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An extended pion source, which can be temporarily created by a high energy nuclear collision,
will also absorb and distort the outgoing pions. We discuss how this eKect alters the interferometric
pattern of the two-pion momentum correlation function. In particular, we show that the two-pion
correlation function decreases rapidly when the opening angle between the pions increases. The
opening-angle dependence should serve as a new means of obtaining information about the pion
source in the analysis of experimental data.

PACS number(s): 25.75.+r, 13.60.Le, 13.75.Gx

I. INTRODUCTION

Hanbury-Brown- Twiss interferometry of identical par-
ticles emitted &om a chaotic source has long been used
to infer the spatial and temporal characteristics of that
source [1—8]. Although originally conceived in astronomy
to the end of extracting stellar radii [1], the technique
has found extensive application as a diagnostic tool in
heavy-ion collisions [5—9]. In most practical applications,
the outgoing pions are assumed to suffer only weak final-
state interactions. For instance, the interaction between
the two detected pions is usually neglected, and a sim-
ple plane wave solution is used to calculate the two-pion
momentum correlation function, although in the case of
charged pions, it is multiplied by the Gamow factor to
correct for their long-range Coulomb force.

In this paper, we discuss another type of final-state in-
teraction, wherein each pion suffers in its exit from the
source region, namely, the interaction of the pions ioith
the source" itself. Since a pion source also absorbs and
distorts pions, a source with finite extent in space and
time will alter the outgoing pion waves in the source re-
gion. In particular, if the pion source is a droplet of
"quark-gluon plasma, " it may be regarded as a black-
body of pions —and of all other hadrons —so that it
casts its shadow on the paths of the outgoing pions emit-
ted Rom the plasma surface. In a classical picture, this
effect may be taken into account by introducing a strong
correlation between the pion momentum and its emission
points, so that the pions are emitted only in outward di-
rections, an effect similar to that caused by collective Bow
[10,11). Pions may also interact in a dense pion medium
via p or ~ resonance formation, for example, and change
the effective source size [12]. One can also include baryon
resonances explicitly in the pion source [13]. Yet there
is a fundamentally more important effect, which arises
due to the quantum mechanical nature of interferome-
try: the distortion of the interference pattern generated

by the pion —8ource-medium interuction.
Here we study the pion correlation function in the pres-

ence of pion —source-medium interactions, as represented
by a local optical potential, within the eikonal approx-
imation. We calculate the distortion of the pion wave
function explicitly, thereby allowing for a direct investi-
gation of the quantum mechanical interference effects.
We show that both the real and the imaginary parts
of the optical potential give rise to nontrivial modifica-
tions: the former induces additional interference effects,
whereas the latter leads to a suppression of the corre-
lation as the opening angle between the pions increases.
We demonstrate that the opening angle-averaged correla-
tion function acquires a non-Gaussian shape due to these
interactions, even if the source distribution is Gaussian.

II. BASIC PRINCIPLES

Before proceeding to include the final-state interac-
tions, we first review the basic principles of two-particle
interferometry. Such a description is easily found in the
literature; we present it here to clarify its usual assump-
tions, as well as the manner in which we include pion—
source-medium interactions.

In essence, two-particle interferometry results &om a
constructive —or destructive —interference of the two
amplitudes for the emission of two identical bosons —or
fermions —&om two independent sources. Suppose that
there are N such independent sources, localized at the
space-time points x; (i = 1, ..., N), and that the emitted
particles do not interact with each other after their cre-
ation. Let yi, (x;) be the amplitude that a particle with
moment»m k is emitted &om a source at x, . Then the
pair amplitude @i„i„(x;,xi) that two particles are cre-
ated by the source at x; and x~ and are detected later
with momenta kq and k2 is written in a product ansatz
as
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'(b. +b. )@k k (x' zj ) = e [(pk (x )v)k (z ) + pk (zj)pk (x )]2

