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A model combining vector meson dominance, ~ P-mixing, and a kaon cloud contribution is
used to estimate the strangeness vector form factors of the nucleon in the momentum range of
the planned measurements at MIT-Bates and CEBAF. We compare our results with some other
theoretical estimates and discuss the nucleon strangeness radius in models based on dynamically
dressed, extended constituent quarks. For a quantitative estimate in the latter framework we use
the Nambu —Jona-Lasinio model.
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I. INTRODUCTION

Strangely, not all static low-energy properties of the
nucleon are yet measured. In particular, practically no
experimental information exists on the nucleon form fac-
tors of the strange-quark vector current, the subject of
our paper. One might ask why these observables have so
far escaped experimental scrutiny. Certainly they are not
easy to measure, requiring high-statistics neutral current
experiments at the limits of present capabilities, but per-
haps more importantly they were widely expected to be
zero or at least small.

In the absence of direct insight &om QCD at low ener-
gies, these expectations had been guided by hadron mod-
els, and most prominently by the nonrelativistic quark
model (NRQM) [1]. The latter gained particular credibil-
ity by describing the low-lying meson and baryon spectra
better than other, and often more complex, hadron mod-
els. However, this model is based either on the complete
neglect or at least on a drastic simpli6cation of relativis-
tic eH'ects, which seems hard to justify in the light quark
sector.

This limited treatment does of course not only afFect
the valence quarks. More importantly in our context,
it excludes vacuum Quctuations and, in particular, the
existence of virtual quark-antiquark pairs in the hadron
wave functions. The nucleon, for example, is described as
consisting solely of up and down constituent quarks, and
the NRQM thus predicts the absence of any strangeness
distribution.

It therefore came as a surprise to many when deep
inelastic p-P scattering data &om the European Muon

Collaboration (EMC) [2] indicated a rather large strange-
quark contribution to the singlet axial current of the nu-
cleon. The EMC measured the polarized proton struc-
ture function gi(z) in a large range of the Bjorken vari-
able, z C [0.01,0.7] [2,3] and found, after Regge extrapo-
lation to z = 0 and combination with earlier SLAG data,

1

dzgi(z) = 0.126+0.010(stat) +0.015(syst), (1.1)
0

at Q2 = 10GeV /c2. Ellis' and Jaffe's prediction [4],
which neglected strange-quark contributions, was signif-
icantly larger: 0.175 + 0.018. From the above data, how-

ever, one extracts a nonvanishing strange-quark contri-
bution As = —0.1660.008 to the proton spin or, equiva-
lently, via the Bjorken sum rule, a substantial strangeness
contribution to the proton matrix element of the isoscalar
axial-vector current.

The low-energy elastic v-p scattering experiment E734
at Brookhaven [5] complemented the EMC data by mea-
suring the same matrix element at smaller momenta
(0.4GeV & Q ( 1.1GeV). The results of this ex-
periment also contain information on the strange vector
form factors and will therefore be discussed in more de-
tail later, in Sec. IIB. The extracted axial-vector current
form factors are consistent with the muon scattering data
from the EMC [6].

The scalar channel provides additional, although indi-
rect, experimental evidence for a signi6cant strangeness
content of the nucleon [7—10]. It stems Rom the nucleon
sigma term, Z N, which can be extracted &om pion-
nucleon scattering data. De6ning the ratio B, as

( l»lp)
(pluu+ dd+ sslp)

' (1.2)
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'In some generalized constituent quark models, the quarks
have an extended structure which can contain strangeness (see
Sec. III E).

(u, d, and s are the up, down, and strange quark fields,
and lp) denotes the nucleon state) one finds B, 0.1—
0.2. Again, the resulting (plsslp) matrix element is sur-
prisingly large, of up to half the magnitude of the cor-
responding up-quark matrix element. This implies that
the nucleon mass would be reduced by 300MeV in a
world with massless strange quarks. The analysis lead-
ing to the quoted range of B, values is, however, not
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uncontroversial, and smaller values have been suggested
[11].

In any case, there is evidence that strange quarks play
a more significant role in the nucleon than the quark
model suggests. One direction for the further exploration
of this intriguing issue is to study the nucleon matrix
elements of strange-quark operators in other channels.
Since the electroweak neutral currents provide us with
experimental probes in the vector channel, the strange
vector current has recently received considerable atten-
tion. In particular, a number of devoted experiments at
MIT-Bates [12] and CEBAF [13—15] (see Sec. IIB) will

measure part of the corresponding form factors at low
momenta.

In this situation it would clearly be desirable to have
reliable theoretical predictions for these form factors.
Unfortunately, the present status of our theoretical un-
derstanding is qualitative at best. A phenomenological
estimate and some model calculations have been per-
formed, but all results have large theoretical uncertainties
and are partially inconsistent with each other.

Since the sea quark distribution in hadrons arises from
a subtle interplay of quantum effects in /CD, their repro-
duction in hadron models is much more challenging than
the calculation of the standard static observables. Lat-
tice calculations of strange-quark distributions have not
yet been performed since the disconnected quark loops
increase the computational demands of form factor cal-
culations substantially.

The particular value of the strange-quark mass, which
is neither light nor heavy compared to the /CD scale
A, additionally complicates the theoretical situation. In
contrast to the light up and down quarks, the effects of
the heavier strange quark are much harder to approach
&om the chiral limit, i.e., by an expansion in the quark
mass. On the other hand, the strange quark is too light
for the methods of the heavy-quark sector, e.g., the non-
relativistic approximation or the heavy-quark symmetry,
to work.

The purpose of this paper is to assess the present
theoretical status by discussing some of the proposed
models, and to extend our previous estimate of the nu-

cleon strangeness radius in a vector dominance model to
the calculation of the strangeness vector form factors in
the momentum region of interest for the planned experi-
ments.

In Sec. II we will set up our notation, give the basic
definitions and discuss the presently available and soon
to be expected experimental information. Section III
contains a review of some theoretical estimates for the
strangeness radius and magnetic moment, including the
pole fit of Jaffe [16], a Skyrme model calculation [17],
the kaon cloud model estimate [18], and our own esti-
mate based on vector meson dominance and tu-P mixing
[19]. We conclude this section with a new calculation
in the framework of extended constituent quark models,
where the light quarks are dressed with a quark-antiquark
cloud and carry strangeness. The fourth section describes
the calculation of the strange vector form factors in our
model, discusses our results, and compares them to the
pole fit estimate and the sometimes used dipole form. In

Sec. V we summarize the paper and present our conclu-
sions.

II. BASIC CONCEPTS AND EXPERIMENTAL
STATUS

In order to quantify the concept of the nucleon's
strangeness distributions in the language of /CD, one
considers nucleon matrix elements of the form

9 I
s I's lp) (2.1)

A. Basic de6nitions

Most of the theoretical work has so far focused on the
lowest nonvanishing radial moments of the strangeness
spin and charge distributions. These are the strangeness
magnetic moment p„defined as the z component of

1
p,, = — d r (plr x apslp), (2 2)

and the square of the strangeness radius,

d r pr 8poap. (2 3)

In analogy to the electromagnetic case, the momentum
dependence of the strangeness current matrix elements is
contained in two form factors,

(2.4)

where q = p' —p, and N is the &ee Dirac spinor of the
nucleon. Strangeness conservation and the zero overall
strangeness charge of the proton imply Fz (0) = 0.

