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Spontaneous breakdown of isospin symmetry in nuclei and isobaric analog states
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We present a self-consistent analysis of SU(2)-isospin symmetry breakdown in nuclei. We derive
the energy difference of nearby nuclei (Z and Z — 1) with the same A and splitting in the dispersion
relations of protons and neutrons and show that the isobaric analog state is the massive Goldstone
boson associated with the isospin polarization of the vacuum. The key relation in this analysis is
the partially conserving isobaric current relation (PCIC), this is analogous to the PCAC relation

with pion being the massive Goldstone boson.

PACS number(s): 24.80.Dc, 11.15.Ex, 21.60.Fw

Low-lying bosonic excitations in nuclei have been the
subject of intensive recent investigations in the nuclear
many-body problem [1-3], mainly because of the possi-
bility that their appearance may signify the presence of
certain boson modes associated with the breakdown of
certain symmetries of the effective nuclear Hamiltonian.

It is usually believed that the isospin symmetry of the
effective nucleon-nucleon interaction in nuclei is only ex-
plicitly broken by electromagnetic and weak interactions
[4]. In this context the isobaric analog states [5] are be-
lieved to be evidence of exact isospin symmetry, which
appears to hold even in heavy nuclei, where the Coulomb
repulsion is comparable to the effective nuclear interac-
tion.

However, the real situation seems to require a deeper
counsideration. It frequently happens that ground states
of nearby nuclei, one with (A,Z) and another with
(A,Z — 1) with large A, appear to be nearly degener-
ate. Since the Coulomb interaction is expected to break
such a degeneracy, the observed degeneracy suggests that
there is another mechanism which restores the degener-
acy. A plausible agent for this restoration is the break-
down of the isospin symmetry in the ground state (vac-
uum); the vacuum has nonvanishing isospin polarization
due to the electromagnetic effect. The situation resem-
bles the ferromagnetlike state in a paramagnetic metal
under a uniform external magnetic field. In the latter
case the electron spins try to point in the direction of the
external magnetic field. In such a system there usually
appears a magnon mode which is caused by a spin oscilla-
tion around the stationary direction. This magnon mode
has a finite energy gap, because the oscillation needs an
energy larger than the threshold in order to overcome the
effect of the external field which tries to align the spin
directions. The situation is also similar to the case of
chiral symmetry with the pion being the Goldstone field.
In this case the pion has a finite mass because the sym-
metry is explicitly broken; the axial current is partially
conserved [partial conservation of axial current (PCAC)]
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and the pion acts as the massive Goldstone particle. In
the present case the isospin symmetry is explicitly bro-
ken, giving rise to the partially conserved isospin current
(PCIC). The broken isosymmetry in the vacuum creates
a Goldstone mode with an energy gap. This mode will
be called an isomagnon.

We thus feel that we need a self-consistent analysis
of the isospin symmetry in large nuclei by taking into
consideration the broken symmetry nature (isobaric po-
larization) of the vacuum. Then it becomes reasonable
to assume that the isobaric analog state is the Goldstone
mode, because the difference between the energy levels of
the isobaric analog state with (A, Z — 1) and that of the
parent nuclei with (A, Z) is about equal to the Coulomb
energy shift; this energy difference should vanish if the
Coulomb interaction were not present in the same way
as the energy gap of the Goldstone boson vanishes when
there is no symmetry-breaking interaction. Isospin cur-
rent conservation is violated by the Coulomb effect; we
have a partially conserved isospin current (PCIC). We
therefore call this approach the PCIC approach. Employ-
ing the formalism of dynamical symmetry rearrangement
[6], which has proved very fruitful in the study of spon-
taneously broken symmetries in solid state and particle
physics, we show that, indeed, there are strong reasons
to believe that this conjecture is correct.’

We consider a schematic contact model, for simplicity,
of the effective nuclear interactions and the Coulomb in-
teraction with dynamically rearranged symmetry of the

'Recently Khanna, He, and Umezawa [7] have conjectured
that the isobaric analog states may be the Goldstone bosons
of the spontaneous breakdown of the SU(2)-isospin symmetry
in nuclei, arguing that a field theoretical approach may not
only reproduce the well-known facts about them, but may
also throw light into future investigations. Engelbrecht and
Lemmer (8] noticed as early as 1970 that the isobaric analog
states bear resemblance to Goldstone bosons.
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ground state. Employing a mean field approximation we
solve the gap equation for the order parameter and cal-
culate the proton-neutron energy difference and also the
ground state energy difference of nearby nuclei. The re-
sult shows how the Coulomb energy shift of the ground
states and the effect of the broken symmetry vacuum
partially compensate among them to produce the degen-
eracy in nearby nuclei. Thus we are able to calculate the
coeflicient of the symmetry energy term in the Bethe-
Weizsiacker semiempirical mass formula. The result is
in qualitative agreement with experiment. Further we
calculate the energy gap of the Goldstone boson due to
the Coulomb interaction in order to show that the iso-
baric analog states are Goldstone bosons. We estimate
the coherence length of the proton-particle neutron-hole
Cooper pairs and find out that it is of the order of the
nuclear size. This is consistent with our expectations
that the Goldstone boson is a collective mode which is
involved in maintaining the order inside the nucleus.