We have taken out the overall phase factors associated
with the arbitrary phase of each single-particle ampli-
tude, and since the detected particles are on shell, we
can label the pair amplitude with just the three-momenta
k1, k2. The first term is the amplitude that the particle of
momentum k1 is produced at x; with the particle of mo-
mentum k2 produced at z~. The second term is needed
to ensure the proper symmetry of the total amplitude
with respect to exchange of the particle coordinates-
(+) for boson pairs and (—) for fermion pairs. The prob-
ability of observing a particle with momentum k is given
by

2

P1(k) = — ) e*~'(pk{z;)

l

Eq. (1), involved in deriving the above &om Eq. (4).
(1) The relative phases of particles created at different

locations are incoherent —the phase average is random.
(2) There are no correlations in the source distribution.
(3) The particles do not interact after their emission.

The first assumption is the most important of all: it
allows us to write the probability distribution in terms of
an incoherent sum of the individual probabilities. That
1s,

» () ) = p~() .lie ~. (*;)I') = f&'*~(*)
I v ~. (*)ll',

whereas the joint probability of finding two particles with
momenta kq and k2 is

2

P)(k), k)) = ) @),).()",)', ) ) (3)
~ ~

P2(kl k2) ~ ~ 1 {) I@kgkg(x' xj)l )
~)2

XgEL X2P2 +1) +2 @kykg +1)2

P2(k1) k2)
P, (k, )P,(k, )

(4)

With a few more assumptions, to be summarized be-
low, the momentum correlation function is related di-
rectly to the Fourier transform of the source distribution,

pq
= f d 4zp( z)e' 4 Namely, .

Note that ( ) indicates an average over the source distri-
bution. The two-particle momentum correlation function
is defined by

where the averages over the N point sources are replaced
by integrals over smooth distributions. All the interfer-
ence terms containing the relative phase factor e'~~'

drop out when averaged over the random phases b;. Note
that the two terms in the square brackets of Eq. (1) have a
definite relative phase, so that their interference survives
the random phase averaging. The second assumption
allows us to replace the two-particle source distribution

p2(z1, x2) by the product of the single-particle source dis-

tributions:

P2(*1,*2) = P(X1)P{*2)

C2(k1 k2) =1+ lp;I'IIP;=oI' (5)

where q = (81 —E2, k1 —k2) is the relative four-
momentum. Hence Eq. (5) predicts that

This factorization does not hold in the presence of fine

structure in the source, for example, in the multidroplet
model of the mixed phase [14]. Lastly, by the third as-

sumption, the single-particle amplitude (pk(z) is given as
a solution of the free Klein-Gordon or Dirac equation, as
appropriate:

C2(kl k2) m 2(0) as q m 0 (6) (pk(z) = cke'" * .

for boson (fermion) pairs, whereas C2 ~ 1 as q ~ oo in
both cases.

There are three assumptions, besides the ansatz in

I

Note that the normalization factors ck cancel out in the
correlation function of Eq. (4). Finally, these assump-
tions lead to the expression [5—7]

f d x1 d z2 p(x1)p(x2) l@k,k, (x1, x2) I

fd'» p(»)lv'k, (»)l'f d'» p(»)lv'k. (»)I'

where

@kgkg (X1i X2) — [(Pkg (X1) Pkg (X2) + (Pkg (X1)0 kg (X2)]
2

(12)
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III. INCLUSION OF PION —SOURCE-MEDIUM
INTERACTIONS

We now turn our discussion to the modification of the
correlation function due to the inclusion of final-state in-
teractions. In principle, there are two types of final-state
interactions to be considered: the mutual interaction be-
tween the detected pions, and the interaction of the pi-
ons with the rest of the system. The former effect may
be included by solving the Bethe-Salpeter equation or
the Schrodinger equation for the two-body wave function
[s,6].

Here we examine the latter effect, the medium modifi-
cation [6,15]. We incorporate it by adding a self-energy
term to the Klein-Gordon equation:

[0+m'+2mU(x)](pt, (2:) = 0.