It is often convenient to use the electric and magnetic
form factors introduced by Sachs,

GM(& ) = F;(0 ) + F2 (& ), (2.5)

which describe the strangeness charge and current distri-
bution, respectively. The above matrix elements for p,,
and r, are simply related to the form factors by

where F stands for a Dirac matrix, which selects the
space-time quantum numbers of the matrix element.
These matrix elements are, in general, scale dependent.
As indicated in the Introduction, we will discuss in par-
ticular the matrix element of the strange vector current
(i.e., I' = p„),which, due to strangeness conservation,
is independent of the subtraction point of the current
operator.
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&.
' = 6d, Ga(&')I:='

dq
(2.6)

Note that we use the Sachs form factor, which corre-
sponds to the physical charge distribution, to define the
strangeness radius. An alternative definition, based on
the Dirac form factor (i.e. , Fi ), has also been used in the
literature.

For the following discussion it will be useful to recall
the relation of the strangeness vector current to the other
neutral vector currents and to the standard U(3) current
nonet in the three-Qavor sector,

= W'p,
2

(2.7)

with A—:g2/3 and tr(A As) = 2b' s. In the standard
Savor basis defined by Eq. (2.7), the neutral currents
and the corresponding operators for the electric charge,
the baryon number, and the hypercharge have the form

Y A~ A8

2 3' (2.8)

J„=qp„Bq= J„,B = —,
1 0 1

6
(2.9)

J„=qp„Yq= J„,Y = B —S =
3 3

(2.10)

and the strangeness current can be written as

(2.11)

Note that we use the nonstandard sign convention of Ja6'e

[16] for the strangeness current. This leads to the neg-
ative sign of the strangeness contribution to the hyper-
charge in Eq. (2.10).

B. Experimental information

No direct measurement of the strange vector form fac-
tors has yet been performed. However, there is some (al-
though indirect and rather uncertain) experimental evi-
dence for them to be nonvanishing. A recent reanalysis
[20] of the E734 experiinent at BNL [5], which measured
the elastic vp and vp differential cross sections in the mo-
mentum range 0.2GeV ( Q2 ( 1.2GeV to constrain
the strange axial-vector form factor of the proton, indeed
mildly favors nonzero vector form factors.

As suggested by Kaplan and Manohar [6], the authors
of Ref. [20] refitted the E734 cross sections and, in con-
trast to the original analysis, allowed the strange vector
form factors to be different &om zero. Their analysis

also takes the neutron electromagnetic form factor into
account and fits the value of the mass parameter in the
axial form factors, M~. The observed elastic vp and vp
scattering events and their statistical and systematical
errors were binned in only seven Q2 regions, which limits
the number of fit parameters that can be determined from
this data set. Garvey, Louis, and White [20) therefore
determine only the lowest nonvanishing moments of the
strange axial [G'(Q2)] and vector [Fi (Q ), F2 (Q )] form
factors, and assume the same momentum dependence as
in the corresponding electromagnetic form factors.

Since no symmetry arguments connect the SU(3) sin-
glet form factors with their octet counterparts, this is
clearly a rather strong assumption. As we will discuss be-
low, it is neither supported by the existing theoretical es-
timates nor by simple "quark-core plus meson-cloud" pic-
tures of the nucleon. In the latter, one expects the elec-
tromagnetic charge and current distribution to be carried
by a valence quark core and a meson cloud. Due to the
absence of strange valence quarks one would expect a dif-
ferent, more outwards shifted strangeness distribution in
this picture. We will discuss the dipole form further in
the last section of this paper, where we compare it with
our results and with another phenomenological estimate.

We do not, however, expect a different momentum de-
pendence of Fi and F2 to change the fits of Ref. [20]
significantly, since the neutrino cross sections are more
sensitive to the strange axial form factor. The strong
correlation between the fit values of G'(0) and M~ noted
in Ref. [20] might, however, be enhanced by the assumed
dipole form of G' with M& = Mg.

Although the existing data are not sufBcient to
strongly constrain any of the strange form factors,
the difference in the Q2 behavior of the neutrino-
and antineutrino —proton cross sections seems to fa-
vor a finite, negative strangeness radius and a negative
strangeness magnetic moment. As we will discuss in Sec.
III C, these signs are expected if the nucleon's strangeness
distribution arises mainly kom Quctuations of its wave
function into the hyperon plus kaon configuration.

Clearly, much more stringent experimental constraints
on the strangeness form factors would be desirable. Some
time ago, McKeown [21] and Beck [22] pointed out that
neutral current form factors could be measured in parity-
violating electron scattering experiments. Four such ex-
periments are at present in different stages of prepa-
ration and will soon provide the first direct measure-
ments of sea quark effects in low-energy observables.
SAMPLE [12] at MIT-Bates plans to measure the value
of F2 at Q2 = 0.1GeV and will start to take data in
less than a year. Three further experiments are located
at CEBAF and will measure diferent combinations of
the strange form factors in a larger range of momentum
transfers. We refer the reader to Ref. [23] for a review of
these experimental programs.

The sensitivity of this fn st generation of parity-
violating elastic electron-proton scattering experiments
will be high enough to distinguish among some of the
present theoretical estimates of the strangeness radius
and can therefore provide valuable and much needed con-
straints for nucleon models.
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III. THE VECTOR STRANGENESS RADIUS
AND MAGNETIC MOMENT

TABLE I. Fit parameters from Ref. [24].
Fi (q ) = P.a;/(m; —q ), E~ (q ) = P.b;/(m; —q ).

In this section we will discuss some of the theoretical
estimates of the strangeness radius and magnetic mo-
ment. We will also add a new calculation of these quan-
tities in models containing extended constituent quarks.
The evaluation and discussion of the form factors for a
larger momentum transfer region will be the subject of
the subsequent section.

Let us point out &om the beginning that all of the ex-
isting estimates are strongly model dependent and that
none of them should be considered as a firm and reli-
able prediction. However, they give at least insight into
the order of magnitude of the form factors and can thus
provide motivation and guidance for future experiments.
And, equally important, they explore and test diHerent
physical mechanisms for the appearance of a strangeness
content in the nucleon.

Fit number
8.1

8.2

7.1

0.78
0.71

-0.11

mv (GeV)
a; (GeV)
b; ( GeV)

1.02
-0.64
0.13

mv ( GeV)
a; (GeV)
b; (GeV)

0.78
0.69

-0.14

1.02
-0.54
0.20

mv ( GeV)
a; (GeV)
b; (GeV)

0.78
0.68

-0.16

1.02
-0.55
0.25

1
)id) = cose ()up„u)+ ~dp„d)) —sine (sp„s),

2

~ P) = Slil e ~idp) + COS e ~pp) .

1.40
-0.13
-0.02

1.80
-0.21
-0.07

1.67
-0.24
-0.08

(3.3)
A. The pole fi model

3 2
F8( 2) ) (+)

i=1
(3.1)

whereas Fz is not normalized and taken unsubtracted,

3

( z) ) b()
i=1

(3.2)

Hohler's form factors E~ 2 for the isoscalar part of the

electromagnetic current (i.e., J~( =
z Jv) have ex-

actly the same form. The corresponding masses m; and
(1=o) (I=o)

coupling parameters a, , b,. have been determined
by fits to the experimental data (see Table I).