The symmetry energy term in the Bethe-Weizsacker
semiempirical mass formula provides the splitting in the
dispersion relations of protons and neutrons in heavy nu-
clei [10]. This splitting can be described as protons and
neutrons “feeling” different effective nuclear potentials as
shown in Fig. 1.

When the Coulomb potential (dashed line denoted by
V.) is accounted for in the overall proton potential, the
obtained (nuclear) proton potential (the other dashed
line) is different from the neutron’s potential. In our
analysis, the isospin polarization of the vacuum (broken
symmetry vacuum) plays the key role. Self-consistent
analysis of the effects of the polarized vacuum follows
the method used in analysis of spontaneous breakdown
of symmetries [6,11,12].

Now we try to formulate the PCIC approach applied
to heavy nuclei. Consider a nonrelativistic field theory of
interacting nucleons with an isospin-invariant contact in-
teraction and the Coulomb interaction which is not isoin-
variant. Thus the Hamiltonian is H = Hy + Hj, where
H, and H are the free and interaction Hamiltonians re-
spectively:

Ho=~ [#2(0) (3. + er) wlo) (1
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Here H. is the Coulomb interaction which is
H(t)—f/d%/de' (%, ) ——po(y,8).  (3)
c =3 Y Pp\X, lx_y'pp Y,t).

Here pp = Y, = ¢1[(1 — 73)/2]¢. The —91(VZ/2m)y
term will be called the kinetic energy term. The vacuum
is an isospin-symmetry broken state with the nonvanish-
ing order parameter which is the isospin polarization:

I= {0y 29[0) #0. (4)

This gives
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FIG. 1. Splitting in the dispersion relations of protons and
neutrons in nuclei [9].

(5)

where the +(—) suffix means neutron (proton); ny = n,
and n_ = n, where the neutron and proton densities are
denoted by n, and n,, respectively. In the following con-
sideration it is convenient to introduce the dimensionless
order parameter A:

-n. N-Z A-2Z
3 = 6
- 1 T (6)

where n = n; + n_ is the nucleon number density, and
N,Z, A are, respectively, the neutron, proton, and nu-
cleon number. We have the relation A = 2I/n. Note
that, although the isospin SU(2) symmetry is broken, the
cylindrical symmetry around the third axis is not. Thus
the third component of the isospin is a good quantum
number.
In the mean field approximation H becomes

H=W(A,Z)+ g st +H™. (7)

A="%

Here the normal-order product symbol is used. The
ground state energy W (A4, Z) = (0|H|0) is
A
W(A,Z)=—-6FA+K(A,Z)+§I2V+Wc, (8)

where the kinetic energy is denoted by K(4,Z2), V is the
nuclear volume, and W, is given by

2

2™ [ 3 2" [F 2
W.=e 5 d*yF(ry) = 4me A F(ry)rydry (9)
322
— 22
“¢5 R’ (10)

which is a well-known result. Here, R is the nuclear ra-
dius. We take the center of the nucleus for the origin
of our coordinate and r2 = |y|®>. The function F(ry) is
defined by

F(r,) = /d%lx—iy—l (11)
=2nR? - %ri. (12)

We can rewrite W (A4, Z) as
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5R’
(13)
Note that we have used I = (n/2)A and that (AnA) does

not depend on Z. Therefore, the energy difference of the
nearby nuclei is

1
W(A,Z)= —erA+ K(A,Z) + g,\nAA2 +e

SW =W(A,Z) - W (A Z—1) ~ 5K — %/\nA + oW,

(14)
=6K + W, — Al (15)
for large A. Here
6 Z
W, = ezg 7 (16)

and

2 (or\*? 1
=-= (= — |N?/3 - 7%/3], 17
oK 97 ( 4 ) mR? [ ] (17)
We have also used the relation 6A = —2/A. The near
nuclear degeneracy means that §W is small.
The Coulomb term H* is given by

e? 2\ Z
HD = e’nyF(ry) : pp(y) := b} (3 - R%) R 1 pp(¥) -
(18)

