such a shape eliminates the singularities of the S ma-
trix introduced by the WS shape. It also has the correct
asymptotic behavior for large values of 8 to guarantee the
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FIG. 1. The analysis of the elastic angular distribution of
C+ Mg at El b = 23.0 MeV. Curve 1 is the result of the

analysis with only the background potential whose shape is
given by Eq. (8). The parameters used were As ——7.0, a = 0.5,
V = 2.0, and W = 2.0. Curve 2 represents the result of adding
a pole to the background potential as given by Eq. (7). The
fitting of the data was obtained with the pole at A„=9.75,
partial width D = 0.10, total width F = 0.15, and mixing
phase P = 0.3 rad.
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applicability of the Regge-Watson transform [9]. We use
this shape as the background potential in the Regge pole
analysis of the elastic angular distribution of the C +

Mg system at E~ b
——23.0 MeV.

Let us consider the collision of two spinless ions in the
AST framework. The algebraic potential vg(E) is related
to the nuclear S matrix Sg by the well-known equation [1]

r(&+1+ i~+'~, ) r(a+1 —'~) = Sg.r(8+1 —iq —iv ) r(/+1+ ig)

the Schrodinger equation. This remarkable result shows
that although this form for Sg does not exhibit the ex-
act SO(3,1) symmetry, it does constitute a natural basis
for the analysis of the strong interaction contribution in
heavy ion collisions and so is the starting point of our
analysis.

Extending the S matrix into the complex angular mo-
mentum plane by using the extension E ~ A —1/2 where
A is the complex angular momentum variable, we define
(twice the phase shift)

z = —iln[S(A)], (2)
This form for the S matrix was also obtained, &om a

totally different approach, by Miiller and Schilcher [11]
for the case of a superposition of Yukawa potentials in

and with Eq. (1) now specifying the S function, on dif-
ferentiating with respect to z, we find

Bv(A, z) 1

az y(A+1/2+ i~+ i~(A, z)) + q(A+ 1/2 —'~ —i~(A, z))
'

A+ 1/2 kiri= —v, (4)

where Q(z) is the digamma function defined in Ref. [12].
In the above equation A and g are considered to be two
Gxed parameters and we are concerned mainly with the z
dependence of v. For this reason we will omit &om now
on the argument A in v. Actually, we define v(z) as the
solution of Eq. (3) with the initial condition v(0) = 0. We
will now consider some global properties of the algebraic
potential.

First we observe that v —= 0 for

where v is a non-negative integer. This results 6..om the
fact that Q(A + 1/2+ iq) = oo and thus, for z = 0, we
have both v(0) = 0 and f (0) = 0. Since Eq. (3) is of first
order in z, the solution for v(0) = 0 and dv(0)/dz = 0
is v = 0. The consequence of this fact is that the bound
states of the Coulomb part of the interaction determined
by Eq. (4) are invariant with respect to the nuclear in-
teraction; i.e., v preserves the original singularities of the
Coulomb S matrix.

Expanding v(z) in the neighborhood of zs, we obtain
from Eq. (3)

v(z) = v
Q(A + 1/2 + i g + iv') + Q(A + 1/2 —i g —iv') (1 + e),

with us = u{zo) and e, the relative error of the linear term given by

(z —zo)/(2i)
[~I(A+ 1/2+ '~+ ) —@I(A+ 1

The presence of trigamma function gl(z) = dQ(z)/dz in the numerator of the above equation makes e small for
applications to heavy ion collisions near the Coulomb barrier. We mention that Eq. (5) was the starting point for
obtaining the iterative numerical procedure of Ref. [6].

Let us introduce

where n is an index to indicate on which sheet of ln(S) z is being considered. Defining v~ ~ = e(z~ ~) and tu
v~ + ~ —v~ ~ we have

(n) 2'
g(A+ 1/2+i'll+ ie& l(z)) + Q(A+ 1/2 —ill —iv& ~(z))

'

within the approximation involved in deriving Eq. (5).
Prem these considerations we see that the legarith-

mic nature of z leads to an enumerate family $n~ ~) of
ambiguous algebraic potentials, aH corresponding to the
same S. In particular, whenever v varies with energy (an-

gular momentum) from the neighborhood of one member
of the family to another with larger (smaller) index we

may assume the occurrence of resonance (Regge pole) in
the S matrix.

Now, the branch points of z occur whenever S = 0
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S(A) = S'(A) 1+
A —Ap —iI'/2) ' (6)

where So(A) is the background S matrix and the factor
in brackets represents a pole and its associated zero. The
phase P is the so-called mixing phase.

From Eq. (5) we obtain

or S = oo, with the poles corresponding to resonances
in the complex E plane and to Regge poles in the com-
plex A plane. Thus, the singularities of v are similar to
the logarithmic ones, with the branch points associated
with resonances or Regge poles according to whether we
consider the energy or the angular momentum complex
planes, respectively.

The above results are easily applied to Regge pole anal-
ysis of elastic differential cross sections. We suppose that
the S matrix representation in the complex A plane takes
the form [13,14]

where

y = 1l (1+1/2+irl+iv (A))

+ g(A + 1/2 —iri —iv'(A))

is obtained from Eq. (5). Equation (7) can be extended
naturally to include any member of Regge poles. The
background potential vo(A) deserves some consideration.
The traditional WS shape [1]contains poles for A = AO+
i(2n+ l)z'b, where n is an integer. These poles, in the
argiiment of the gamma functions in Eq. ( 1), produce
essential singularities in the 6nite complex A plane which,
besides being spurious to the analytic representation of
S(A), make problematic the determination of the true
poles of the S matrix. We propose the following shape
based on three factors:

v(A) = v (A) +
(1 iD exP(2ig)

)x—~„—'ri2
(7)

with

v (A) = (V+iW)f(A),

—Ap

r(~+1, —") (
f(A) =

~ 1+—2A [@(A+1/2+ ig) + @(A+ 1/2 —iri)]f'(" +].) ~
A

where p(n, z) is the incomplete gamma function [12].
The first factor in f(A) corresponds to the traditional
WS shape but, being written in terms of the incomplete
gamma function, it does not introduce spurious singu-
larities in the S matrix. The second factor corrects the
asymptotic behavior of the 6rst and makes the form fac-
tor f (A) similar to the one proposed in Ref. [6]. The third
factor guarantees the vanishing of vs(A) for the condi-
tion given by Eq. (4). The parameters Ao and b, have
the physical meaning of grazing angular momentum and
diffuseness, respectively.

Figure 1 exhibits an analysis of the elastic angular
distribution for the C+ Mg system at E~~b ——23.0
MeV [15]. Curve 1 is the result of the analysis using only
the background potential. We observe that it describes
well the overall pattern of the elastic cross section but
has no oscillating behavior at backward angles. Curve

2 represents the result of adding a pole to the previous
background potential as given by Eq. (7). The absence of
oscillations in the backward angles from the background
potential makes the determination of the pole parame-
ters quite reliable. We would like to emphasize that the
analysis proposed here differs in a substantial aspect from
previous ones in that the number and the positions of the
poles present in the AST S matrix are easily controlled.
This is not the case in the Schrodinger approach with
space-dependent potentials where the presence of poles
in the S matrix is difficult to control [16]. Our approach
can be applied to other data and the variation of the pole
position with energy will furnish the necessary informa-
tion for the determination of possible shape resonances
of the system.
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