JaKe fixes all three masses in Eqs. (3.1) and (3.2)—
including the one of the third pole—at the same values
as in the isoscalar form factors of Ref. [24]; see Table I.
The couplings a~'z and b~'z can be related to the corre-

sponding couplings a~ 2 and b~ 2 by a simple quark
~ (1=o) (l=o)

counting prescription, starting kom the Qavor wave func-
tions of the u and P mesons,

The first estimate of the strangeness radius and mag-
netic moment by JaKe [16] is based on the pole fit of
the isoscalar electromagnetic form factor of the nucleon
of Hohler et al. [24], which assumes'these form factors
to be dominated by three (zero-width) isoscalar vector
(I+ J++ = 0 1 ) meson states: the physical u(780)
and P(1020) mesons and a third, higher-lying pole, which
is intended to summarize the high-mass resonance and
continuum contributions. (For a simpler estimate on the
basis of a one-pole model and id-P mixing see Ref. [17].)

Adopting Hohler's three-pole ansatz also for the
strangeness form factors, JafFe writes F~ in the form
of a once-subtracted dispersion relation [making use of
Fi(o) = o]

The small angle e = 0.053 [25] parametrizes the deviation
kom the ideally mixed states. The current-meson cou-
plings are obtained &om the assumption that a quark
q, with Savor i in the vector mesons couples only to
the current q;p„qi of the same Savor, and with Havor-
independent strength e:

g((d, J ) = sin(8p + e),
6

g(P, J =
) = — cos(8p+ e),

g(ld, J ) = —K sine~

g(P, J') = e cos e, (3.4)

where gp is the "magic angle" with sin ep —— 1/3.
The vector-meson nucleon couplings are parametrized as
g (idp, N) = g costi', g (Pp, N) = g sin r/, whei'e i = 1, 2
denotes the p„and o„„q"couplings.

Comparing the above pararnetrization of the couplings
with Hohler s fitted values for a&2 and b&2 leads) (I=o) (I=o)

to phenomenological values for t]ie rI; and eg;. The
strangeness current couplxngs a~ & and bz 2 are then ob-{s) (a)

tained by simply replacing J = with J . The remaining
couplings a3' and b3' are determined by imposing the
(rather mild) asymptotic constraints lim~*~ Fi (q ) ~
0, lim~~ qz F2 (q2) m 0.

The strangeness radius and magnetic moment can now
be obtained from Eqs. (2.5) and (2.6). Taking the aver-
age of the three fits in Ref. [24], JaKe finds r, = (0.14 +
0.07) fm and p„=—(0.31 + 0.09). Note that these esti-
mates are rather large —of the order of the corresponding
electromagnetic moments of the neutron —and that they
do not rely on a specific nucleon model. However, bias
is introduced through the assumed three-pole ansatz for
the form factors and the identification of the two light
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poles with the physical u and P mesons. Furthermore,
the final form of the ansatz relies on the conditions for
the asymptotic behavior and on the parametrization of
the couplings (which works well in the electromagnetic
case).

As pointed out by Joe, the pole fit results depend cru-
cially on Hohler's identification of the second pole with
the physical P meson, with its large strange quark con-
tent and its surprisingly strong, OZI-violating [49] cou-
pling to the nucleon [26]. It should further be noted that
adopting the third pole mass from Hohler et al. is hard
to justify. The third pole does not correspond to a well-

defined state, but rather sumxnarizes unknown higher
lying resonance and continuum contributions, which will
likely have a difFerent distribution of strength for the hy-
percharge and strange currents.

Let us finally mention that the sign of r, is opposite to
the one suggested by the reanalysis of the BNL neutrino
scattering data of Garvey, Louis, and %hite, and found
in other models, and that the three-pole ansatz does not
allow the form factors to decay with the large powers of
q2 established via quark counting rules.

B. Skyrme model estimate

The first nucleon model estimate of the low-momentum
strangeness form factors was based on the Skyrme model
[17]. The latter is a topological soliton model, built on
a chiral meson Lagrangian. Many variants of this model
and of its treatment exist and are described, e.g. , in the
reviews [27]. The extension to the SU(3) fiavor sector
and its breaking is not unique and allows an even wider
choice in the specific approach, which of course leads to
some ambiguity in the results.

The authors of Ref. [17] choose the original Skyrme
model [28] and introduce fiavor symmetry breaking by
nonminimal derivative terms in the Lagrangian. After
canonical quantization in the restricted Hilbert space of
collective and radial excitations, the Hamilton opera-
tor is diagonalized by treating the symmetry breaking
terms exactly [29]. This approach in some sense com-
bines the two conventional quantization schemes of the
SU(3) skyrmion. From the strange vector form factors
Ref. [17] obtains r2 = —0.10fm and p,, = —0.13. In an
extended Skyrme model containing vector mesons, these
values drop by about a factor of two in. magnitude, and
the sign of the strangeness radius changes [30].

It is interesting that these results for nucleon sea quark
distributions come from a model that describes quark
physics rather indirectly in terms of meson fields. How-
ever, considerable theoretical uncertainties are associated
with the Skyrme model estimates of the strange form fac-
tors. Besides the already-mentioned ambiguities in the
specific choice of Lagrangian and SU(3) extension, there
are several additional problems.

One serious concern is that the calculation of strange
matrix elements in Skyrme-like models ultimately in-
volves the small difference of two large but uncertain
quantities, and hence is intrinsically unreliable. The
source of this difficulty is that the strange vector current,

which in /CD is understood at the quark level, must be
described in terms of the Noether and topological cur-
rents in the Skyrme picture.

The strange current, in particular, is obtained &om the
relation of baryon number and hypercharge currents, Eq.
(2.11):

Thus, r, is given by ~z —~~. Ho~ever, both ~z and ~~
are of order 1 fm so that their difFerence is almost an
order of magnitude smaller than the two separately Th. e
above-mentioned problem arises, since quantities calcu-
lated in the Skyrme model have a typical accuracy at the
30% level (without introducing large numbers of param-
eters), which might even be expected from a model jus-
tified to leading order in a 1/N, expansion, with N, = 3.

Therefore, one concludes that the Skyrme model can-
not accurately determine the strangeness radius to within
several hundred percent, unless there are special reasons
to believe that the errors in r& and v & are strongly corre-
lated. However, it is hard to argue for correlations in the
errors, since they come &om very diHerent parts of the
model. The baryon current is of topological origin, and
it is difficult to understand why it should "know" about
errors in the hypercharge current, which is a Noether
current.

There is also a more fundamental concern with the
Skyrme model calculation. The Skyrme model, and the
approximations used to treat it, are generally believed
to be justified in the large-N, limit of /CD; efFects of
subleading contributions in 1/N, are probably not reli-
able. This casts serious doubts on whether the Skyrme
model (or any other large-N, model) can ever make con-
tact with strange matrix elements. After all, in a conven-
tional treatment of the nucleon any strange quark matrix
element must be ascribed to a Zweig-rule-violating am-
plitude. But, as argued by Witten [31] many years ago,
Zweig's rule is exact in the large-N, limit.

Apart &om the question of whether the Skyrme model
can give reliable strange quark matrix elements in light
of the need for Zweig rule violations, there seems to be a
paradox, since the approach of Ref. [17] continues to give
nonzero strange matrix elements even as the parameters
are pushed towards their N, -+ oo values. How can the
model give any nonzero strange matrix element in the
limit as N, m oo?