We have assnrned that U(x) is a local optical potential.
The heuristic derivation of Eq. (11) in Sec. II presumes
that the pions do not interact after their emission. How-
ever, Eq. (11) still holds when a local one-body optical
potential is included in the construction of (pt, (2:) as long
as U(x) does not support bound states or create real par-
ticle pairs [6].

Many of the complications associated with the heavy-
ion reaction are lumped in the potential U(z). For ex-
ample, the pion source function p(x) appears explicitly
in Eq. (11), but the dynamical response of the source
to the interactions of the outgoing pion with the source
medium does not. This response is contained in U(z)—
it is the effective single-channel optical potential. The
final sum over the unobserved hadronic states implicit in
Eq. (11) can still be effected independently of the pion
amplitudes in this picture. R~thermore, the initial state
of the source function is also not identified, and for a
given dynamical model description of the heavy-ion re-
action, all allowed initial states must be averaged. We
presume, for now, that this averaging can also be ab-
sorbed in U(x).

The complexity of the optical potential is compounded
by the time evolution of the source. For example, as the
source expands, the relative moment»m of the outgoing
pion and of the source element with which it interacts
changes in time and thereby alters the pion's interaction
with the source. To illustrate this, consider an expand-
ing source that consists merely of nucleons. The strength
of the pion-nucleon interaction depends strongly on the
relative momentum between the pion and the nucleon
with which it interacts. Moreover, pion absorption by
the source will depend on how two nucleons in the source
are correlated in time. The complexity of U(x) can be
reduced by constructing an explicit dynamical model of
the heavy-ion reaction, but simple physical insight into
the effects of U(x) would be lost in such a task. Thus, we
make the problem as simple as possible, in order to ex-
tract the essential physics that emerge as a consequence
of the pion —source-medi»~ interaction. To this end, w' e
first choose to ignore the additional complications that
arise from the time dependence of the source and consider
merely a static pion interaction with the source medium.

Note that Eq. (13) may then be interpreted as describing
the time reverse of the usual scattering process: the pion
returns from infinity with momentum —k and is inversely
scattered by the optical potential U(x). For pious with
energies of a few hundred MeV, (pI, (x) is given approxi-
mately by

m
U(r) = (o—~+iol)p(r) .

k
(is)

In general, o~ and O'I may depend on the moment»m of
the pion with respect to the medium and on the tempera-
ture of the mediu~ as well. We shall assume that o'~ and
or are simply constant, but we will examine a wide range
of parameter values in order to probe the sensitivity of
the pions' momentum correlation to this new effect. We
can then write the distortion factor g(k, r) as

() ) —i(crtc+icry)t(k, r)
&*/ 7 (16)

where the thickness function t(k, r) = J dz' p(b, z') is
determined by the direction of the outgoing pion and its
production point r. The impact parameter b is defined
by r —z, where z = k r" k. The real part of the potential
generates a phase shift, whereas the imaginary part rep-
resents a loss of fiux. As we shall see below, both factors
can significantly modify the correlation function.

With the distorted single-particle amplitude (pg(z) =
e*"'*g(k,r) as per Eq. (16), the two-pion correlation func-
tion, Eq. (11),becomes

Cz (ky, k2) = 1 + ~f (kg c kz)
~

The second term, generated by the interference of the
two distorted waves, is given by the square modulus of
the overlap integral

f(ke, ke) = —f C rp(r)r(ke, r)g(ke, r)e'e', (is)

where N = f dsrp{r)g{k, r). In the absence of pion—
source-medium interactions, so that g(k, r) = 1, the in-
tegral is reduced to the Fourier transform of the source
distribution p(r). In this limit we thus recover the fa-
miliar result that the correlation function depends only
on q—:kq —kz. In general, however, f(kq, k2) depends
on the relative angle ct) of the two momenta kq and kz.,
hence, the correlation function also has this dependence.

(i4)

where (x, y, z) labels the pion production point. Note
that z —= k r and z' parametrizes the straight line path
along k from z to infinity. Equation (14) is the eikonal
approximation and agrees well with elastic pion-nucleus
scattering data in the energy regime we consider [16],
when a realistic momentum-dependent potential is as-
snmed. We will use the function (pI, (z) in Eqs. (11) and

(12) to include the final-state pion —source-medium inter-
action in the pion momentum correlation function.

