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Thermodynamics of the QCDx+x nonrelativistic baryon gas
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The nonrelativistic baryon gas of QCDq+x for SU(2) color is studied in the low density regime
using two complementary approaches: In the classical limit, the Gibbs free energy can be evaluated
analytically, yielding an exact value for the second virial coefBcient and a bound for the equation
of state at higher densities. Certain thermodynamic observables can already be given for the entire
range of densities due to simple scaling properties. On the other hand, a quantum mechanical
baryon-baryon scattering calculation yields the behavior of the second virial coefBcient away from
the classical limit down to low temperatures.

PACS number(s): 12.38.—t, 12.39.Hg, 24.85.+p

I. INTRODUCTION

One of the fundamental issues of modern-day strong in-
teraction physics is the description of hadronic matter in
terms of quark degrees of freedom. Since there is no clear
separation between the length scales governing hadron
substructure and the ones entering hadron-hadron inter-
actions, there is no a priori reason why a description of
hadronic systems based on hadron constituents should
be a good approximation to /CD dynamics. In fact,
the great difficulties encountered to date with respect to
identifying unambiguous signals of quark substructure in
the studies of heavy ion collisions come rather as a sur-
prise. Despite confinement, it is thus important to con-
sider multiple-quark systems beyond the description of
single hadrons. Indeed, one expects the hadronic pic-
ture to completely break down at sufficiently high den-
sities or temperatures; here, a quark-gluon plasxna [1]
with virtually freely propagating quarks is thought to
form, since, in the language of the nonrelativistic quark
model, the quarks need little energy to jump from one
linearly confining potential well to another. Because the
energy densities necessary for the production of a quark-
gluon plasma and/or for probing the quark substructure
of many-hadron systems are expected to be accessible ex-
perimentally, especially with the advent of high-energy
accelerators such as RHIC and LHC, considerable atten-
tion has been devoted in recent years to the study of the
transition between the hadronic and quark phases.

Whereas it is possible to argue that, in the high-
density, high-temperature regime, asymptotic freedom
allows the use of perturbative methods to treat the quark-
gluon dynamics, at low energies, especially in the conven-
tional hadronized regime, a nonperturbative treatment
becomes unavoidable. In contrast to the properties of sin-
gle hadrons, which can be calculated reasonably well us-
ing some phenomenological assumptions (e.g. , the nonrel-
ativistic quark model or the MIT bag model), the multi-
hadron problem has proven to be considerably more dif-
ficult, regardless of whether one considers a few-hadron
system (e.g. , hadron-hadron scattering) or extended nu-
clear matter (e.g. , the equation of state in a neutron star).

Among other approaches, the nonrelativistic quark-
exchange model [2] has figured prominently in these stud-
ies. Motivated by a Bux-tube picture, it constitutes a
many-body interaction on the quark level which, by con-
struction, avoids the long-range van der Waals forces be-
tween hadrons inherent in any superposition of two-body
forces [3]. Meson-xneson scattering in this framework has
been treated, e.g. , in [2], [4], and [5]; extended nuclear
matter was considered using a thermodynamic Green's
function approach, taking account of nearest-neighbor
Pauli blocking, in [6—8]. Further extended matter calcu-
lations employing Monte Carlo methods were performed
in [9—12]. These latter calculations have up to now fo-
cused on the ground state of a one-dimensional system
of quarks as a function of density.

In this simpler one-dimensional setting, it is indeed
possible to show that the quark exchange model is an
exact consequence of QCDx+x for heavy, nonrelativistic
quarks [13]. Thus, in this case, the gap between the
underlying field theory and tractable models has been
bridged and a quark-exchange model calculation in fact
represents an exact evaluation of QCDx+x properties for
nonrelativistic quarks. The motivation of the present
work, which focuses on the equation of state of the
QCDx~x baryon gas with SU(2) color, is thus twofold: On
the one hand, it complements the ongoing Monte Carlo
investigations of the ground state mentioned above; on
the other hand, it represents a study of the many-body
properties of QCDx+x itself, deriving observables in the
hadronized phase directly from the underlying field the-
ory, albeit in the simple one-dimensional nonrelativistic
case.

Specifically, this work treats the baryon gas on two
levels: On the one hand, the system is studied in the
classical limit, where the partition function can be eval-
uated analytically in the low-density regime, yielding an
exact result for the second vinal coefficient and a bound
for the complete equation of state. On the other hand,
an exact quantum mechanical calculation of the S ma-
trix. for baryon-baryon scattering is performed, yielding
the second virial coefficient of the baryon gas also in the
low-temperature regime.
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II. REVIEW OF QCD~+g WITH
NONRELATIVISTIC QUARKS

The physics of QCDq+q with nonrelativistic quarks and
SU(2) color can be summarized as follows [13]:The color
degrees of freedom evolve (in the infinite volume limit)
on an infinitely faster time scale than the positions of
the quarks. Thus, an adiabatic treatment in the spirit of

the Born-Oppenheimer approximation is exact. Solving
the Schrodinger equation for the color degrees of free-
dom while the quark positions are fixed yields the result
that the colors of the quarks must be coupled to an over-
all singlet, and it yields the efFective potential govern-
ing the position space dynamics of such configurations.
Thus, there is only one possible color configuration for
two quarks (here, vPt denotes a quark creation operator),

142) = [Wg(»)@'(») -4'(*~)&i(»)]lo) = (112) —121))

and the potential energy associated with this state is

&14'2) = 8&'I» —*21 142) ~

In the case of four quarks, one has two possible ways of coupling the quarks to overall color singlets, namely [in
obvious notation; cf. (1)],

I«) = -(I»») —I»») —I»») + I»»))4

ly,') = (—211122) +11212)+11221)+ 12112) y 12121) —212211),
12

(4)

with the associated potential energies (assuming that the positions are ordered as z] ( x2 ( x3 ( z4)

I

&1&4) = Sg'(&4 —»)+8&'(» —&~) I«')

2 (+4+ x3 ~2+
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—-g (~4-») —-g (» —*~) I«).