The resolution of this "paradox" is simple: Since
the nucleon is defined to be a meynber of the lowest
SU(3)s „,octet with N, being any multiple of three,
there are necessarily valence strange quarks in the nu-
cleon for N & 3. To make a Havor octet out of N
quarks, one groups the quarks in triples of 8avor singlets
except for the last three, which are coupled to an octet.
The key point is that each of these groups of three quarks
in a singlet state contains one strange quark. Thus, a
nucleon with N ) 3 will contain ~z —1 valence strange
quarks. A consequence of this fact is that the standard
relation (3.5) between hypercharge, baryon number and
strangeness must be modified for N, g 3:
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Js & JB JY (3.6)

Given the net strangeness content of nucleons in the large
N, vrorld, there is no need for Zweig-rule-violating am-
plitudes. Indeed, as N + oo the number of valence
strange quarks diverges: The nucleon becoxnes infinitely
strange. This fact explains why the Skyrxne model can
have nonzero strangeness matrix elexnents as N + oo.

The resolution of this paradox does not, however, af-
fect the general conclusion that the ability of the Skyrme
model to describe strange-quark matrix elements in the
nucleon is likely to be fundamentally limited, due to its
large N, character. To describe our N, = 3 world in
the Skyrme model, one must start at the N, ~ oo world
and attempt to extrapolate back, with inherent uncer-
tainities in the 1/N, correction terms. This procedure
may be quite sensible for soxne quantities, if the underly-
ing physics is essentially similar in the N, = 3 and large
N, worlds. It is likely to be problematic for strange-
quark matrix elements, however, since the character of
the physics completely changes as N, goes &om infinity
down to three. At large N, there are a large number of
valence strange quarks, and Zweig's rule is exact, while
at N, = 3 there are no valence strange quarks, and the
entire contribution is due to Zweig rule violations.

C. The kaon-cloud model

In order to complement the pole and Skyrme model
calculations, Musolf and Burkardt [18] estimated the
strange vector matrix elements in yet another way, by
considering the contributions arising from a K—A loop.
The heavier K—Z interxnediate states have not been taken
into account. As pointed out in Ref. [18], the correspond-
ing couplings might, however, be significantly enhanced
beyond their SU(3) values, which could make this contri-
bution relevant.

In contrast to earlier attempts [32], the calculation of
Ref. [18] uses the phenomenological meson-baryon form
factors of the Bonn potential [33] to cut off the loop mo-
ment»m and maintains gauge invariance via additional
"seagull" vertices. The latter are generated &om the
Bonn form factors by the minimal-substitution prescrip-
tion. (For an alternative choice of these form factors see
Ref. [34].) The interaction of the strange vector current
with the hadrons in the loop is treated as pointlike.

The above model is very likely to be too simple to pro-
vide quantitative predictions, since, e.g. , contributions
&om other but the lightest hadrons are not taken into
account. However, the motivation of the authors of Ref.
[18] was not so much to end up with quantitative pre-
dictions, but rather to explore and discuss qualitative
features of loop contributions.

The strange magnetic xnoment obtained in this ap-
proach lies in the range p„=—(0.31 —0.40), dependent
on the loop cutoE value, and is of about the same mag-
nitude as the pole and Skyrme xnodel predictions. The
Sachs strangeness radius rz = —(0.027 —0.032) fm, how-
ever, has the sign opposite to the pole prediction, and its

magnitude is smaller by a factor of 3 to 5.
In the chiral limit, the strangeness radius develops an

infrared divergence from the meson propagator in the
loop integral. It is therefore very sensitive to the meson
xnass if the latter becomes small. The Sachs radius, for
example, would be an order of magnitude larger if the
pion would replace the kaon in the loop, as it does in
meson cloud models for the isovector part of the elec-
tromagnetic forin factors. The SU(3) breaking effects
are less pronounced for the magnetic moment, where the
corresponding loop integrals are in&ared finite.

Finally, in the absence of an agreement under the cur-
rent theoretical estimates for the sign of the strangeness
radius, another feature of the kaon cloud picture should
be stressed: it provides a simple and intuitive argument
for the origin of the sign of r, . Since the (in our conven-
tion) negative strangeness charge in the loop is carried by
the kaon, which is less than half as heavy as the lambda
and thus reaches out further from the common center of
mass, it contributes dominantly to r, and determines its
negative sign.

This reasoning is analogous to the standard explana-
tion for the negative sign of the electromagnetic charge
radius of the neutron due to the negatively charged pion
cloud. However, this static picture is, of course, over-
simplified and neglects, in particular, recoil effects. The
relevance of the latter can be seen in the dependence of
the strangeness radii on the involved mass scales. The
Dirac strangeness charge radius, for example, becomes
positive for pointlike kaons (i.e., for large values of the
cutoff mass in the meson-baryon form factors), whereas
it stays negative if the kaon mass is replaced by the pion
mass [18].

D. Kaon cloud and vector meson dominance

J„'= B m e„+Bym&g„. (3.8)

It is convenient to combine these two CFI's into a vector

In this section we review our model for the strangeness
form factors introduced in Ref. [19]. It combines an in-
trinsic form factor, taken for definiteness from the kaon
cloud model discussed above, with vector meson domi-
nance (VMD) [35] contributions and &u-P mixing. We are
focusing in the present section on the basic ideas under-
lying this approach and will give more details, together
with the calculation of the full form factors, in Sec. IV.

The VMD hypothesis can, in its most general form, be
summarized in terms of current field identities (CFI's)
[36], which state the proportionality of the electromag-
netic current and the field operators of light, neutral vec-
tor mesons with the same quant»m numbers. The iso-
calar CFI has thus the general form

J~ =
~ = A m u)„+Apm~g„,

with the couplings A,A4, yet to be fixed. Generalizing
the VMD hypothesis to the strangeness current, we write
an analogous CFI for J'.
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equation, so that the couplings form the elements of a
matrix

(3.9)

In order to fix the couplings in Eq. (3.9), we sandwich
the CFI's between the physical vector meson states and
the vacuum to obtain the following representation for C:

(olq;p„q; I(q, q, )i ) = ~mv h';, s„. (3.11)

With the favor wave functions of ~ and qt from Sec. III A
and the currents Jr=o =

2
J+ and J„'given in Eqs. (2.10)

and (2.11) we then obtain

t'm.' o &

0 2 I
(3 1o)0 m~)

(s„describes the polarization state of the vector rnesons).
We now determine the matrix elements on the left-hand
side of Eq. (3.10) from the simple U(3) favor counting
rule discussed in Sec. IIIA. It states that the matrix
element of the quark vector current of Qavor i between
the vacuum and the Qavor-j component of the vector
meson V (V stands for id or P) is diagonal in favor and
of universal strength ~, i.e.,

& ~sin(8o+e) icos(8o+e) I
+I=O,s (E) —K —sine cos e )

(3.12)

The same prescription for the couplings was used in
Joe's pole fit; see Sec. IIIA. Both the magic angle
8o ——tan (1/~2) and the mixing angle e, which re-
lates the ideally mixed Havor states of the vector mesons
to their physical states and is small and positive [37],
have been introduced in Sec. III A. In the following, we
will use e = 0.053, which has been determined in Ref.
[25] from the P ~ x + p decay width and is consistent
with the decay width of P -+ m+ + vr + x . Despite the
small value of e, the vector meson mixing will generate
the dominant part of our result for the strangeness ra-
dius [19], which consequently acquires a rather strong e
dependence.