Moreover, we choose a simple model for the pion—
source-medium interaction —a complex constant mul-

tiplies the source density p:
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In Sec. III, we present n»merical results for a 6nite,
complex optical potential. However, a discussion of the
black sphere limit [oI m —oo, p(r ) = p 8(R r—)j serves as
a useful illustration of the physics involved. Under these
circumstances the outgoing pion amplitude attenuates to
zero when its classical path transits the potential region.
On the other hand, the source distribution p(r) is zero
for r & B. We shall assume that the pions are emitted
in a thin spherical shell of width b outside B and then
compute the h -+ 0 limit. The distortion factor g(k, r) is
deterxnined purely by geometry:

g(k, r) = 8 k r" + 1 — 8(r —R) .
r2

Equation (18) thus reduces to

(b)

Xl

X2

Xl

X
2

2

k

f(kq, k2) = — dA 8(kq r) 8(k2 r) e'
2' (2o)

The resulting correlation function can be evaluated nu-
merically for general P. It can also be calculated ana-
lytically in the following two cases: for parallel pions, so
that P = 0, f becomes

f(kg, k2) = . e's —1iqR-

and so that

&2(ki, k2) = 1+ 4 . , (qRI
q'R2

g 2) (22)

In this case, the correlation function is simply a function
of the dimensionless quantity qR, where q = ~q~ is the
magnitude of the relative three-momentuxn of the two
pions. However, for pions emitted back to back, so that
P = z, f vanishes. Thus, Cz(kq, kz)~f, &

——1 for
all q. The attenuation of the emission amplitude, which
penetrates the absorbing region, destroys the interference
entirely.

The physical origin of the P dependence can be read-
ily understood in this limit and is illustrated in Figs. 1
and 2. For parallel pairs the deviation of the correlation
function &om unity is caused by the constructive inter-
ference of the two amplitudes corresponding to Figs. 1(a)
and 1(b). However, for antiparallel pairs, the amplitude
for the process in Fig. 2(b), which would interfere with
the amplitude in Fig. 2(a), is completely suppressed by
absorption in the source region; hence, in this case there
is no enhancement.

We can now proceed to evaluate Eq. (20) for arbitrary
P and total pion momentum P = ~kq + k2~. For given P
and P, there is a minimum q allowed kinematically; that
1S)

FIG. 1. Emission of a parallel pair of pions from the source
region. The amplitude in (a) interferes constructively with
the exchange amplitude in (b).

Xi

X2

(b)

k, X
l

pion —source-medium interactions. We therefore consider
small opening angles, where q;„is small, so that the
suppression of the correlation due to interactions with
the source medium is easily detectable.

In Fig. 3, we show the correlation function for several

P at two fixed values of PR in the above black sphere
limit. As shown in Eq. (22), the correlation function of
parallel pairs goes to two at zero q. For comparison, the
solid line shows the correlation function, which results
from ignoring final-state interactions. That is, g(k, r) is
set to unity in Eq. (18), and a uniform, spherical source
of radius R is assumed, so that

6 1 —cos 4 )
(23)

As P increases, q; becomes non-negligible. At large
opening angles, q;„is large, and only a small corre-
lation between the pions remains —regardless of any

FIG. 2. Emission of an anti-parallel pair of pions &om the
source region. The amplitude in (a) would interfere construc-
tively with the exchange amplitude in (b), but the latter is

suppressed by absorption in the source region.
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3(sin qR —qR cos qR)
(24)