Evidently, (5) allows asymptotic SU(2) baryons, whereas

(6) confines all four quarks. Note that if the ordering
of the coordinates changes, then the allowed quark color
configurations change accordingly; i.e., the "links" be-
tween the particles switch. This is precisely the quark-
exchange model [2]. To know whether a force is acting
between two given quarks, one must already specify the
coordinates of all quarks and the overall color configura-
tion. Since this work deals mainly with the low-density
regime, these clusters of two and four quarks will be
the only ones included in specific calculations. Such a
treatment is exact for the second virial coeKcient of the
baryon gas, but not for higher coefficients, which contain
contributions from interactions between more than two
baryons at a time.

However, in general, the possible color configurations
in a 2n-quark system can be represented diagrammat-
ically in the following way: Draw all possible distinct
ways of connecting the 2n particles pairwise with gluon
strings. Two graphs are distinct if there exists a region

Here, g is the coupling constant appearing in the QCD
Lagrangian.

of space covered by a different number of strings in the
two configurations (thus, in the four-quark case, there
are only two, not three distinct graphs). The potential
energy associated with a graph can now be easily read
off by noting that m overlapping strings are associated
with an energy density [13]

g2= —m(m+ 2).
8

III. BARYON GAS OF SU(2)-QCDg+g

The efFective potential active in two- and four-quark
clusters presented above can now be used to derive prop-
erties of the nonrelativistic baryon gas. In order for
the gas to remain nonrelativistic, g (( m and T (( m
must be assumed (T denotes the temperature in the sys-
tem). E~'urthermore, in order to render the effects of clus-
ters containing more than four quarks negligible, a low
baryon density is necessary. In the regime outlined thus,
quarks will pair to form SU(2) baryons due to the linear
Coulomb interaction, and the baryons will interact via
the four-quark quark-exchange potential.

Low density in this context therefore means the fol-
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lowing: The probability of finding two further baryons
within the interaction radius of a given baryon must be
small; that is, (2dp) « 1, where d measures the typi-
cal size of a baryon. The baryon size d depends on the
temperature regime considered:

(i) At high temperatures, where a large number of ex-
cited baryon states contributes, the mean kinetic energy
associated with the relative motion of the quarks ap-
proaches the classical value (Eg;„) = T/2. Because of
the virial theorem in a linearly bound system, this im-
plies sg2(d) = (E~ q) = T, and therefore p && Sg P/16.

(ii) At low temperatures, d does not approach zero, but
the baryon extension in the ground state, d (g2m)
thus, p « (g 2m) i~ s/2.

The number of quarks in the system is taken to be 2N,
q „defines the spatial extension of the system, and the
Gibbs free energy G is given by the normalization con-
straint

(9)

where the prefactor takes account of the indistinguish-
ability of the particles and one must sum over all pos-
sible clusterings C of the quarks into groups of either
two or four. Clusters of a higher number of quarks are
neglected in the present low-density calculation, as ex-
plained above.

Since the Hamiltonian takes the form

A. Baryon gas in the classical limit (10)

In this section, the methods of classical statistical me-
chanics are used to calculate the thermodynamics of the
baryon gas. Using the classical approximation implies a
further constraint on the parameters of the theory: The
thermal wavelength A = /2vr/mT must be much smaller
than the mean interquark distance and the interaction
scale. These two conditions here mean essentially the
same, since the relevant interquark distance is the one
within the baryon, which is controlled precisely by the
typical interaction distance; the mean distance between
quarks belonging to diferent baryons, given by the in-
verse density, is much larger. To make sure that the
change in the potential within a thermal wavelength is
small on the scale of the kinetic energy, one must have
sg2A « T/2, or roughly 2/g/m « (T/g) ~ . Since
g (( m was already assumed at the beginning, this is
fu1611ed for a large range of temperatures, even for T ap-
preciably below g.

Gibbs free energy

with the configuration integral

OO giN g2q=). ~q2~ dq2~ i". dqie ~' ""' '

c 0 0

=):Qc,
C

(12)

(13)

where use has been made of the fact that the coordinate
integrations split up into (2N). identical contributions
characterized by a definite ordering of the particles.

Now one must specify the potential energy. Because of
the definite ordering of the quarks, it takes the following
simple form for a speci6c con6guration |:

one can, as usual, immediately perform the momentum
integrations in (9). Thus one arrives at

N

&P)

For technical reasons, it is advantageous to use the
canonical constant pressure ensemble for the problem at
hand [14]. In this ensemble, the probability density in
phase space is defined as

2N

V=g ) e;q, , (14)

p(qi, p2N) = exp{P[&—Pq —&(qi, . , p2N)])
where the particles are grouped into clusters of two and
four, such that

4i = ~/8i equi —i = 3/8~ or 4a = 3/8~ 4i—i = 5/8~ 4i—2 = 5/8~ &2,-s = —~/8 (15)

[cf. (5),(6)]. Now one can evaluate the configuration integral for a specific configuration C by using the properties of
the Laplace transform. With the substitutions

xi
gi =

g2
P=g p,

2 (16)

one has, for Qc,

1 OO &2N
(P+6g N )L2 NQC y 2pC f +2N+

C' C
d~2N —1 g N 1 zN —1.. . dg1 P

0
(17)
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and thus one recognizes that the outermost integration represents precisely a Laplace transform with new variable
8 = p + E'2N of the rest of the integral expression. Using

d~ v- = —t'. t (18)

one can successively perform the next-to-outermost integrations to arrive at

1 1

(pg ) ( f + e2N)(++ e2iv + e2N i)—'(p+ e2~+ ' ''+ ei )

Because of the correlations between the e; [cf. (15)], clusters of two quarks contribute a factor (p + 3/8)p in the
denominator, whereas clusters of four quarks give a factor (p+3/8)(p+ 1)(p+ 3/8)p. Thus, if nc denotes the member

of clusters of four quarks in the con6guration C, one has

1 1
(«')'" (~+ 3/8)'(~+ 1)~

- N —2n~1

.(~ + 3/8)~.
(20)

independent of the specific ordering of the clusters. Therefore the suin over color configurations simplifies to a sum
over the possible nc, weighted with the number of possibilities of arranging the given clusters. This corresponds to
the problem of choosing nc out of the (N —2nc) + nc clusters which are to be clusters of four quarks Thus one
arrives at

int(N/2)

(21)

(&g')' (7+ 3/8) 1 „,i, inc ) (1+I i
(22)

Neglecting the possibility of grouping four quarks into one cluster corresponds to taking only the term n~ ——0. This
term is therefore expected to dominate in the limit of vanishing density.

