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Elimination of the Landau ghost from chiral solitons
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I. INTRODUCTION

Since QCD is presently intractable at low energies, ap-
proximation schemes based on effective models have been
introduced [1]. These models in a way incorporate some
important features of QCD, like chiral symmetry and its
spontaneous breakdown.

Though being approximative, these effective models
still cannot be treated exactly. Therefore we have essen-
tially two levels of approximation: (i) when we choose the
model itself and (ii) when we specify an approximation
scheme in order to perform actual calculations within the
model. This implies that the results may depend on the
actual approximation scheme. Therefore, a failure of the
model could be due to the model itself, due to the ap-
proximation scheme or both. So, if we want to test the
model, we should be careful about the approximation
scheme and keep the dependence on ad hoe parameters
as small as possible.

One of the efFective models of QCD that describes the
nucleon is the chiral cr model [2]. The standard procedure
to calculate nucleonic properties in the soliton picture is
to use the loop expansion up to the one quark loop level,
i.e. , to integrate out the quark degrees of &eedom and use
the remaining purely mesonic effective action at the zero
loop level in the mesonic fields [3]. One can choose some
cutofF procedure to regularize the quark determinant [4],
but, in any case, one has to renormalize by introducing
appropriate counter terms in order to define the param-
eters appearing in the original Lagrangian of the model
[5]. Eventually one can let the cutofF go to infinity as it is
usually done in renormalization theory, or leave it finite.
We note that in the 0 model, however, neither the cutoff
scheme itself nor the size of the cutoff' can be determined
uniquely.

It is known, however, that the loop expansion for
asymptotically non&ee theories without ad hoe cutoff pa-
rameters displays an unphysical pole in the corresponding
propagators, the so-called Landau ghost [6]. Therefore,
if one follows the procedure outlined above, one finds
that the renormalized cr model is plagued by the Landau
ghost, which leads to an instability of the usual transla-
tional invariant vacuum [7,8]. In view of our remarks at

the beginning of this section, the problem of this Landau
ghost can be treated in several ways: (1) The efFective
model is considered as unphysical and is abandoned. (2)
The approximation scheme (loop expansion) is consid-
ered appropriate, but the effective model can be used only
with a regularization scheme, hereby being restricted to
energies far below the unphysical pole. (3) The approxi-
mation scheme is improved such that the effective model
does not a priori yield unphysical results for energies up
to the order of the baryon mass.

The second viewpoint implies that vacuum loops are
either simply discarded, or calculated with finite cutoff.
Concerning the first alternative (drop vacuum loops), we
note that in some situations, like in an external field, such
a treatment violates conservation laws [9] and cannot be
implemented consistently. Besides this, the investigation
of the change of the vacuum structure due to the finite
density should be an important subject for any relativis-
tic field theory. Concerning the second alternative (finite
cutofF), we note that the Landau ghost in hadronic the-
ories occurs at rather low energies of the order of the
baryon mass ( 1 GeV). This means that its presence
is a real problem for effective quark theories, and its
avoidance by the introduction of an ad hoc parameter is
somewhat unsatisfactory. Since the energy scale relevant
for effective quark theories is set by hadronic masses, a
treatment according to the third viewpoint, which we will
adopt in this paper, is a feasible alternative. We consider
the Landau ghost as one of the basic infinities in efFec-

tive field theories which should be brought under control
without the introduction of further parameters. In a dif-
ferent context, this viewpoint has been taken already a
long time ago by Redmond and Bogoliubov et aL [10],
who have shown how to construct ghost &ee propagators
in the framework of the loop expansion based on the re-
quirement of the Kallen-Lehmann representation. Their
propagators have several interesting features: The asso-
ciated wave-function renormalization constant is finite,
and they have an essential singularity at g2 = 0 (g is the
coupling constant) which is expected from more intuitive
physical arguments [ll]. Moreover, since the associated
running coupling constant has no singularity at space-
like momentum transfers, the "zero charge problem" is
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II. THE GROUND STATE ENERGY
AND THE LANDAU GHOST

We now proceed to exhibit how the Landau ghost con-
tributes to the vacuum instability. The Euclidean La-
grangian of the cr model reads, after introducing the
"physical" parameters m and m instead of the orig-
inal ones p and A [2],

with

l:y = /DE, D = i P+MU, —(2)

avoided. Their method has recently been formulated in
the language of the efFective action [12], which is suitable
for effective quark theories, and also applied to infinite
systems [12,13]. The main purpose of the present paper is
to show a practical way to incorporate the ghost elimina-
tion in a finite system like the soliton, and to demonstrate
that with this procedure the translational invariant vac-
uum becomes stable with respect to decay into an array
of small-sized configurations. We will not construct the
fully self-consistent solutions including valence quarks in
this paper which is left for a future work. (For another
possibility to avoid the Landau ghost by introducing vec-
tor bosons, see Ref. [14].)