The two correlation functions are independent of P and
P, yet the scales with which they fall ofF in qR are difFer-
ent. In the Mack sphere case the correlation of parallel
pairs at intermediate q is enhanced. This result can be
understood physically as follows: when the source region
is black, only pion pairs emitted from the front surface-
as shown in Fig. 1 —are detected; the pairs emitted f'rom

opposite sides as illustrated in Fig. 4 are suppressed. The
effective source size is thus smaller than it would be if all
the pairs were sampled, leading to an enhanced correla-
tion at intermediate q. When the opening angle between
the pions becomes nonzero, the correlation function is
suppressed relative to the parallel pion case, due to the
final-state interactions. For PR = 10 (20), corresponding
to P 400(800) MeV for a source radius of R 5 fm,
Fig. 3 shows the suppression of the correlation function
as P increases from 0' (dashed line) to 5' (crosses), 10
(squares), and 20' (plusses). Based on the above discus-
sion, we hypothesize that these absorption efFects should
be quite general and thus present in fermion interferom-
etry as well.

IV. NUMERICAL RESULTS AND
PHENOMENOLOGICAL CONSEQUENCES

In this section we compute the correlation function
ratio, Eq. (11), for the finite, complex optical poten-

1.8 (a) PR=10
no FSI
g- 00

X 50
0 10'
+ 20

1.8—

lX
0

ol1 0

0

(b) PR=20
no FSI
P= 0—0

X 50
0 10
+ 20

I. . . , I. . . , I

2 4 6 8 10

FIG. 3. Two-particle correlation from a black sphere
source of radius B as a function of the relative momentum
q = [kz —ks(. The total momentum P = (kq + kq) is 10/R
in (a) and 20/R in (b). The solid lines indicate the results
vrith no pion —source-medium interactions. The source region
is assumed to be spherical and uniform. When the source
medium is absorptive, the correlation function also depends
on the opening angle P between the particles. Shown are the
results for P = 0' (dashed lines), 5' (crosses), 10' (squares),
and 20 (pluses). For Sxed P and P, there is a minimum q,
Eq. (23), allowed kinematically.

I2 k,

+ exchange

FIG. 4. Emission of a parallel pair of particles from op-
posite sides of the source region. This process is suppressed
compared to the emission in Fig. 1 if the source region is
absorptive.

tial of Eq. (15). For illustrative purposes, we choose
simple forms for the source density p(r), a Gaussian
p(r) = poexp( —r2/R~ ) and a uniform sphere p(r) =
po8(Rs r), with—Rv ——v 2.5', . The density parameters
are chosen so that the two source functions have the same
rms radii and central densities. Note that the integral

f d rp(r) difFers in the two densities chosen. We equate
the central densities of the two sources, rather than the
number of particles f dsrp(r) they contain, as we believe
the central density better characterizes the heavy-ion col-
lision. We presume that the fireball resulting from the
heavy-ion collision is baryon rich for simplicity, as is the
case for heavy-ion experiments in the nuclear stopping
regime, such as those at the alternating-gradient syn-
chrotron (AGS) [17,18]. We thus choose po

——0.17 fm
Given p(r), we need to estimate the constants 0'n and

0I. In our treatment of U(z), 0~ and err are proportional
to the efFective, forward mN scattering amplitude in the
fireball. The mN amplitude in free space is well known
[19]: because of 3-3 resonance formation, the imaginary
part of the amplitude has a large peak near a pion lab-
oratory energy of 200 MeV, around which the real part
changes the sign. Below and above this energy region,
the axnplitude varies less and is of smaller magnitude. It
involves many mN resonances at higher energies.

The construction of an efFective xN amplitude in nuclei
from the free-space amplitude is an involved procedure,
but the issues are well understood [20]. The main issues
involved in its construction are as follows. (1) b reso-
nance formation depends on the local relative momentum
of the vr-N system, so that in the medium a minimally
nonlocal optical potential is required (2) Nuc. lear pion
absorption involves more than one nucleon, so that the
nucleon correlations in the medi»m become important.
(3) Higher-order scattering contributions are now possi-
ble as well, and these also involve nucleon correlations.
In view of the uncertainties in averaging over the initial
source states and s»mming over the 6nal states in con-
structing the potential in the fireball, we assume that
these complications can be efFectively included by vary-
ing the parameter values in our local potential.