Sums of the form (22) can be evaluated with the method of generating functions. This is carried out in Appendix
A and yields, in the limit of large lV,

where

(P~')'" (~+ 3/8)"~" & 2 ) 2 4*/ + I/4)
'

(24)

Thus one obtains, neglecting terms of the order O(1/N), for the Gibbs &ee energy,

N & 2mir l 1 l p 1 p 1)
G = ——ln

i
+ —ln

~
+ —+ +-I .

P . E/3'g'(~+ 3/8)~» q~+» ~+1 4). (25)

Note that at this stage one can directly verify that for small densities the additional contribution induced by the
four-quark clusters (i.e., the second term in the square brackets) becomes negligible.

2. Diecuesion of the thermodynamic behavior

By diH'erentiation, one can now extract the relevant thermodynamic quantities of the classical baryon gas. For the
(one-dimensional) volume of the system one obtains

(26)

1 1
N 1 1 1 1 1 2 p+1 4

P g2 p p + 3/8 2 (1 + p) ~ + i + ( ~ + i)p+1 4 7+1 2 p+1 4

(27)
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Note that the pressure evidently only depends on the combination p/P; the physical reason for this will be elaborated
upon further below.

Since the calculation presented here is primarily intended to be a low-density approximation to the baryon gas of
QCDq+q, the virial expansion of the equation of state is of particular interest. Rearranging (27) to give the density
as a function of the pressure, expanding in the latter (note that low pressures are associated with low densities), and
inverting this series gives

p 5 p 2 ( p l 242 ( p i ( p
&g*P 3 Es*P»7 &g*P& &u*P)

(28)

The leading term describes an ideal gas of baryons; the
first correction, i.e., the second virial coefEcient, is an
exact result for the classical limit of QCDq+q, since the
neglected contributions Rom clusters of more than two
baryons appear in the pressure only at order p or higher.
The higher-order terms in (28) thus would experience cor-
rections in an exact treatment encompassing all effective
interactions induced by QCDq+q. It is to be expected
that these corrections are negative, since the additional
interactions are of attractive character; the repelling ef-
fect of the baryon extension on the other hand is already
fully accounted for in the present treatment. The equa-
tion of state contained in (27) is therefore expected to be
an upper limit for the exact equation of state.

The equation of state implicit in (27) is illustrated in
Fig. 1. Already here one can observe how the inclusion of
four-quark clusters has lowered the curve with respect to
the case where only extended, but otherwise noninteract-
ing baryons are included. Note that in the lower curve,
the slope at p = 0, given by the second virial coefficient,
is already exact; including larger clusters merely modi6es
higher derivatives. On the other hand, the curves con-
verge again in the high-density limit to the value corre-
sponding to an ideal quark gas. This behavior is clear as
long as one limits the size of the included clusters as one
lets the density grow to in6nity: Because the string ten-
sions occurring in the system are then bounded, adding
quarks to a given volume at constant temperature leaves
the potential energy essentially unchanged, until it be-

PV/NT

1.5

1.4

1.3

comes negligible compared with the rising kinetic energy.
On the other hand, it must be stressed at this point that
there is no a priori reason why this behavior should per-
sist in an exact calculation, summing up all clusters with
an arbitrary number of quarks and then considering the
limit p ~ oo. Of course one expects the ideal quark gas
to result also in the full theory, with the plasmon contri-
bution giving the 6rst nontrivial term in a high-density
expansion; however, this must be verified by an explicit
calculation.

Returning in particular to the second virial coefficient,
one can already observe the competing eÃects of the
baryon extension and the attractive interaction furnished
by the four-quark clusters. Neglecting the latter gives a
value of 8/3g P instead of 5/3g2P for the second virial co-
efncient, which is exactly the value expected from a van
der Waals equation of state for extended, but otherwise
noninteracting objects,

I'(V —Nd) = N/p,

in which d is the extension of the particles. The second
virial coefficient of this equation of state is simply d; on
the other hand, the mean extension of a baryon is just
d = 8/3g2P (cf. the estimates given at the beginning
of Sec. III). The additional baryon-baryon interaction
then lowers this value to the exact one, but is not strong
enough to change its sign. Note furthermore that this
statement is independent of temperature, as opposed to
the usual van der Waals equation of state in three space
dimensions, in which particle extension and attractive
interaction scale differently with temperature. This is
again a manifestation of the already mentioned, and still
to be discussed, property that the equation of state de-
pends only on the combination p/P.

Apart Rom the mechanical response of the baryon gas,
the thermal behavior is of interest. A very simple form
is taken by the thermal expansion coefficient, since the
volume of the system is proportional to temperature [cf.
(27)l:

1.2 18V 1

VOT~ T (30)

0 05 1.5 2.5 3 3.5 4
ln(1+NT/Vg2)

The gas therefore expands exactly as an ideal gas with
temperature. For the specific heat one first needs the
entropy,

FIG. 1. Equation of state of the nonrelativistic baryon gas
in the classical limit. Dashed curve, Only two-quark clusters
included; solid curve, two- and four-quark clusters allowed. (31)
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At constant pressure, also the specific heat is very
simple:

S
cg ——T = 3N.