The n model has so far not yet been fully exploited
to obtain self-consistent solutions including the effect of
the Dirac sea. One of our motivations for investigating
this model is as follows: In contrast to the Nambu-Jona-
Lasinio (NJL) model [15], which has been extensively
used to construct solitonic solutions [16—18], it has a P4

interaction term with variable strength (specified by the
0 mass) which controls the deviation of the chiral radius
&om its vacuum value. The amount such a term would
contribute to the ground state energy increases the far-
ther the chiral fields are away &om the chiral circle of the
vacuum. Since it is known that interaction terms of the
form P4 [19], or of higher order like the 't Hooft deter-
minant interaction [17], can prevent the collapse of the
NJL soliton, there is the possibility that stable solitons
exist for the linear o. model. The major obstacle to a
full investigation of the solitonic sector of the cr model,
however, was the instability of the translational invariant
vacuum. The fact, to be established in this paper, that
the method of Redmond and Bogoliubov et al. leads to
a stabilization of the translational invariant vacuum is a
first step towards self-consistent solutions in the cr model.

The rest of the paper is organized as follows: To be
self-contained and to set the formalism we state in Sec.
II some results for the ground state energy in the 0 model
obtained earlier [7], and explain the role of the Landau
ghost in a way which seems most transparent to us and
which is appropriate for implementing the ghost elimi-
nation procedure. In Sec. III we construct a ghost &ee
model and show results for the ground state energy, and
in Sec. IV we summarize our results.

Q
2

l.M = —[(B„U)(B„U+)+ 4i(m —m )(U+U —1)2

+m (U+U —1)].

I = ~F+IM+~sB (4)

with [7]

I'F = —-TrlnD+D+ c.t.

= —
2 Trln(1+ GV) + 2TrGV —4TrG V, (5)

IM = ~ ~M ~SB = d ~SB~

Here TrA = N, f d4xtr(z[A[x) where Nc = 3 is the
number of colors and tr refers to the Dirac and isospin
indices, G = (—8 + M ), and

V = i M PU + M (U+ U —1). (7)

The integrals over the Euclidean time xo extend from 0
to P. The counter terms (c.t.) in (5), which include the
subtraction of the translational invariant vacuum contri-
bution (U = 1), are determined such that F~ gives no
terms of the same form as those already present in I'M.
This corresponds to the mesonic mass and wave func-
tion renormalization at the renormalization point p,

2 = 0
[5]. From here on we consider the chiral symmetric case
(m. = 0).

The vacuum instability can be seen by expanding the
ground state energy E = F/p = (F~ + FM)/p in pow-
ers of a characteristic length scale B where the classical
meson fields are localized. We assume time independent
fields U(r) = U(x) with x = r/R. If we use x as the
integration variable, every derivative gives rise to a fac-
tor 1/R, and therefore terms involving derivatives will be
dominant for small R compared to those without deriva-
tives. Therefore, up to O(R) I'M contributes only the
kinetic term. To obtain the lowest order contribution
&om F~ we expand the logarithm in (5) and note that
the term linear in V is canceled by a counter term. Then
for small B the leading term is the one quadratic in the
derivatives, i.e.; quadratic in the first term of Eq. (7).
Prom the above we see that the linear and the nonlinear
model look the same at small sizes. The complete term
of order V is