Since we use a simple model to illustrate the essen-
tial physics that emerge, we 6rst choose a representative
parameter set for oR and oI and vary it over a wide



3084 M.-C. CHU, S. GARDNER, T. MATSUI, AND R. SEKI 50

range. The representative set is based on (1) the free-
space vrN scattering amplitude, taking into account (2)
nuclear pion absorption and (3) the nonobservation of
the initial and final states of the pion source, which acts
to increase the pion's effective mean-free path [21,22].
We assume that the form of Eqs. (11) and (12) is pre-
served under the inclusion of this last effect, yet this need
not be so. Finally, the representative set we choose is
(IrR, Irl) = (+2, —2) fm, which corresponds to a charac-
teristic absorption length of (o p0)

i = 1.5 fm in nuclear
matter. In order to explore a wider range of parameter
values, we multiply this reference value by a scale factor
c such that (oR, oI) = (+2, —2)c fm and vary c. To en-
sure that our examination is not prejudiced by our choice
of the imaginary to real ratio, we also examine the cases
crR ——0 and 0I ——0.

In general, the correlation function depends on the
kinematics of the pion pair —kq, k~ —as well as on the
parameters characterizing the source —R, oR, err. For
a spherically symmetric source, if final-state interactions
are ignored, the correlation function depends only on q
and R. However, if U g 0, it depends on the opening
angle I)) and the total pair momentuiTI P as well. In this
section, we discuss these new dependences in turn.

As discussed previously, we expect the correlation
function to be suppressed at large opening angles as a
consequence of including absorption in the source region.
Our calculations with a finite optical potential show that
to be indeed the case. In Fig. 5 we plot the opening angle

P ( arccos P2+ q2
(25)

Thus, for fixed P, as q increases, one includes an ever
larger proportion of large opening-angle pairs in C2, the
correlation of which are suppressed. Angle averaging thus
results in a rather reduced correlation in the intermedi-
ate and large q range. At the lowest q, only parallel
pairs are included, and the correlation approaches the
Bose-Einstein limit, C2 ——2, as q m 0, producing a non-
Gaussian shape in the low q region. If one fits a standard
Gaussian form to the correlation function,

dependence of the correlation function at P = 400 MeV
and q = 40 MeV for both a uniform source of Rg ——10 fm
and a Gaussian source of R~ ——5 fm. The c = 0 results

here there are no final-state interactions —do not de-
pend on P, yet there is always a significant suppression of
C2 as P increases for finite oI, in qualitative agreement
with the black sphere results. We observe the same be-
havior if we fix ai and vary 0R, or vice versa, rather than
varying them together. To wit, absorption by the source
teads to suppression of the correlation at $nite opening
angles.

If one averages the correlation function over the open-
ing angle, the results turn out to be rather insensitive to
P. We therefore fix P and investigate the sensitivity of
the opening-angle-averaged C2 to the optical potential.
The range of P is restricted kineinatically:

Uniform sphere Gaussian Source
C2 ——1 + A exp —q Re (26)

1.8
c=iO

(a) oR&0

c=O

(b) oR&0

c=O c=10

I I I I I I I I I I I I I I I I I I I I I I I I I

1.8
c=10 (c) oR)0 (d) aR&0

c=i c=O

c=O

I 111111111I 111111111I

c=1

c=10

I I I I I I II II I I I I I I II II

g (degrees)
10 0

t3nl (degrees)
10

FIG. 5. Two-pion correlation as a function of the opening
angle P between the particles. The relative momentum is fixed
at q = 40 MeV, and the total momentum at P = 400 MeV.
The optical potential is chosen with (o'R, ol) = (+2, —2)c fm,
and the results are shown here for a range of c. If the fi-

nal-state interaction is ignored, so that c = 0, C2 does not
depend on P, as indicated by the solid lines. When absorp-
tion is present, the correlation decreases as P increases. Note
that c = 1, 10 correspond to the dashed and the dot-dashed
lines, respectively. Results for both an uniform sphere of ra-
dius Rs = 10 fm, in (a) and (c), and a Gaussian source of
Ra = 5 fm, in (b) and (d), are shown with both signs of o R.

as is done with experimental data [17], to extract the
effective source size R, and the "coherence parameter"
A, one finds a smaller effective source size R, ( R and
A ( 1. The absorption of pions in the source region
therefore leads to a small effective R, and A, as well as
to a non-Gaussian shape of the correlation function in
the low q region.