BT '~

At constant volume, on the other hand, the specific heat
becomes complicated. For low densities, one can expand
the entropy in powers of the pressure and insert the virial
expansion (28). Again taking the derivative with respect
to temperature yields

BScv=T
V

(33)

where again only the leading and next-to-leading terms
are not modified by including larger quark clusters. The
leading term is easily understood: The center-of-mass
motion of each baryon gives a contribution of 1/2, and
its internal kinetic energy likewise. Since, according to
the virial theorem, twice as much potential as kinetic en-

ergy is associated with the internal motion, an additional
contribution of magnitude 1 results. In next-to-leading
order, the extension of the baryons again dominates the
attractive interaction and leads to the real baryon gas
heating up more quickly than the gas of free baryons
when the volume is held fixed.

Already in several instances above a trivial scaling of
certain thermodynamic quantities with temperature has
been exhibited, such as the dependence of the equation
of state only on p/P or the remarkably simple behavior
of o.~ and c~. The physical reason for this is the fol-
lowing: In one space dimension, pressure is not distinct
from a constant force, as produced by a linear poten-
tial. These two concepts are to a certain extent inter-
changeable. This becomes especially clear in Eq. (17),
where pressure and string tension enter in the same way
into the configuration integral, enabling one to extract
the temperature as a simple scale of the integration vari-
ables. Consider furthermore, e.g. , cp. Here one would
argue at low densities that the value 3N is composed of
the 2N which must be invested into the internal energy
of the system, and of the mechanical work performed by
N baryons. However, one could also interpret the force
between the quarks in the baryon as an additional pres-
sure and regard the whole system as a system of 2N free
quarks (at high densities, this becomes the more natural
point of view). Then c~ is composed of a contribution
2(2N) to the internal energy of the quarks, and of the
mechanical work performed against 2N particles. The
two points of view difFer only in whether one interprets
the work performed by the quarks against the quark-
quark potential as an internal energy or as mechanical
work against an external pressure. This interchanging of
the concepts also makes plausible why in the second virial
coefficient the contributions stemming &om the baryon
extension, which efFectively raises the pressure, on the

Below', it will become clear that these two results for o,~ and
c~ remain valid for full QCDq+q in the classical nonrelativistic
limit.

one hand, and from the baryon-baryon interaction on the
other hand must scale in the same way.

One can also express this connection in a complemen-
tary manner: Since constant force and pressure are inter-
changeable efFects, the length scales determined by these,
i.e., the typical interaction radii of the baryons and the
inverse density, respectively, must scale with tempera-
ture in the same way. This means that, as long as no
further external length scale is introduced, i.e. , as long
as one is working at constant pressure, a temperature
change merely efFects a rescaling of the system. This be-
comes especially clear in the virial theorem for the whole

system, 3

2—= PV + (Ep~t).
N

(34)

Under a scale transformation the two terms on the right-
hand side behave linearly in the scale (this is true for
arbitrary piecewise linear potentials); therefore, as long
as one holds P constant, the rescaling is equivalent to a
simple change of the temperature. That is why the re-
sponse functions at constant pressure become so simple.
Ultimately, it is also the reason why the constant pres-
sure ensemble is particularly well suited for the problem
at hand. In contrast, if one works at constant volume,
an additional length scale is introduced: Heating the sys-
tem up leads to an increase in the external pressure, while
the string tensions remain constant. Thus inverse density
and typical baryonic radii scale difFerently and thermody-
namics becomes sensitive to the strength of the interac-
tion, as visible, e.g. , in c~. Note that also a quantum me-
chanical treatment introduces an additional length scale;
this will manifest itself below in a more complicated be-
havior of the second virial coefficient.

These scaling properties are exhibited also in the
following amusing observation: The one-dimensional
baryon gas does exhibit the Joule effect, where one
achieves the cooling of a gas through free expansion, since

A system bound by a quark-exchange-type linear interac-
tion exhibits the same virial theorem as a system bound by
a simple linear potential. This is due to the fact that the
step functions appearing in the quark-exchange potential in-
troduce no new length scales; the virial theorem on the other
hand is simply a manifestation of the scaling properties of the
system [2].
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BT BU ( c)U

BVU BVT E~+v) (35)

and

OU 0
(G+ TS —PV) = — (PV) g 0.

0
OV T OV T T

(36)

However, it does not exhibit the Joule-Thompson effect,
where the cooling (or heating) is achieved by letting the
gas escape through a valve at constant pressure:

Syrnnaetmea of the mace futactiom

Which of the four quarks participating in a baryon-
baryon scattering process are coupled through linear po-
tentials depends on the ordering of the coordinates. It
suffices, however, to know the wave function for a specific
ordering (in the following, zi & z2 & zs & z4 is chosen)
because of the symmetry properties under the exchange
of particles. These symmetries induce boundary condi-
tions at the edges of the sector of con6guration space
considered. Let the state of the system be represented as
a linear combination of the color con6gurations de6ned
in (4),

—1

(TV—up —V) = 0. I@) = f d»&*2~*3&*4 (Soi44) + Sill,')) (38)

(37)

Since the Joule-Thompson efFect in general is the more
effective method to cool a gas [15], the usefulness of the
baryon gas of QCDi+i as a cooling substance must be
regarded as limited.

Note that the arguments above remain valid when all
efFective interactions induced by QCDi+i are included,
since these additional potentials are all linear. One can
indeed verify by following the calculation of G that any
added linear interaction does not change the simple de-
pendence of the Gibbs &ee energy on the temperature;
only the dependence on pressure is nontrivial. This be-
comes especially clear in Eqs. (14) and (19). An arbi-
trary piecewise linear potential can be expressed by a set
of coefficients e; . Thus the results for o.p and cp be-
come exact results for the classical nonrelativistic limit
of QCDi+i, valid for all densities. Only in relations im-

plying a fixed external length scale do modifications come
about due to the effective interactions neglected here.