Here g stands for the u and d quarks, M = gv is the
effective quark mass, U = (1/v)(o +ig5m. v) is the chiral
field, and Zs~ = f m 0wi'th f the pion decay constant.
The model contains the two free parameters g (or M) and
m . v is the vacuum expectation value of cr, and in the
symmetric limit (m = 0) we have v = f [2]. Our
Euclidean metric is such that x„=x" = (v, r) with 7. =
iz, 0 ( 7 ( P with P the upper limit of Euclidean time
integration, and p„= p" = (iPii, p) with P~ the usual
Dirac P matrix. Defining the effective bosonic action I'
from the generating functional Z as usual [3] by Z =
f DU exp( —I') we obtain after integrating out the quark
fields
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I'("l = —Tr(GVGV —G V )4
(8)
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—I'g" = &cM-'R, trll. (t)l'4
1 (, , ) 1 2 dt 2 P(t)

+O(R2) (9)

Let us consider Eq. (8) in a continuous and infinite
plane wave (PW) basis (xlk) = (PO) )' exp(ikz), where
0 is the volume. Then the matrix element (k'l Vlf) equals
0 b~, 0V(q), i.e. ; the Fourier transform of V(r) with

q = k —k'. Using the dimensionless variables x = r/R
and t = qR and keeping for V only the first term in Eq.
(7) we obtain for (8) in the continuum limit [7]
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FIG. 1. The inverse pion propagator with m = 0, g = 4
for Euclidean q . The dashed line shows the Schwinger-Dyson
propagator and the solid line the Kallen-Lehmann propagator.

1

(k2+ M2)2) (10) G. '(q') = q'(1+ 49'~cd(q')), (14)

and L(t) is the Fourier transform of [P U(x)]:

L(t) = f e"""P U(x)d e.

Adding the kinetic term, we get the leading contribution
to the effective action in the small-size expansion as

M2R dst
t IL(t)l'

P 16g2 (2~)s

x 1+4g'Ncg
(R) ]

+ O(R'). (12)

d3—'r('l = -' "
[a(q)a( —q)G.-'(q')

P 2 (2vr)s

+~(q) ~(—q)G. '(q')] (13)

with the inverse Euclidean Schwinger-Dyson propagators

Since &P(q2) -+ —(1/16vr2)ln(q2/M2) as q ~ oo it fol-
lows that (9) behaves as o.M2Rin(MR) for R ~ 0 with
o, ) 0, which overcomes the kinetic term [the 1 in (12 ]
for R small enough, leading to a negative value for I'&" .
This means that for small sizes R the energy of this "non-
translational invariant vacuum" can become lower than
the energy of the translational invariant vacuum.

To see that the Landau ghost in the meson propagators
is responsible for this vacuum instability, we use the fact
that the effective action, when expanded around the fields
in the translational invariant vacuum (o = v, m = 0),
gives the inverse 0 and m propagators in the translational
invariant vacuum as the coefBcients of the terms of second
order in a—:o —v and 7r. If we express V of Eq. (7)
in terms of o, n using U = (1/v)(o + ipse a), we see
that these second order terms are completely contained
in (8). Taking also the terms of second order in a, m in
the mesonic term in (6), we obtain [13]

G '(q ) = q (1+4g Kc(t)(q ))
+m + 16g N&M P(q ).

In Fig. 1 the dashed line shows the inverse pion propa-
gator (14) for g = 4. The previously noted behavior of
P(q2) leads to the Landau ghost pole at Euclidean q~,
and as a consequence (13) can become more and more
negative for large q, i.e., for small sized fields. In this
limit of small sized fields the leading contribution to (13)
comes from the terms oc q2 in Eqs. (14) and (15), and
if expressed in terms of t = qR this gives again Eq. (9).
[Note that

tr]L(t) l' = —,t' [a(t)a(—t) + ~(t) ~(—t)]

with a(t) = (1/Rs) a(q) the Fourier transform of a(x) and
siinilar for n (t).]

III. GHOST REMOVAL IN A FINITE SYSTEM

We now address the problem of removing the Landau
ghost in a finite system. The procedure is described in
Ref. [10] and has been extended to the path integral for-
malism in Ref. [12]. To calculate the ground state energy
we have to first obtain meson propagators with the cor-
rect analytical properties. These propagators are then
implanted into the effective action which is in turn used
to calculate the ground state energy.