The CFI's lead to a general expression for the form
factors. To derive it, we first note that Eqs. (3.7) and
(3.8), together with the requirement of strangeness and
hypercharge conservation, imply ct&V„=0 (V„stands for
either ur„orP„),which simplifies the field equations to

(3.13)

and therefore also implies that the vector meson source
currents are conserved (t9"J„=0). We now take nu-(v)

cleon matrix elements of the field equations (3.13) and
use the CFI's to write

& (N(p') I J."="
IN(p)) ~ - -:-" ' (N(p')

I J.' ' IN(p)) ~

(N(&')I J„'IN(&)) ) '=" o, , ) ( (N(p')I J„~IN(p)) )
(3.14)

It is convenient to reexpress the vector meson source currents in terms of currents with the same SU(3) transformation
behavior as J(l=ol and J', which we will denote as intrinsic (J;„).The corresponding transformation can be written
as

& J(™ll
(y) I

= DI=o, e (e)
) ( in' )

(3.15)

Applying it on the right-hand side of Eq. (3.14) and separating the nucleon matrix elements into form factors,
according to Eq. (2.4) and its analog for J„,we obtain our general VMD expression for the form factors:

m'.

I
= cl-o, , (e) i

(FI—o( 2) )
F'q

I
o

(3.16)

According to their definition, the intrinsic form factors describe the extended source current distribution of the nucleon
to which the v ctor mesons couple. Since both J( = ), J(') and their intrinsic counterparts Ji, J,-„' are conserved,
the full and the intrinsic form factors in Eq. (3.16) have the same normalization at q2 = 0. This immediately implies
Dl o, ——Cl o, and h—as been anticipated in writing Eq. (3.16). Combining Eqs. (3.16) and (3.12), we finally obtain

2 2/ ~ sin(Hp+e) cos e ~y cos(Hp+e) sin 6r I=0 i 2i X.
~4 —q2 sin Hp

(q ) )
~

~scosssins
sin Hp m, —q Tn —qCaP

cos(Hp+e) sin(8p+e) m.2 2

~6 sin 8p

COS 8 SXO(ep+8) TA SXO 8 COS(eP+8)
)

2 ~ 2

~2 —q2 sin Hp nL2 —q2 sin Hp

( FI=o(q2) )xl F.(2) (3.17)
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A couple of instructive features can be directly read ofF

from this expression. First, the dependence on both
the vector-meson-current and vector-xneson-nucleon cou-
plings has dropped out. This is a straightforward con-
sequence of charge norxnalization, which requires both
couplings to cancel each other, and is a general feature
of VMD form factors [35]. As a consequence we have

E(0) = E; (0) for both the strangeness and the isoscalar
form factor. Note that the normalization of the intrinsic
isoscalar form factor [F~~=;„(0)= 1/2] d.ifFers from that
in Ref. [19], where we used a difFerent isoscalar current.
The strangeness radius and magnetic moment remain the
same, however.

Up to now our discussion has been rather general, and
diferent choices for the intrinsic form factors can be im-
plexnented in this &amework. A very important restric-
tion on every such choice is, however, that it does not
lead to double counting with the physics of the VMD
sector. We will coxne back to this issue later.

In order to calculate the strangeness forxn factor &om
Eq. (3.17) explicitly, we have to specify the intrinsic form
factors. As in Ref. [19], we adopt the kaon loop model
from the last section [18] for the intrinsic strangeness
form factor but use the physical value for the A mass
(Ref. [18] takes the fiavor-symmetric value, i.e., the nu-

cleon mass). One could think of adopting an analogous
pion cloud model for the intrinsic isoscalar electromag-
netic form factor. Since, however, typical models for in-
trinsic nucleon charge distributions require a large quark
core contribution in addition to the pion cloud [38], we

do not expect intrinsic electroxnagnetic form factors to
be suKciently well modeled by pion loops, and we will
therefore follow a difFerent strategy.

We first adopt Hohler's fit [24] of the isoscalar form
factor to the experimental data, summarized for conve-
nience in Table I. From this fit we extract the intrinsic
isoscalar form factor by inverting the VMD matrix in
Eq. (3.17). Then we determine the strangeness form fac-
tor from the second row of Eq. (3.17). The contribution
from the intrinsic strangeness part to the isoscalar forxn
factor is very small and plays almost no role in the de-
termination of Fl„=o(q2).

Since the strangeness magnetic moment is obtained
&om the magnetic form factor at q2 = 0, it is not mod-
ified by the vector mesons and originates solely &oxn
the intrinsic contribution. It has therefore the same
value as in the kaon loop model. Both the Dirac and
the Sachs strangeness radii, however, get an additive
contribution &om the vector mesons. This contribu-
tion increases the charge radius by about a factor of 3,
r, D;, , ———(0.0243 —Q.Q245) fm, and the Sachs radius

by about a factor of 2, r2 = —(0.04Q —Q.045) fm . Both
signs are the saxne as those of the intrinsic contribution.

This enhancement in the strangeness radii is rather
ixnportant &om the perspective of experiments. The
charge radius obtained from the kaon cloud alone is too
small, for example, to be detected in the planned parity-
violating elastic ep scattering experiments, whereas the
enhancement due to the vector mesons could lead to an
observable eKect.

A couple of other aspects of the VMD approach should

be noted. The VMD part of the form factors is generic
and independent of any details of the model except the
general VMD form. In particular, it is independent of
the current-meson couplings with their underlying theo-
retical assuxnptions and uncertainties. It also renders the
strangeness radius less sensitive to the model dependence
of the intrinsic form factors. The kaon cloud form fac-
tors alone are, for example, dominated by the strongly
parametrization-dependent seagull contributions.

Another important aspect of the VMD results is their
crucial dependence on the u—P mixing. Indeed, the
strangeness radius would not receive any contribution
&om ideally mixed vector meson states, since the nucleon
has no overall intrinsic strangeness. As a consequence,
the VMD contribution to the radius is proportional to
the sine of the mixing angle e.

E. Constituent quark models

In this section we will discuss the strangeness radius
&om the point of view of a large class of hadron mod-
els based on a constituent quark core. In the "naive"
nonrelativistic constituent quark models, the quarks are
pointlike and, since sea quarks are absent, there is no
mechanism for a nonvanishing strangeness distribution
in the nucleon. However, it was argued some time ago
[6] that the constituent quark picture can be generalized
to accomxnodate a finite strangeness content. Indeed, if
one regards a constituent quark as a /CD current quark
surrounded by a complicated, nonperturbative cloud of
gluons and qq pairs, then even up and down constituent
quarks can have a strangeness distribution.

Of course, predictions of the nucleon's strangeness dis-
tribution in such constituent quark models have still to
relate the strangeness content of the constituent quark
to that of the nucleon. This is no simple task and gen-
erally requires the solution of a relativistic Fadeev-type
equation.