In a precise analysis based on quantum field theory we
should treat a nucleus as a system with a self-consistently
created boundary (like a bag model). When the nucleus
is large, most of the inner domain except the vicinity of
the surface boundary is practically uniform. The situa-
tion in the vicinity of the boundary has infinite degrees
of freedom, reflecting the infimte degrees of freedom of
quantum fields. This is the reason why ordered states can
be created in the nucleus. However, this precise approach
is very hard to follow. Here, we crudely approximate H™
as

H* ~ Ecpp, (19)

with

z
= (20)

[SA =

2
B.= 552 [#yF(,) = ¢

To calculate E. it is convenient to introduce the constant
a by

mR = aA'/3. (21)
Crudely speaking o = 6. Since A = [(47)/3]R3n, we
obtain

B.= 3201 -a)a%m (22)
°7 ba ’

We now calculate the proton-neutron energy difference.
From now on we use field theory for the infinite volume.
The proton acquires an energy E. — (AI/2), while the
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neutron has the energy (A /2). E. is the Coulomb energy
shift while (AI/2) is due to the isobaric polarization of
the vacuum. Thus the neutron energy €, and the proton
energy e_ are
2
p E. 1
=— - —=+ (M - E,), 23

ex=5——er+ 5 £ 5 ) (23)
where m is the nucleon mass. Since (E./2) renormalizes
the chemical potential as ér = ep — (E./2), we can write

2

P ilor-
€ =5~ epztz(z\I E,). (24)

The proton-neutron energy difference e_ — ¢, is
0E=E,— ). (25)
Comparing this with (15), we find
W =46K + 6E + W, — E.. (26)

Thus, the proton-neutron energy difference is not equal
to the energy difference of the ground states of nearby
nuclei. This is not surprising, because the nucleons con-
sidered here are the asymptotic particles (quasiparticles),
while the ground state energy is controlled by nucleons
bound to a nucleus.

In order to calculate §FE, we now derive the self-
consistent equation for the order parameter I. The neu-
tron density n, = n, and proton density n, = n_ are
given by

ny =2 / (‘2”7’;3@(—&), 27)

which gives

i 1 3/2
ny = E?F/E [EF F E(AI - Ec)] s (28)

with i = 325 (2méF)®2. Note that the Coulomb en-
ergy makes the proton number smaller, while the isobaric
polarization of the vacuum tries to increase the proton
number.

It follows from Eq. (28) that

) )T @ e

This determines the proton-neutron energy difference as

_mn2/3
SE=E.—M=A (%) ér, (30)
where A is defined by
A=(14A0)3—(1-24)%3. (31)

Equation (30) is the self-consistent equation which deter-
mines the isospin polarization I [13]. To calculate ér, we

recall the relation 1 = 3—3—[_7(27715}:‘)2/ 3 which gives
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_ (97‘,)2/3 i 2/3 23 _ (971.)2/3 iy 2/3
=i (n) A= (G) ™ @

Now Eq. (30) gives
(97)2/3 A
8 a?

Thus we have obtained the proton-neutron energy differ-
ence. This equation gives

A
SE = m=116—m. (33)

1 A

This is the isospin polarization density.

Let us now turn to the difference W of the nearby
ground states. According to (26) we have §W = 0K +
0E + 6W, — E.. Considering (16) and (20), we find

§W, — E. = 0. (35)

The order parameter A should be related to A. Such
a relation follows from (34) when we recall I = nA/2
and use n = (34/4wR3), which gives n = (3/4ma®)m?.
Thus A determines A when the coupling constant A is
given. According to the experiment we have A = 0.21
for A = 208. This determines A, which gives A as a
function of A. The result shows that A saturates beyond
A = 208.

We choose A = 0.21 which corresponds to A = 208.
We then have A = 0.283. With these values and m = 939
MeV we obtain dE = 9 MeV. 6K is determined by
Eq. (17). We then find that K and §E nearly compen-
sate each other: The energy difference §W of the nearby
nuclei turns out to be close to zero. We also find that éx
is about equal to 30 MeV.

Having calculated the energy gap between protons and
neutrons we proceed to estimate the coherence length &g
of the Cooper pair. The maximum distance a Cooper
pair can travel by the Heisenberg uncertainty principle is

Vr 2€ F>1/2 1

§o~VFlt ~ — = < — B (36)

OF
When the above values for m, €r, and §E are used, this
coherence length is ~ 5.5 fm which is a reasonable value,
i.e., smaller than the diameter of a large nucleus.