The prescription of Ref. [12] to eliminate the Lan-
dau ghost &om the effective action is to replace the
Schwinger-Dyson propagators G in the second order
term (13) by the Kallen-Lehmann (KL) propagators 6
According to Ref. [10], these are constructed &om the KL
representation using a spectral function obtained from
the one-loop meson self-energy, and are free of the Lan-
dau ghost. Thus, in this method the loop approxima-
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tion is used only for the imaginary part, while the real
part is calculated &om the dispersion relation. Since this
method avoids the Landau ghost, it clearly represents an
improvement of the straightforward loop approximation
for the whole propagator. The new effective action be-
comes

(16)

In order to be consistent with chiral symmetry, however,
this ghost subtraction has to be done under the con-
straint of the Ward identity [2] b, (q2) ~ —b, (q2)
ivT( q;q, 0—) with T( q;q, —0) the om vertex where one
of the external pions has zero momentum. To preserve
this identity the difference of the cr and n inverse prop-
agators has to remain invariant under ghost subtraction
[13]; i.e., 6 ~ —G = 6 ~ —G, and we obtain &om
(16) and (17)

1 1 d g-hl' = — [s(q)s(-q) + n (q) n (-q)]
P 2 (2m)s

x[6, '(q ) —G '(q')]. (17)

It can be shown [10] that the KL propagator can be ob-
tained from the SD propagator by subtracting the ghost
pole: h~(q ) = G~(q ) —Z~/(q —mz), where ZG ( 0 is
the residue of the pole at Euclidean q2 = m~z. We show

for m = 0 and g = 4 by the solid line in Fig. 1.
The ghost &ee ground state energy is thus obtained by

adding the piece (17) to (1/P)I' with I' given by Eq. (4).
The exact evaluation of I'~, given by Eq. (5), requires
the diagonalization of the Dirac Hamiltonian h = icx V+
P~MU, and this is done most conveniently in a basis lA)
which diagonalizes the &ee Dirac Hamiltonian

ho = ~(U = 1) = —t~ &+P~M: &oI&) = &il&)

with so& —+2~ + M2 in a box of size D with discrete
momenta lkql & k . (Here A labels all necessary quan-
tum numbers except color. ) D and k should be taken
large enough such that all results are unchanged under
further increase. We will call this discrete and finite basis
the Kahana-Ripka (KR) basis [20]. On the other hand,
the ghost subtraction is formulated most conveniently in
the continuous and infinite PW basis, for which the result
is given by Eq. (17). Therefore, we proceed in two steps:
First, in order to demonstrate that the KR basis gives the
same results as the PW basis, provided that k and D
are taken large enough, we evaluate I'~ in the small-size
approximation both in the KR and the PW basis and
compare the results. Then we evaluate I'~ exactly in the
KR basis and add the ghost subtraction term (17).

The expression for I'~ in the small size approximation
using the PW basis has already been given in Eq. (9),
and the corresponding result for the KR basis is obtained
from Eq. (8) as

U = exp(ir aO(r)ps), e(r) = n exp( r/R—). (19)

In this case there are no additional O(R2) terms in (9)
due to UtU = 1. Also, I'~/M or I'&" /M, viewed as a
function of MR, is independent of M (or g). When the
KR basis is used, the effective action becomes a function
of k, and in order to reach convergence [I'(k ) m I']
in the small-size approximation we had to go up as
high as k 40M for MR 1. This is in contrast
to models with finite cutoff like the NJL model, where
k 10M is sufficient for solitons of normal size [17].
The calculations in this paper are performed with values
for (k ~/M, DM) ranging from (70,5.7) for small R to
(20,20) for large R, such that k D 400 is kept con-
stant. Figure 2 demonstrates that the results using the
PW and the KR basis agree well if A: ~ and also the box
size D are taken large enough.

Comparison with the full calculation, to be discussed
below, shows that the result of Fig. 2 is quite accurate
up to MR 0.7. The fact that the ground state energy
relative to the translational invariant vacuum is negative
for these small R indicates the vacuum instability due to
the Landau ghost discussed above.