B. Baryon-baryon scattering

Beyond the classical treatment performed above, one
can derive the second virial coefficient of the quantum
system from a calculation of the S matrix for baryon-
baryon scattering. Of course the 8 matrix contains con-
siderably more information than the one thermodynamic
function to be extracted here [2]. Thus the calculation to
be performed below may be useful also in a wider context,
such as in a study of the signatures of quark substructure
in a few-hadron system. Such questions, however, wi11

not be addressed further at this point. The method used
here is the wave function matching technique described
in [2]. It makes use of the fact that for a given ordering of
the quark coordinates the Schrodinger equation is triv-
ial to solve and the nontrivial quark-exchange processes
only take place on a submanifold of configuration space,
the rearrangement surface. The scattering problem can
be reduced to a system of equations on this surface, thus
making possible the exact solution of a four-body prob-
lem.

l&4& = 2[&4&—

I«) = —
2 1@4&

—21«'&.

In order to give the boundary conditions on the rear-
rangement surface, it is useful to decompose the state of
the system in a difFerent way:

I@) = f d»d*, a*sa*4 i@s((44) —104))

+&~(l&4& + 1&4&)l. (40)

Such a decomposition is always possible due to the rela-
tions (39). If one now exchanges z2 +-i zs, anticommu-
tation of the corresponding quark operators shows that
i/4& changes into —]$4&, and conversely lgP4& into —i/4&.
Therefore gs is symmetric under z2 ~ zs, whereas Q~
is antisymmetric. Translating this back to the original
@o and @i,

(41)

the following boundary conditions on the rearrangement
surface z2 ——z3 result:

4o = 2@s (42)

Starting &om zq & z2 & z3 & z4 one now obtains the
boundary conditions by considering the exchange of ad-
jacent quarks. If one exchanges in (38) the variables
zq M z2 or z3 M z4 respectively, then anticommuta-
tion of the relevant quark creation operators shows that
]$4) remains unchanged, whereas ]«& picks up a minus
sign (in the sectors reached thus ]4)4) and ]«) are still the
allowed color configurations). Therefore Qp is symmetric
and @i is antisymmetric under the exchanges zi ++ z2 or
z3 f+ z4.

More interesting is the exchange z2 ~ z3. Here, one
reaches a sector of con6guration space with a new set of
allowed color configurations, which can be expressed in
terms of the old ones as
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( 2i]s f E —c~ —a~ ) t

f = f (ri) f (r2)Ai (2mg ) (59)

Here the f are those solutions of

1 d'

2m dr2 8
g'r f (r) =~ f (r), (60)

which are antisymmetric at r = 0, again given explicitly
by Airy functions. Note that here also the irregular solu-
tions Bi (cf. [16]) are acceptable. The functions f are
not normalizable on their own, but the complete function

f ~ is. However, in the following, the norm of f will

be irrelevant.
The functions P+, and f are solutions of the

equations of motion (49) and (50), respectively. Fur-
thermore, they fulfill the boundary respective conditions

(51) and (52) for the wave functions Qo and gi. Only the
constraints on the rearrangement surface (53) are not ful-

6lled. However, one can now apply Green's theorem to
the sector I of configuration space specified in (48) in or-

der to extract relations between the diferent functions on
the rearrangement surface. This can be seen for instance

I

in the case of P&+&, and the wave function go

(49), to which both P&+&, and Qo represent eigenfunc-
tions with eigenvalue E. Now the integral on the surfaces
rq ——0 and r2 ——0 vanishes due to the boundary condi-
tions required for go, which are, as mentioned above, also
fulfilled by P&+&, . Only the asymptotic contribution and
the one on the rearrangement surface aU remain. The
asymptotic contribution can be evaluated on a surface
with constant, but large R, where the normal derivative
is ct„= 8/BR Usi. ng the orthonormality of the Pi, one
obtains

«(& tt(
—&-)&o —&o (—&-)4'«)

~R

1= —bi bi ik (62)
2

(note that the P~ are normalized on [
—oo, oo]). The

Green's identity (61) now yields

d (&'(-&-)& —&. (-& )&')
crU

0 = dRdridr2 (Pii, hgo —go hg)+, , )
I

Z

+—bi bi. Rek ~ = 0, (63)
2

™
«(&ii ( ~)&o ——&o (—&-)&ii ) (61)

where h is the Hamiltonian in the equation of motion

where taking the real part ensures the correct inclusion
of closed channels, where the asymptotics give no contri-
bution. In order to simplify the notation, one introduces
the scalar product on the rearrangement surface,

oo ~2R
do f g = 2 dR dt f(R, ri ——y 2R —t, r2 ——t)g(R, ri ——+2R —t, r2 ——t)

CTU 0 0
(64)

and thus (63) reads

3 (f« ~-&o ) = v 3-(0o ~-f«). (68)

Z+—bi bi Rek = 0. (65)
2

By a completely analogous treatment, one obtains

Equations (65), (66), and (68) determine the S matrix.
Note that on the rearrangement surface wave function
and normal derivative are independent functions, since
the original equations of motion were second-order dif-
ferential equations.

I I 2

(~n'~ o~~o ) (@o i ~~~«') + 2Sli'~~'Rekii' = 0,

(66)

(f« —o &i ) —(@i ~ f«) =0 (67)

Reduction to an algebraic problem

In order to be able to solve the equations for the S
matrix numerically, one must expand the wave function
and the normal derivative in a 6nite set of functions:

Due to the conditions on the rearrangement surface (53)
one can rewrite the last relation as

mm i

o
—) a „„X„„,

n n'
(69)
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I
c) 4o = ).& ~ X

n, n'
(70)

Inserting this into the equations for the S matrix, one
obtains the matrix equations

BU —AV+E =0,
BW —AX =0,
AY —BZ= S,

with the matrices

(71)

+(mm') (nn') +mam'nn' &

+(nn')(ll') &Xnn' ~ Pll ) ~

~3I (nrem')(ll') (Xnn' a fu ) a3
+(nrem')(ll') = (Xnra' a ~n4'na) a

1.
@(mm')(ll') tRe~ll'~lm~l'm'

2

&(-)(-)= b---
+( nn')(ll') = (Xran, ra ~nanna) a

+

+(nrem')(ll') = ~3(Xnn' a ~nfll') a

~(nn')(ll') = (Xnan'a 4'g ) ar
1.