In Fig. 6 we show the opening-angle-averaged corre-
lation functions for both sources with several values of
c. Note that P = 400 MeV and R = 10(5) fm for the
uniform (Gaussian) source. For each source, we show

the results for both signs of eR. Three curves are shown
in each panel corresponding to c = 0 (dashed lines), 1
(solid lines), and 10 (dot-dashed lines). These results
indicate a small but significant change in the shape of
the correlation functions once the final-state interactions
are turned on. Indeed, the medium-modified correlation
function displays a non-Gaussian shape, especially at low

q, even for a Gaussian source.
Such non-Gaussian correlation functions have been

seen [17,18,23]. For comparison, we show the E802 data
for the vr correlations in 14.6A GeV/c Si + Au
collisions [18] together with our calculation in Fig. 7.
The data can be fit to the form in Eq. (26) with R, =
3.42+0.26 fm and A = 0.65+0.07, yet the static Gaussian
model we use also reproduces the correlation function if
one assumes RG. —5 fm and c g 0. The solid line in the
figure is calculated assuming P = 400 MeV and c = 10.
The results for P = 600 MeV are almost identical. The
agreement with data can be improved if we vary both
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2.0

Uniform sphere Gaussian source

P
U'

1.0
2.0 (b) es)0
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c=i
c=10

Q4

U'

O
v10
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q (MeV)
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I i i i i I
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FIG. 6. Two-pion correlation function averaged over the pi-
ons' opening angle, as a function of q. The total pion momen-
tum is P = 400 MeV. Results for three difFerent Snal-state
interactions are shown, and, as in Fig. 5, c = 0, 1, and 10
correspond to the dashed, solid, and dot-dashed lines, respec-
tively.

the optical potential and R~. However, our goal here is
not a quantitative fit to the data —especially in light of
our simple ass»mptions regarding the static source and
its interaction —but, rather, a qualitative insight into
how non-Gaussian shapes can be generated. Note that
Fig. 7 also suggests that a study of the opening-angle
dependence may be a better way to infer the extent of
pion —source-medium interactions.

If ~0'1~ is small, one may be able to detect the cor-
relation effects induced by the real part of the optical
potential. The extra phase introduced by the final-state
interaction, exp( —in~t), modifies each of the pion wave
functions and leads to an interference pattern in the cor-
relation function. Such efFects can be seen most clearly
if a sharp edge is present in the source and the damp-
ing factor exp( —~0'I~t) is small. In Fig. 8, we show the
+averaged correlation functions for a uniform spherical
source with several values of 0'~ and two values of O'I.

A large oscillation is observed in Fig. 8(a) when O'I = 0
and 0.~ is of roughly —1.5 fm . The correlation function
becomes as large as 4.5 at q = 100 MeV. Note, however,
that we have not excluded bound-state forming parame-
ters for u~ ( 0 and small err. The oscillations damp out
quickly as ol grows large, as shown in Fig. 8(b).

At fixed P, q, and R, one can compare the values of C2
for difFerent 0~ and OI. Figure 9(a) shows the variations
of C2 with respect to e~, for various fixed err. In the
upper panel, 0'I ——0, whereas err ———2 and —4 fm 2

the solid and dashed lines, respectively —in the lower
panel. The interference pattern is clearly seen at err ——0,
yet only a small variation is observed for a more realistic
value of nl Note, h. owever, the sudden jump in C2 when

o~ changes sign. Similarly, we study Cq as a function of
O'I for various rr~ in Fig. 9(b). That is, we choose on =
+2 fm —the dashed and solid lines —and 0 —the dot-
dashed line. The interference induced by 0'~ enhances or
suppresses the correlation for nJt ( 0 or on ) 0 if ~01~ is
less than about 2 fm2.