Let us now study the massive Goldstone boson asso-
ciated with the isobaric polarization in the vacuum. To
obtain a precise expression for the energy and wave func-
tion of the Goldstone boson, we must solve the Bethe-
Salpeter equation for the Bethe-Salpeter amplitude of
the Goldstone boson. However, we are interested only
in the energy gap of the Goldstone boson. This en-
ergy gap can easily be obtained from the PCIC rela-
tion. Since the cylindrical symmetry around the third
iso-axes is not broken, we have two components of the
Goldstone bosons which behave as components of a vec-
tor in the two-dimensional plane orthogonal to the third
axis. They can be given by two boson fields x4+ in such
a way that y_ is the Hermitian conjugate of x4. It can
be shown that x, and x_ are the annihilation and cre-
ation operators of the isomagnon. We do not enter into
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detail, because this is well known in the theory of ferro-
magnetism where there appear spin magnons (instead of
isospin magnons) as a result of the spontaneous break-
down of the spin-SU(2) symmetry. Our Hilbert space is
the space of three kinds of particles which are the phys-
ical neutron, physical proton, and x bosons. The action
of any operators acting on a vector in this Hilbert space is
specified by their expression in terms of normal products
of creation-annihilation operators of these three kinds of
particles [6]. Such an expression is called the dynamical
map which is the same as the Haag expansion when these
particles are asymptotic particles. Since the cylindrical
symmetry around the third axis is not broken, the dy-
namical map of the T3 generator does not have a linear x
field. The linear x fields appear in the dynamical map of
J+ and p4, which are the spatial and fourth components
of the four-dimensional isobaric currents ji ,. For ex-
ample, p_ is ¥17_1 and j_ is the corresponding current.
Their dynamical maps are [6]

p =" (V)x_ +---, (37)
i = 2V (Vx4 oo, (38)

where the ellipses stand for higher-order normal prod-
ucts. The Z!/2(V?2) is the normalization factor which
contains VZ and v_(V?) controls the velocity of the x_
boson. The field equation of the x boson is obtained from
the PCIC relation [6]

8*j, = 6L, (39)

where 6L is a change of the Lagrangian under the isospin
transformation. Let us consider a transformation gen-
erated by T_. This changes the proton density p, into

p—»
5pp = —"ip—a (40)
because of the relation [r3,7_] = —27_. Using H in
(19) for the Coulomb interaction, we have
0L = —6H. = —E.bpp, =iE.p_ (41)
=iZYH(V)E.x_ +---. (42)
Feeding the dynamical maps of currents in the PCIC re-

lation (39) and inspecting the linear x terms, we obtain
the wave equation of the Goldstone boson:

% + iv_(VZ)VZJ x— = iE.x—. (43)

Note that the normalization factors Z1/2 compensate
among themselves. Since x_ creates the isomagnon, its
Fourier amplitude depends on energy and time through
exp (iwt). Thus the Goldstone boson energy is

wr = v_(—k?)k? + E,, (44)

which implies that the energy gap of the Goldstone boson
is

we = E.. (45)
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To calculate the velocity v_, we need the Bethe-Salpeter
equation. However, the energy gap w, is simply obtained
from the PCIC relation.

It is remarkable that the gap energy is the same as
the Coulomb shift of the proton energy E.. When we
have a nucleus with (A, Z), the T_ acting on the ground
state |A, Z) of this nucleus excites the Goldstone field as
X-|A, Z) with (A, Z—1).2 The energy difference between
the parent nucleus and this excited state is E., implying
that, when we would subtract E. from the excited en-
ergy level, the excited level would be degenerate with the
ground state of the parent nucleus. This is expected be-

2When a symmetry is broken, the generators become not
meaningful in a strict sense. To be more careful we must
replace these generators by those in which the space integra-
tions are smeared out with square integrable functions. We
omit here any detailed considerations. See Ref. [6].
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cause the Goldstone boson energy is gapless when there
is no Coulomb interaction. However, this makes it very
reasonable to assume that the massive Goldstone state is
the isobaric analog state.

We have shown that the PCIC approach can reason-
ably describe the relations among nearby states of heavy
nuclei and isobaric analog states. Being encouraged by
the results, we are planning to develop a deeper analysis
along this approach. The breakdown of the isospin sym-
metry in nuclei seems to be the simplest example of more
general features in nuclei. We have made a preliminary
analysis of the spontaneous breakdown of the SU(3) (El-
liot) and SU(4) (spin-isospin) symmetries [7,3] in nuclei.
Further analysis in this direction would open a new and
unified picture of nuclei.
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