S( m' }(l l' } — &Re~ll' Sll'
2 (72)

Equations (71) can be solved for A and B and thus one
obtains the S matrix:

(mg2) 2/s @m=1,g=1
EEL~g n

n (74)

S=AY —BZ,
A = BR'X
B = -Z(V —WX-'V)-'.

(73)

10
Tr(AS QS)

5 l-

0----

-5-

-10-

-15-

-20-

-25-

-30-

-35
1 1.5 2.5 3.5

FIG. 3. Result of the numerical calculation, vrhere
m = g = 1 was chosen. The quantity Tr(AS BaS) plays
a crucial role in the determination of the second virial coe%-
cient. In the case of a diagonal S matrix, this vrould reduce
to the sum over energy derivatives of the phase shifts.

The result of the numerical calculation is illustrated in
Fig. 3. Details concerning the used set of functions X„„a
and X„„canbe found in Appendix B. Here, a different
choice from the one adopted in [2] seems to be necessary
due to the fact that the rearrangement surface is now two
dimensional.

Note that the numerical calculation must only be car-
ried out for one set of the parameters m and g, since
the S matrix at different values of these parameters
can be determined via the simple scaling properties of
a Schrodinger equation with linear potentials. For the
eigenvalues and eigenfunctions of such an equation one
has

s,g(&) =s =~,g=~ I

( m

( mg»» (76)

5. Question of bound states

When calculating the thermodynamic properties of the
baryon gas at low temperatures, it is important to ascer-
tain whether the baryons are capable of forming larger
bound states, i.e., nuclei. Bound states between two nu-
clei would show up as poles in the S matrix at nega-
tive energies of relative motion. A search for zeros in
the determinant of S was unsuccessful in the present
model [SU(2) color, one quark Qavor]. The absence of
two-baryon bound states strongly suggests that there are
also no larger nuclei present in the model, since in one
space dimension only one nucleon-nucleon bond must be
broken for a nucleus to decay. This stands in marked con-
trast to the three-dimensional ease, where in larger nuclei
every baryon is bound to several partners, so that much
larger binding energies per nucleon than in the deuteron
are possible. This effect is very improbable in one space
dimension due to the different geometry.

It xaust be emphasized at this point that the question
of bound states depends strongly on the number of quark
colors and Savors. While neglecting the color con6gura-
tion I/4~) would lead to purely antisymmetric boundary
conditions at the rearrangement surface, the inclusion of
this additional hidden color con6guration weakens the
repulsive character of the boundary condition [cf. (53)).

4. '(*) = (mg')'"4. ="='[(mg')"*] (»)
where the prefactor of the wave function ensures the
proper normalization. Tracking this behavior through
the equations for the S matrix, (72) and (73), one ob-
tains
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A higher number of quark colors would furnish more
color configurations, further strengthening this effect [2].
Thus, at sufBciently high number of colors, a bound state
must be expected. Adding additional quark flavors has
an even more drastic efFect: In the multiBavor case, sym-
metric boundary conditions (up to the modifications in-

duced by the color configurations) are possible, making
the appearance of a bound state very probable.

C. Calculation of the second virial coeRcient

From the S matrix, one can determine the second virial
coefficient of the baryon gas. Up to order (e») the
pressure is composed of a contribution Po associated with
the gas of noninteracting baryons with internal excita-
tions, and a contribution &om the baryon-baryon inter-
action, which can be derived from the S matrix [17]:

PP+ePP12

e PP12

OO

dEe ~ Tr~AS S~
+P 2vri o g dE

2m 1 ( (mg')'/s ) (, d
dE exp( -P

vrP 2ni e
(77)

Here the symbol A under the trace implies symmetriza-
tion in the channels; i.e. , instead of (S B@S)„„„„+
(S i Qa S)„„„„the trace contains the combination

i((S icl@S)„„„„+(SiB@S)„„„„+(S8@S)„„+
(S-'a~s) „.„„„).

If the baryon gas contained also larger nuclei, then one

would obtain already in order (e»)~ contributions, e.g. ,

&om nucleus-nucleus scattering processes. Since these
can hardly be treated anymore with the methods pre-
sented here, one would have to restrict the validity regime
of the calculation to temperatures high enough such that
most nuclei are guaranteed to be dissociated.

The interaction contribution can now be extracted
I

from the numeric results for the S matrix, where the scal-
ing in m and g due to (76) only enters as the scale of P,
as written out explicitely in (77). Because of the limited
amount of included channels, this calculation only makes
sense for temperatures well under the highest considered
threshold, i.e., roughly T ( 2m/(mg2)2/s.

The &ee contribution Pp on the other hand results in
the following manner: For &ee baryons with internal de-
grees of &eedom, the contributions of difFerent excited
baryon states factorize in the partition function, and the
pressure becomes a sum of partial pressures for ideal
bosons, where the respective excitation energies simply
shift the spectrum:

Pp ———1 oo ( p2) '
Zp in i —exp —ii~ i e. —

i ~ )2mP I 4m
(78)

4vrm p„1e e "+ e
2+/ - P 4~P

2%m 2pe (79)

with one obtains, by comparing coeKcients of the fugacity,

(3) 2/s
( 2)2/s

C~)(8) m
(8O)

bg
B2 ———

g2)
1

(82)

where c denotes the zeros of the differentiated Airy func-
tion.