Fortunately, however, the nucleon's strangeness Sachs
radius can be inferred exactly &om that of the con-
stituent quark without any specific calculation, and it is
independent of the interquark dynamics. To see this, con-
sider a systexn of three constituent quarks with strange
charge distributions p, (r —r;) of identical shape, centered
at (in general, time-dependent) positions r;. The total
strangeness radius of the nucleon is then

r, = dVr p, r —rq +p, r —r2 +p, r —r3

(3.18)

First studies of this type in the Nambu —Jona-Lasinio (N JL)
model have recently reproduced the nucleon mass quite well

[39j, but they are not easily generalizable to the calculation
of form factors. Furthermore, it is not obvious that they are
consistent with the Hartree-Fock or large-N approximations
used to derive the constituent quark propagators.
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and after shifting the integration variable by the individ-
ual positions of the quarks one obtains

The form factor matrix T is, in Hartree-Fock approxima-
tion, a solution of the Bethe-Salpeter-type equation

r, =3 dVr p, r + 2 rq+r2+r3 dVrp, r X =1+Kg%, (3.21)

+(r~ + rz + rz) f dv p, (r) = a (r, )~. (3.19)

(U(p')
I J;(0)IU(p))

= U(p')
I
~~fi'(q')+' ""

= ) [X(q')]„""U(p')I'"U(p). (3.20)

Note that the isotropy condition could be violated by the
strangeness current (as opposed to charge) distribution, which
prevents us &om extending the above argument to the strange
magnetic moment. Note also that two- or three-body correla-
tions between the quarks, beyond or instead of the common
mean-Beld potential, could invalidate the isotropy condition.

The last equation holds for isotropic quark strangeness
distributions with vanishing overall strangeness charge
and shows that the nucleon strangeness radius is, un-
der the stated conditions, just the sum of the quark
strangeness radii.

The above ideas can be studied quantitatively in mod-
els which generate constituent quarks dynamically by
dressing the elementary quarks with qq pairs. The pro-
totype of this class of models has been introduced by
Nambu and Jona-Lasinio (NJL) [40], and the first study
of the scalar strangeness content of constituent quarks in
this framework can be found in Ref. [41].

In order to give an estimate of the nucleon strangeness
radius in constituent quark models, all that remains to
be done is to calculate the strangeness radius of the con-
stituent quark itself. Vfe will perform such a calculation
in the remainder of this section in the context of the NJL
model. An extensive study of electromagnetic quark and
meson properties in difFerent SU(3) generalizations of the
NJL model can be found in Refs. [42,43], and we will em-

ploy some of their results.
A strangeness component in the valence constituent

quarks can only be generated by OZI-rule-violating pro-
cesses, which require a flavor-mixing interaction. In
the conventional Hartree-Fock approximation to the NJL
model (on which the work of Ref. [43] is based), fla-
vor mixing originates exclusively &om determinantal six-
quark interactions [41). These terms, of the forin of
't Hooft's instanton-generated efFective Lagrangian [44],
represent the anomalous breaking of the U(1)~ symmetry
in /CD, and contain two coupling constants, H and H'.
Their physical role is primarily to generate the mass split-
tings of the singlet and octet states in the pseudoscalar
channel (H) and of the p and &u mesons in the vector
channel (H'). In addition, these couplings will determine
the strangeness content of the constituent quark.

We start our calculation by writing the constituent U
quark matrix elements of the strangeness current as

where K is the effective two-body reduction of the NJL
interaction, containing the coupling constants, and J' is
the so-called generating correlation function, which is ba-
sically a two-body propagator. The explicit forms of both
K and g are given in Ref. [42].

The Sachs strangeness radius of the constituent u
quark,

(„,)
6&q (q')

d2
q2 —P

(3.22)

can now be obtained from the explicit solutions for fi
and f2, given in [43], and g&

——fi + (q2/4m2) f2. We
find

(r,)„= m„m,I,
~

2GqI„—+
96v 2H'(uu) ( 1

DI=o0 " ''~ "
4m~p '

(3.23)

where

D =
(0) = 1 —Sm„H'(ss)I„

—128m„m,(H'(uu)) I„I, (3.24)

and the integrals Iq can be solved analytically:

3 A (
Iq —— + ln

4+2 A2+ m2 I A2+ m2
q q/.

(3.25)

With the parameters of Ref. [42], m„=ms = 364MeV,
m, = 522 MeV, A = 0.9 GeV, G~A = 2.51, and
H'A (ss) = —4.4 x 10 2, we finally obtain the numer-
ical value

r, = 3 (r,)„=1.69 x 10 fm . (3.26)

IV. THE STRANGENESS FORM FACTORS

Our discussion has so far mainly focused on the 6rst
nonvanishing moments of the nucleon strangeness dis-

It comes somewhat as a surprise that r2 has the opposite
sign as the VMD result, since the isoscalar and isovector
form factors of the NJL constituent quarks are also domi-
nated by vector meson intermediate states [43]. However,
Eq. (3.23) shows that the NJL result is proportional to
H' (which sets the singlet-octet mass splitting in the vec-
tor sector), whereas ur-P mixing, which gave rise to the
VMD contribution to r, , occurs also for H' = 0 (in the
case of mo g mo). This indicates that physics other than
VMD contributes substantially to the NJL result. Note
furthermore that the entire result depends on subleading
effects in 1/%, counting.

In Table II we summarize all the theoretical estimates
of the nucleon strangeness radius discussed above.
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TABLE II. Theoretical results for the strange magnetic moment and strangeness radius.

Source
Poles

Kaon loops [SU(3) symm. ]
Kaon-loops

VMD
NJL

SU(3) Skyrme

~. (VN)
-0.31+0.09

- (0.31 —0.40)
- (0.24 —0.32)
- (0.24 —0.32)

-0.13

r.' ( fm')
0.14 + 0.07

— (2.71 —3.23) x 10
-(2.23 —2.76) x 10
-(3.99 —4.51)x 10

1.69)& 10
-0.11

B.ef.
[18]
[18]
[19]
[19]

This work

[17]

tribution. These quantities —the strangeness radius and
magnetic moment —will be the first characteristics of the
strange form factors to be measured, and thus have re-
ceived most of the theoretical attention.

However, not only does the higher momentum region of
the form factors contain important physical information,
but its knowledge is also required for the interpretation
of the currently prepared experiments to measure r2 and
p„(and the already discussed BNL neutrino scattering
experiment). Since the form factors cannot be measured
exactly at q2 = 0, the data have to be extrapolated back
to the light point f'rom small spacelike q2. The extracted
values for r2 and p, will thus depend on the assumed
moment»m dependence of the form factors, and its better
understanding is clearly important.

In the absence of reliable information, one sometimes
parametrizes the momentum dependence, as in the elec-
tromagnetic form factors, in Galster's dipole form. This
choice is motivated by simplicity and convenience, but
has no theoretical basis. The physics contributing to
the strange form factors —originating exclusively &om
sea quarks —might well lead to a momentum dependence
other than the dipole form (which also does not repro-
duce the asymptotic behavior suggested by quark count-
ing rules). Note, however, that a Galster form with in-
dependent mass parameters to be determined by experi-
ment, as proposed in Ref. [45], could be sufficiently fiex-
ible to describe the form factors in the momentum range
relevant for CEBAF.

In the present section we will extend our work on the
simple VMD plus kaon cloud model (proposed in Ref. [19]
and discussed in the last section) to the calculation of the
strangeness vector form factors in the momentum region
accessible at CEBAF. Since our approach is based on
low-energy dynamics, however, it will not be applicable
at larger q2.