The total ground state energy in the small-size ap-
proximation is shown in Fig. 3. It is obtained &om Eq.
(12), and for the ghost free model by further adding the
piece (17). We see that the ground state energy in the
small-size approximation becomes a positive quantity af-
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[

I I l I
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)
f I ~ I
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Since for the exact calculation one has to diagonalize
h, it is convenient here to treat (A'lVlA) as h —ho, where
h

&
——h ~h~p is the square of a finite dimensional ma-

trix. In Fig. 2 we show the small-size approximation to
the Fermion loop energy, based on Eq. (9) (solid line) and
Eq. (18) (dashed line) in units of MNc as a function of
MB, assuming a Hedgehog profile with the vacuum value
for the chiral radius and winding number n = 1:

—'r"' = 'N ) -](x'lvlx-)l'
A'A

( 1 1 1
xl o o o o o s I' (18)

(I&& lie&l(ls& I+ ls&l)

FIG. 2. The Fermion loop energy E~ = (1/P)1'p in units
of MN~ as a function of MB in the small size approximation.
The solid line shows the result with the PW basis, Eq. (9),
and the dashed line shows the result with the KR basis, Eq.
(18), with values for k „and D described in the main text
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FIG. 3. The total energy E = (1/P)I' in units of M as a
function of MR. The dotted and dashed-dotted lines refer to
the small size expansion before and after the ghost subtrac-
tion, respectively, and the dashed and solid lines show the full
result before and after the ghost subtraction, respectively.

ter removal of the Landau ghost.
We now return to the full effective action, Eqs. (5) and

(6). In the KR basis I'~ can be written in the form [7]

Nc - (A[Vz[A)

16
(20)

with V = 6 —ho as before, and e~ are the eigenvalues of
h. Since we have already demonstrated for the small-size
expansion that for k „and D large enough the results
with the KR basis agree well with those of the PW basis,
it is feasible to use the expression in the PW basis, Eq.
(17), for the ghost subtraction term hl'.

Figure 3 shows the total ground state energy (1/P)I'
including the ghost (dashed line) and (I/P)I'ar, with-
out the ghost (solid line) in units of M as a function of
RM for the Hedgehog meson profile (19). After ghost
subtraction, the total ground state energy relative to the
translational invariant vacuum is positive, which demon-
strates that amending the two-point functions such that
they satisfy the KL representation is sufficient to stabilize
the vacuum against the formation of arrays of strongly
localized meson field configurations.

In effective quark-meson theories, which have been de-
signed to model /CD in the energy region of hadron
masses, the Landau ghost appears in the meson propa-
gators at rather low energies of 1 GeV. Its presence is a
real problem for these theories and leads to an instability
of the translational invariant vacuum. In this paper we
have taken the viewpoint that the Landau ghost should
be brought under control without the ad hoc introduction
of further parameters. Based on the work of Redmond
and Bogoliubov et al. [10], who have shown how one can
improve the loop expansion such that the propagators
have the correct analytical properties, we have shown a
practical way to eliminate the Landau ghost from chi-
ral solitons in the 0 model. We have demonstrated that
the ghost free effective action formalism of Ref. [12] can
be applied successfully to finite systems. In particular,
since the ghost subtraction term is expressed most con-
veniently in a continuous and infinite plane wave basis,
we have investigated in detail the conditions under which
it is feasible to add this term to the Fermion loop term
which is evaluated in a discrete and finite basis. By con-
sidering vacuum configurations characterized by various
sizes of the meson profiles we have shown that in our
ghost free model the translational invariant vacuum has
the lowest energy and is therefore stable with respect to
decay into small-sized configurations.

The method given in this paper can form the base for
further investigations on self-consistent soliton solutions
in the o. model. In particular, as mentioned in the In-
troduction, it would be interesting to see whether self
consistent solutions can be obtained with a reasonable
strength of the P4 term.

The problem of the Landau ghost and the associ-
ated vacuum instability occurs also in relativistic meson-
nucleon theories for nuclear structure [21]. For example,
if a finite nucleus is described in the relativistic Hartree
approximation including the effect of the Dirac sea, one
has to apply the same "overall ghost subtraction" as per-
formed in this paper [see Eq. (16)]. In more sophisti-
cated approximations like the "1/N" expansion [22] or
the "modified loop expansion" [23] the Landau ghost ap-
pears also in the subgraphs (even for infinite systems),
and the ghost subtraction must be applied to these sub-
graphs. Thus, although we used the language of effective
quark theories in this paper, the method is applicable to
relativistic nuclear structure physics as well.