As a last step, the expansion in the fugacity e~" must
be translated into the virial expansion. Writing

P = —) bie'~" = —) Bi(p)

1 BP
(~~ ~~i

Note that the chemical potential p used here is the La-
grange multiplier associated with baryon, not quark, number.

where bi and b2 can be read off from (79) and (77).
Figure 4 shows the result for the second virial coeK-

cient, separated into the &ee and the interaction parts.
Evidently, at low temperatures the attractive eKect of
bosonic statistics dominates over the pressure increase
due to the Gnite size of the baryons. The second virial
coefBcient thus rises &om negative values towards the
classical limit. At temperatures which allow a signif-
icant amount of higher baryon excitations in the gas,
the numerical result abandons the classical asymptote
Pg B2 ~ 5/3, since now channels become important
which could not be included anymore in the numerical
calculation. From the region around (mg2)2/sP/rn —1
onwards the numerical result ceases to constitute a good
approximation. In the limit T —i 0, i.e., P -+ oo, the
integrand in (77) behaves as
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-5-

-15-

-20-

-25
10 12

(mg&P ~lmT

FIG. 4. Second virial coefBcient of the nonrelativistic
baryon gas. Dashed line, vrithout baryon-baryon interactions;
solid line, complete second virial coeKcient. The classical
limit Pg B2 = 5/3 is also indicated.

T
~

XS- S ~e-~ ~ —~e(E —2e, )
, d 1 e-~
dE gE —2eg

and the contribution to B2 stemming from the baryon-
baryon interaction thus becomes constant in P; the con-
tribution from bosonic statistics on the other hand is pro-
portional to ~, i.e., it dominates at low temperatures,
as mentioned above. Altogether, B2 behaves as

—+ 1.7P 1

m (mgg)~/s
(84)

for P m oo.

IV. SUMMARY' AND OUTLOOK

Using two complementary approaches, insight has been
gained into the behavior of the nonrelativistic baryon gas
of QCDq+q. In the classical limit, a fully analytical treat-
ment was possible. Since in this calculation, only config-
urations were included which cluster up to four quarks,
the validity of the calculation is primarily restricted to
the low-density regime. However, because of the simple
scaling properties exhibited by thermodynamic quanti-
ties which do not contain any external length scales, some
results proved to remain valid over the entire range of
densities. Also, because of the fact that the neglected
interactions are attractive, the equation of state derived
is expected to constitute an upper bound for the exact
equation of state in the classical limit.

On the other hand, the second virial coefBcient derived
here for the baryon gas is already exact. Supplemented
by a quantum mechanical baryon-baryon scattering cal-
culation, a determination of the coeKcient for all temper-
atures was possible. Here, the treatment was simplified

by the fact that no larger nuclei form in the one-Bavor,
two-color case considered; however, in cases where larger
nuclei do form, this merely somewhat constrains the tem-
perature regime in which the calculation is valid.

The results derived here should be useful in provid-
ing consistency checks for other investigations into the
many-body properties of QCDq+q. Unfortunately, it is
at this point not possible to perform a detailed compar-
ison with the current Monte Carlo investigations of the
ground state [12]; these investigations presently use har-
monic con6ning potentials instead of the linear potentials
induced by QCDz+z.

The most serious shortcoming of the calculations pre-
sented here is that they are inherently nonrelativistic.
Keeping in mind this limitation, it does, however, seem
possible to extend the treatment in several ways. On the
one hand, it is likely that the classical treatment can be
improved to include all efFective interactions furnished by
QCDq+q in the configuration sum. This would provide
the exact equation of state for the whole range of densi-
ties, including the interesting transition region between
baryon gas and quark plasma. At high densities, contact
could be established with perturbation theory [18,19].

On the other hand, the baryon-baryon scattering cal-
culation certainly could be used to gather information
about more detailed observables such as correlation func-
tions. Also, to the author's knowledge, there has been
no successful calculation of baryon-baryon scattering [for
SU(2) color] in the quark-exchange model in three dimen-
sions; the main difference to the meson-meson [2] case lies
in the fact that the rearrangement surface is two dimen-
sional instead of one dimensional. Since it was possible
to overcome this diKculty in the case considered here,
the three-dimensional problem may eventually prove to
be tractable. It would be interesting to see whether there
are any qualitative differences to the meson-meson case.

In concluding, it would seem useful to connect a scat-
tering calculation with the second virial coeKcient also in
the classical case [20]. Since in the case at hand a direct
analytical determination of the thermodynamical prop-
erties was possible, such an approach would have been
unnecessarily complicated, especially since it seems to
require numerical work. However, in more complicated
systems, where no simple evaluation of the partition func-
tion is possible, this may be a viable replacement. In
general, there should be a deep connection between the
density of states and the behavior of the scattering prob-
lem under scale transformations [21].
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APPENDIX A: THE EVALUATION OF THE GIBBS FREE ENERGY

Consider for simplicity an even number of baryons K = 2N'. De6ning the generating function

Q( ) =) ).I
I*" "=)

=0 k=0 k=0 =k
OO OO

( d z"
; (2n)! id(xz) & 1 —xz - (1 —xz)'"+'

(A1)

(A2)

(A3)

z

1 —xz ( (1 —xz)2y
1 —zz

(1 —xz) z —z ' (A4)

one can extract the N'th Taylor coefficient Q [cf. (22)] via

k=O
(A5)

Q(z) is meromorphic with simple poles, when (1 —xz) = z, i.e. ,

1 t'

++ + ~+ — &0 for z) 0.
2 4)

Deforming the integration path to in6nity, one is left with the residues at the two poles:

(A6)

1 —-(x+ —— x+ -)1 1 1
z 2 4+

+ 1 N'+1

Q= —
g, z

~ ~, ~

= —) lim(z —z;)
&&(z) & - . Q(z)
qzN'+1

~

i ——.'(*+ + g*+,-')
N'+1

(A7)

Introducing a common denominator yields

) "+'
i
x+ —— x+1 4

4xgx+ 1/4 ( 2 )
( 1 ) N'+1

+
~

x+ —+/x+1/4
~)2

1 ) N'+1
—

~

*+—+ /x+1/4
~

l
]
x+ ——/x+1/4 [2x ( 2 )

(A8)

For large N' the second terms in the parentheses dominate, respectively, and (A8) reduces to the result given in Sec.
III A 1 (note that 2N' = X).