The momentum dependence of the VMD contribution
was already given in Eq. (3.17). The intrinsic form
factors will be determined in the kaon cloud model of
Ref. [18]. Even if the corresponding kaon loop graphs

to be calculated are UV finite, the e8'ective hadronic de-
scription of the underlying physics breaks down at large
momenta. We will therefore follow Ref. [18] and attach
form factors,

m2 —A2
H(k )=

k2 —A2
(4.1)

ZNAK = igNAK@'Y5@H( 8 )4' (4.2)

where 4 and P represent baryon and kaon fields, by mini-
mal substitution in the gradient operator. This prescrip-
tion [47], while not unique, generates the seagull vertex

i&„(k,q) = + gNzKQKps(q + 2k)
„

H(k2) —H((q + k)2)

(q + k)' —k' (4.3)

where QK is the kaon strangeness charge, and the up-
per (lower) sign corresponds to an incoming (outgoing)
meson. As expected, this vertex disappears in the limit
A ~ oo of pointlike couplings.

We can now identify three distinct contributions to the
intrinsic form factors. The three corresponding ampli-
tudes are associated with processes in which the current
couples either to the baryon line (B), the meson line (M),
or the meson-baryon vertex (V) in the loop, and are given
by

taken from the Bonn potential [46], to the meson-nucleon
vertices to cut ofF the loop momenta. The Bonn values
for the cutoE A in the NAX vertex were extracted &om
fits to baryon-baryon scattering data and lie in the range
of 1.2—1.4 GeV.

As already mentioned, the J„'-hadron couplings will be
assumed pointlike and therefore given by the strangeness
charge of the struck hadron. Also, in order to main-
tain gauge invariance in the presence of the extended
meson-baryon vertices, we have to introduce seagull ver-
tices. These vertices are generated from the efFective La-
grangian

d4I
F„(p',p) = 'gN~KQa —A(k )H(k )& S(p' —k)&„S(p—k)& H(k ), (4.4)

V4IF„(p',p) = igNJKQK E((k+ q)
—)(2k+ q)„b,(k )H((k+ q) )AS(p —k)AH(k ), (4 5)
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d4A:I' (p' p) = —qNAKQ~, H(k')&(k') „,"„,[H(k') —H((k+ q)')]

xpsS(p —k)ps — [H(k ) —H((k —q) ))psS(p —k)ps
(q —2k)„ 2

(q —k)' —k'

b, (k ) = (k —mlc + ie) is the kaon propagator, S(p —k) = (P —I(' —MA + ie) is the A propagator, p = p+ q
with q being the photon momentum, and Qg is the A strangeness charge. In our convention (where the s quark
has strangeness +1) Qp = 1 and Q~ = —1. The values of the coupling and masses used are M~ = 939MeV,
MA = 1116MeV, mls = 496MeV and g~~lc/Q4x = —3.944 [46]. It is easy to show that these three amplitudes
satisfy the Ward- Takahashi identity.

The intrinsic strangeness form factors are obtained by writing the nucleon matrix element of the sum of these
amplitudes in terms of Dirac and Pauli form factors

V

&(p')I', (p', p)N(p) = &(p')
l ~~Fi„.(q') +t

M F2,;.(q')
l N(p), (4.7)

where N is the nucleon spinor. The corresponding elec-
tric and magnetic Sachs form factors can be obtained
from Eq. (2.5).

The dependence of the electric strangeness form fac-
tor on the (spacelike) momentum transfer Q2 = —q2 is
shown as the full line in Fig. 1 and, for comparison, the
result of the pole fit model [16] is also plotted. The results
are quite difFerent both in size and magnitude, and doc-
ument the present state of theoretical uncertainty. We
further plot the intrinsic contribution alone, which es-
sentially corresponds to the full form factor in the model
of Ref. [18]. While it has the same sign as our result and
is of comparable magnitude, its slope at the origin, and
consequently the mean square strangeness radius, is by a
factor of 3 smaller.

It is interesting to see how much of the form factor in
our approach comes &om the VMD contribution alone,
i.e., by treating the core as pointlike and by setting
Fi=;„o(Q2) = 1/2 and Fi;„(Q2)= 0. While the slope

at the origin is slightly reduced in this case, the overall
behavior of the form factor remains almost unchanged.

In Fig. 2 we show the dependence of G& on the pa-
rameters of the intrinsic form factors. While Hohler's
three different fits for the intrinsic isoscalar form factor

have almost no in8uence on our result and cannot
be distinguished in Fig. 2, we see a mild dependence on
the kaon loop cutoK in the range between A = 1.2 GeV
and A = 1.4GeV, which is compatible with the Bonn
potential fits. We also plot the pole fit result [16] for the
three fits (fit Nos. 7.1, 8.1, and 8.2) of the isoscalar form
factor and 6nd a rather strong dependence.

Figure 3 shows the magnetic strangeness form factor in
our model and again, for coinparison, the pole fit result.
As in the case of the electric form factor, their slopes at
the origin, their curvatures and their momentum depen-
dence are generally rather different. However, the values
at Q = 0, i.e., the strange magnetic moments, are quite
similar. Since the VMD contribution does not alter the
value of p„given by GM,.„(0),the intrinsic form factor

0.08

0.04

0.00

—0.04CV

—0.08

0.08

0.02

—0.04

—0.10CY

fit 8.1

—0.22 . fit 8.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B
Q (GeV )

FIG. 1. The Q dependence of the electric strangeness form
factor using A = 1.2 GeV. The solid line represents our re-
sult. The long-dashed line gives the intrinsic contribution,
and the short-dashed line gives only the VMD contribution.
The dotted line is the result of Ref. [16] with the fit 8.1 of
Table I.

—0.28
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B

q'(GeV')

FIG. 2. Same as Fig. 1 but for two values of A. The upper
solid and long-dashed lines are for A = 1.4 GeV, and the lower
solid and long-dashed lines are for A = 1.2 GeV. The dotted
lines are the results of Ref. [16] for the three different fits in
Table I.
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—0.06

—0.10

—0.14

—0.18CY

variation with the kaon loop cutofF, again in the range
A = (1.2 —1.4) GeV, is stronger than for the electric
form factor. The dependence of the pole fit result on the
choice of fit is even larger, as for G&.

We have already mentioned that some authors, and in
particular Garvey, I ouis, and white in their reanalysis
of the BNL neutrino scattering experiment [20], used a
Galster dipole parametrization

—0.22

—0.26
Fx(Q') = FSQ2

Q l+ Q'
(4.8)

—0.30 I I I I I I I

0.0 O. i 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Qs(GeV ) F (Q2) 2( )

(4 9)

FIG. 3. The Q dependence of the magnetic strangeness
form factor using A = 1.2 GeV. The solid line represents our
result. The long-dashed line gives the intrinsic contribution,
and the short-dashed line gives only the VMD contribution.
The dotted line is the result of Ref. [16] with the fit 8.1 of
Table I.

starts at the same value as the full GM but is, in con-
trast to G&, considerably smaller. The VMD contribu-
tion alone, however, is not as close to the complete result
as in the case of Ga (To .generate this graph we kept
the intrinsic isoscalar and strange form factors constant,
at their values at Q2 = 0.)