One of us (J.H. ) was supported by the Deutsche
Forschungsgemeinschaft under Contract No. BE 348/ll-
12-

[1] E. Witten, Nncl. Phys. B233, 422 (1983); B233, 433
(1983); H. B. Nielsen and A. Pathkos, ibid. B195, 137
(1982); M. Betz and R. Goldflam, Phys. Rev. D 28, 2848
(1983).

[2] M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705
(1960); B.W. Lee, Chill Dynamics (Gordon and Breach,

New York, 1972).
[3] T. Eguchi, Phys. Rev. D 14, 2755 (1976); I. J. Aitchison

and C. M. Fraser, Phys. Lett. 146B, 63 (1984); Phys.
Rev. D 31, 2605 (1985).

[4] W. Broniowski and M. Kntschera, Phys. Lett. B 242,
133 (1990).



ELIMINATION OF THE LANDAU GHOST FROM CHIRAL SOLITONS 3093

[5] J. Mignaco and E. Remiddi, Nuovo Cimento A 1, 376
(1971).

[6] L. D. Landau, in Niels Bohr and the Development of
Physics, edited by W. Pauli (Pergamon, London, 1955).

[7] G. Ripka and S. Kahana, Phys. Rev. D 36, 1233 (1987).
[8] R. Perry, Phys. Lett. B 199, 489 (1987); V. Soni, ibid

183, 91 (1987); T. D. Cohen, M. K. Banerjee, and V-
Y. Ren, Phys. Rev. C 36, 1653 (1987); R. J. Furnstahl
and C. J. Horowitz, NucL Phys. A485, 632 (1988); T.
Kohmura, Y. Miyama, T. Nagai, S. Ohnaka, and J. Da
Providencia, Phys. Lett. B 226, 207 (1989); T. Mannel,
T. Ohl, and P. Manakos, Z. Phys. A 335, 341 (1990).

[9] S. Ichii, W. Bentz, A. Arima, and T. Suzuki, Phys. Lett.
192, 11 (1987).

[10] P. J. Redmond, Phys. Rev. 112, 1404 (1958); N. N. Bo-
goliubov, A. A. Logunov, and D. V. Shirkov, Sov. Phys.
JETP 37, 574 (1960).

[11] F. J. Dyson, Phys. Rev. 85, 631 (1952).
[12] K. Tanaka, W. Bentz, A. Arima, and F. Beck, Nucl. Phys.

A528, 6?6 (1991);K. Tanaka and W. Bentz, ibid. A540,
383 (1992).

[13] M. Kato, W. Bentz, and K. Tanaka, Phys. Rev. C 45,
2445 (1992).

[14] S. H. Kahana and G. Ripka, Phys. Lett. B 278, 11 (1992).
[15] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345

[16]

[17]

[»1

[19]

[20]
[21]

[22]

[23]

(1961); 124, 246 (1961); U. Vogl and W. Weise, Prog.
Part. Nucl. Phys. 2'7, 195 (1991).
P. Sieber, Th. Meissner, F. Grummer, and K. Goeke,
Nucl. Phys. A547, 459 (1992); T. Watabe and H. Toki,
Prog. Theor. Phys. 87, 651 (1992);J. Schlienz, H. Weigel,
H. Reinhardt, and R. Alkhofer, Phys. Lett. B 315, 6
(1993).
M. Kato, W. Bentz, K. Yazaki, and K. Tanaka, Nucl.
Phys. A551, 541 (1993).
N. Ishii, W. Bentz, and K. Yazaki, Phys. Lett. B 301,
165 (1993);318, 26 (1993).
Th. Meissner, G. Ripka, R. Wunsch, P. Sieber, F.
Griimmer, and K. Goeke, Phys. Lett. B 299, 183 (1993);
C. Weiss, R. Alkhofer, and H. Weigel, Mod. Phys. Lett.
A 8, 79 (1993).
S. Kahana and G. Ripka, Nucl. Phys. A429, 462 (1984).
B. D. Serot and J. D. Walecka, in Advances in Nuclear
Physics, edited by J. W. Negele and E. Vogt (Plenum,
New York, 1986), Vol. 16, p. 1; B. D. Serot, Rep. Prog.
Phys. 55, 1855 (1992).
K. Tanaka, W. Bentz, and A. Arima, Nucl. Phys. A555,
151 (1993).
K. Wehrberger, R. Wittman, and B.D. Serot, Phys. Rev.
C 42, 2680 (1990).