APPENDIX B:DETAILS OF THE SCATTERING
CALCULATION

In meson-meson scattering calculations [2], the set

a+Xn~' = v'~~~~ (B1)

was used to expand the wave function [cf. (58)]. This
choice had the advantage of reducing the number of ma-
trix inversions needed. In the case at hand, however, it
has the following disadvantages:

(i) The P„+„, and their normal derivatives, respectively,
do not constitute an orthonormal set on the rearrange-

ment surface 0~.
(ii) The P+, do not disappear quadratically at the

edges of the rearrangement surface. This, however, is a
I

property of the functions gs which are to be expanded:
On the surfaces rq ——0 and r2 ——0 the conditions (51)
and (52) hold. Since, on the other hand, on the rear-
rangement surface itself $0 and @q are proportional to
each other, it follows that at its edge, where it meets
the surfaces r; = 0, @0 as well as its derivative in the r,
direction must vanish.

These two missing properties lead to bad convergence
and numerical instability in the calculations. Therefore,
a difFerent set was used here:
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(i) In "radial" direction on the rearrangement surface
(i.e., in the direction rq ——r2) Airy functions with nodes
at the origin; this takes account of the property that the
system is bound linearly at large B. Since it is a priori
not clear what effective "inertia" the dynamics of the full
system induces for the "motion" on the rearrangement

surface, the ansatz contains a &eedom in the scaling arith
R. For this scale, several values were used to test the
stability of the calculation.

(ii) Perpendicular to this, i.e., for constant R, an or-
thogonal set of functions which vanishes quadratically at
the edge of the rearrangement surface:

L (z) = sin xP ~ ' (1 —2sin z)
L-(x) = sin xcoszP —' (1 —2sin x) I

(82)

with the Jacobi polynomials P~~ [16].
Summing up, the following set of functions was used:

I(R, t) = g~ ~(R, t) = 1V~ L~(mt/~2R) Ai((pmg ) ~ R —c ).~~R (83)

The c ~ are the zeros of the Airy function and p, is the
free scale parameter mentioned above. Note that despite
of the R-dependent normalization of the L, the nodes of
the Airy functions at the origin guarantee that the whole
function vanishes there.

The functions y ~ defined thus are orthogonal with
respect to the scalar product on the rearrangement sur-
face (64) and can be normalized with respect to the same,
yielding the normalization factor N ~t. In the numeri-
cal calculations of the matrices (72) the sets were cut off
such that 0 & m+ m' & M, where M = 3 was mostly

used, and checks of convergence were carried out with
M = 9; this yields 10 x 10 or 55 x 55 matrices, respec-
tively. Using 55 channels rather deteriorated n»merical
stability; this seems to be due to the fact that the ma-
trices acquire very large or small determinants. For the
scale p the values 1, 3, and 4 were used, where ls = 4 ful-

filled criteria such as the unitarity of the S matrix best
as energy was increased. Typically, a calculation with
ten channels for one fixed value of the total energy took
a few hours CPU time on a HP 9000/720 workstation.

[1] Quark Gluou Plasraa-, edited by R.C. Hwa (World Scien-
tific, Singapore, 1990).

[2) F. Lenz, J.T. Londergan, E.J. Moniz, R. Rosenfelder, M.
Stingl, and K. Yazaki, Ann. Phys. (N.Y.) 170, 65 (1986).

[3] O.W. Greenberg and H.J. Lipkin, Nucl. Phys. A370, 349
(1981).

[4] S. Gardner, Phys. Rev. C 42, 2193 (1990)
[5] C. Alexandrou, T. Karapiperis, and O. Morimatsu, Nuel.

Phys. A518, 723 (1990).
[6] G. Ropke, D. Blaschke, and H. Schulz, Phys. Lett. 8 174,

5 (1986).
[7] G. Ropke, D. Blaschke, and H. Schulz, Phys. Rev. D 34,

3499 (1986).
[8] Ch. Barter, D. Blaschke, and H. Voss, Phys. Lett. B 293,

423 (1992).
[9] C.J. Horowitz, E.J. Moniz, aud J.W. Negele, Phys. Rev.

D 31, 1689 (1985).
[10] C.J. Horowitz and J. Piekarewicz, Phys. Rev. C 44, 2753

(1991).
[11] C.J. Horowitz and J.Piekarewicz, Nucl. Phys. ASSB, 669

(1992).
[12) S. Gardner, C.J. Horowitz, and J. Piekarewicz, Phys.

Rev. C 50, 1137 (1994).
[13) M. Engelhardt and B. Schreiber, Z. Phys. A (to be pub-

lished).
[14] A. Lenard, J. Math. Phys. 2, 682 (1961).
[15] L.E. Reichl, A Modern Course in Statistical Physics (Uni-

versity of Texas Press, Austin, 1980).
[16] Jfandbook of Mathematical Functions, edited by M.

Abramowitz and I.A. Stegun (Dover, New York, 1965).
[17) R. Dashen, S. Ma, and H.J. Bernstein, Phys. Rev. 187,

345 (1969).
[18] M. Engelhardt, Ph.D. thesis, Erlangen University, 1994.
[19] L.D. McLerran and A. Sen, Phys. Rev. D 32, 2794 (1985).
[20] R. Dashen and S. Ma, Phys. Rev. A 4, 700 (1971).
[21] F. Lenz (private communication).