The GO experixnent at CEBAF [13]will measure the Q2
dependence of GM in the momentum range O.l GeV
Q2 ( 0.5 GeV, with a resolution bp, , +0.22 at low Q2,
and decreasing for larger Q2. The SAMPLE experiment
at MIT-Bates [12] will determine y„with comparable ex-
perimental error, and the combined data might thus be
sufBcient to distinguish between our and the pole result.

The dependence of GM on the cutoff and on the choice
of fit for F;„= can be seen in Fig. 4. While our re-
sult is still practically insensitive to the choice of fit, the

for the Q2 dependence of the strange form factors, in
which My ——0.843GeV is taken to be the same as in
the electromagnetic form factors. As mentioned before,
a more general form of the Galster parametrization, in
which the masses are taken as independent fit param-
eters, has been proposed in Ref. [45]. The reanalysis
of the E734 experiment gave a first idea of the lead-
ing momentuxn dependence, F2 (0) = —0.40 6 0.72 and
Fx' ———(I/6)(r, )D;,« ——(0.53 6 0.70) GeV, although
these values have large error bars and are consistent with
zero. Furthermore, the ass»mptions that had to be made
for the neutron form factors add to the theoretical un-
certainties of this reanalysis.

Still, the estimates of Ref. [20] allow us to assess the
compatibility of the dipole form with our results and
those of the pole fit. In Figs. 5 and 6 we compare our
Dirac and Pauli form factors and those of Ref. [16] with
the dipole forms, Eqs. (4.8) and (4.9). The differences be-
tween the three approaches are clearly more pronounced
for F~ . Figure 5 also indicates that the value for the Dirac
strangeness radius, if extracted by fitting the momentum
dependence of the dipole parametrization, can be rather
diferent &om the one obtained in other estimates. The
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FIG. 4. Same as Fig. 3 but for taro values of A. The upper
solid and long-dashed lines are for A = 1.2 GeV and the lovrer
solid and long-dashed lines are for A = 1.4 GeV. The dotted
lines are the results of Ref. [16] for the three different fits in
Table I.
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Q (GeVs)

FIG. 5. The Q dependence of the Dirac strangeness form
factor using A = 1.2 GeV. The solid line represents our result.
The dashed and dotted lines are the results of Refs. [20] and

[16], respectively.
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FIG. 6. Same as Fig. 5 for the Pauli strangeness form fac-
tor. Note the similarity of all three predictions at intermediate
momentum transfers.

(4.10)

and the strangeness current interacts with the nucleon
only through the P meson. In particular, the strangeness
radius does not get any contribution &om VMD in the
limit of ideal mixing, since the nucleon has no intrinsic
strangeness [i.e. , F„(0)= 0].

V. SUMMARY AND CONCLUSIONS

In this paper we present a theoretical estimate for the
strangeness vector form factors of the nucleon in the mo-
mentum region relevant for the planned experiments at
MIT-Bates and CEBAF. This estimate is based on our
previously introduced model of the nucleon strangeness
distribution in terms of a kaon cloud, a vector meson
dominance contribution a,nd u Pmixing. -

We find both Sachs form factors to be dominated by
the VMD contribution. The electric strangeness form
factor, in particular, is left practically unchanged if the
intrinsic contribution is taken pointlike. For the same
reason, the dependence of our result on the meson-baryon
form factor masses in the kaon loops is very weak. Both

same holds for the strange magnetic moment, as can be
seen in Fig. 6. On the other hand, all three results for
Fz (Q ) (Fig. 6) look rather similar in the momentum
region 0.4GeV ( Q2 & 0.8GeV, in which the data will
be taken at CEBAF.

Finally, comparing our approach to some of the other
proposed mechanisms, we note interesting differences in
the role played by vector meson mixing. Whereas the
rather small deviation of the ur and P states from ideal
mixing is indispensable for a nonvanishing VMD contri-
bution to the strangeness radius in our approach, this is
not so in the pole fit model of Ref. [16].

Indeed, in the pole model r2 gets bigger as the mixing
angle t goes to zero. In our approach, on the other hand,
the Dirac form factor reduces in the same limit to

the sign and the slope of the electric form factor are op-
posite to those of the pole fit estimate. Together with
the considerably larger slope of the pole fit result at zero
momentum transfer, this leads already at moderate mo-
mentum transfer to a significant difference in magnitude
between the two form factors.

Although the intrinsic kaon cloud contribution plays
a somewhat more important role in the magnetic Sachs
form factor, its overall shape and slope are again mainly
determined by the vector mesons. The value at zero mo-
mentum transfer, i.e., the strangeness magnetic moment,
however, is not modified by the VMD contribution and
thus shows a more pronounced dependence on the in-
trinsic meson-baryon form factors. As in the case of the
electric form factor, the overall qualitative behavior of
our result, and, in particular, its slope and curvature,
differs considerably &om the pole fit estimate.

We also compare our results to a Galster dipole
parametrization, with the cutoff masses fixed at the same
values as in the electromagnetic form factors, which has
been used to reanalyze the BNL E734 neutrino scatter-
ing experiment. The Dirac dipole form factor has the
same sign and curvature as ours, but with a considerably
larger overall size and slope at the origin, whereas the
Pauli form factors agree rather closely for the momenta
to be probed at CEBAF, i.e., for Q2 ) 0.4GeV .

Since our results, with the exception of the strange
magnetic moment, are dominated by the vector meson
sector, they show a largely reduced sensitivity to the
rather strong model dependence of the intrinsic contri-
bution. The intrinsic form factors from the kaon cloud
model adopted in this paper, for example, receive their
main contribution &om the seagull vertices, which are
determined by a minimal, but not unique prescription.

The vector meson dominance mechanism, on the other
hand, has a robust and largely generic character. It in-
troduces no &ee parameters and does not leave much
freedom in its implementation. In particular, however, it
is based on phenornenologically successful physics, which
is well established &om the electromagnetic interactions
of hadrons.

We further study the nucleon strangeness radius &om
the point of view of a class of constituent quark models
in which the constituent quarks have an extended struc-
ture. The valence up and down quarks in the nucleon can
then acquire an intrinsic strangeness distribution. We
point out that the strangeness radius of the nucleon is
model independently given by the sum of the constituent
quark radii, since their strangeness charge distribution
is isotropic and since their overall strangeness is zero.
For a quantitative estimate we employ the Nambu —Jona-
Lasinio model and find a 2—3 times smaller value than in
the kaon-loop-VMD model with the opposite sign.

In order to put these results into perspective, we also
review and discuss some of the other existing theoretical
estimates. Comparing the results for the strangeness ra-
dius and magnetic moment reveals in particular the large
discrepancies between those predictions. Both signs of
the strangeness radius, for example, and values within a
range of an order of magnitude have been found. Clearly
the theoretical uncertainties are at present not reliably
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under control and the existing results have to be regarded
as order-of-magnitude estimates.

This situation reHects both the size of the challenge
with which the nonvalence strangeness sector con&onts
existing hadron models, and our present lack of insight
from the first principles of /CD. While first attempts
to study the effects of disconnected quark loops on the
lattice have been reported [48], it will still take con-
siderable time and eKort before reliable results for the
strange quark content of the nucleon can be expected.
In the meantime, however, the data &om Bates and CE-
BAF will constrain the existing hadron models and test
their underlying physics. It thus seems guaranteed that

the subject will remain intriguing and challenging in the
years to come.
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