Even though our model is currently too simple to take
its comparison with experiment seriously, the generation

4.0 (a) ol=o

2.0

A
SC

Q
V'

V

1.0

I I I

)

I I I I

[
I I I I

~

I I

c=O

c=10
E802 data Si+ Au -)2m +X

)(

)(

A

O'

V
V

1.0
2.0

A

C4
U'

C3
V

1.0

(b) o,=—2fm

oR=-3fm 2

—1.5fm
Ofm
3fm

I l I I I I t I I I I I i

I i i i i I

50 100 150
50 100

q (Mev)
150

q (Mev)

FIG. 7. Comparison of the pion correlation function cal-
culated using a static Gaussian source model (Ro = 5 fm)
and the E802 data, corrected for acceptance and Coulomb
efFects, for the s correlation in 14.6A GeV/c Si+ Au
collisions [18]with q. The solid line indicates the results using
cr = —20 —20i fm (c = 10), whereas the dashed line repre-
sents the noninteracting (c = 0) results. In our calculation
P = 400 MeV, but the results are insensitive to P.

FIG. 8. Opening-angle-averaged pion correlation function
as a function of q for various oR and a uniform spherical
source of Rs = 10 fm. P is Sxed at 400 MeV, and in (a)
cri = 0, whereas in (b) oi = —2 fm . The curves correspond
to difFerent values of o~, that is, the results with o~ ———3,
—1.5, 0, and 3 fm are denoted by dashed, dot-dashed, solid,
and dotted lines, respectively. A large oscillation is seen for
o~ —1.5 fm if o.I = 0, but very little sensitivity to o.& is
observed for more realistic or.
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a suppression of the correlation as the opening angle in-
creases, (2) an angle-averaged correlation function, which
can deviate &om a Gaussian shape at low q, as well as
(3) possible additional interference efFects From the real
part of the potential. The last effect is suppressed by the
inclusion of absorption, and when or exceeds or is of the
order of the value in normal nuclear matter the correla-
tion becomes insensitive to the real part. If one fits the
correlation data with a simple Gaussian form, Eq. (26),
these effects will lead to a small apparent source radius
and a small coherence parameter, A ( 1.
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of modifications to the correlation function's shape by the
pion —source-medium interaction is significant and robust.
From our model the following simple picture emerges: the
inclusion of pion —source-medium interactions leads to (1)

FIG. 9. Dependence of the opening-angle-averaged pion
correlation function on (a) crR and (b) or. The calculation
is performed with P = 400 MeV and q = 40 MeV for a uni-
form spherical source of Rs ——10 fm. In (a), the upper panel
shows the results for err ——0, whereas the lower panel shows
those for o.i ———2 and —4 fm —the solid and dashed lines,
respectively. In (b), the results for crR = —2, 0, 2 fm are
denoted by solid, dot-dashed, and dashed lines. The oscilla-
tions seen in Fig. 8 give rise to a large modi6cation of the
correlation at small ]o'y].

V. CONCLUSIONS

Using a simple model for the pion —source-medium in-

teraction, in the eikonal approximation, we have demon-
strated that an interesting momentum dependence in the
two-pion momentum correlation function is generated.
Specifically, when absorptive interactions are finite, the
pion correlation function decreases rapidly as the opening
angle between the pions increases. Our model is a simple
one, yet this behavior should not be sensitive to the as-
sumptions we have made. Pion-interferometry analyses
have usually been performed as a function of only two
of the two-pion momentum variables, implicitly assum-
ing that the correlation function is independent of the
opening angle. Our discovery of a strong opening-angle
dependence thus suggests that analyses should be car-
ried out explicitly in terms of the opening angle as well.
Note, moreover, that the opening-angle-averaged pion
correlation function exhibits a non-Gaussian shape when
pion —source-medium interactions are included, even for
a Gaussian source. This provides an alternative explana-
tion for the coherence factor A, which is usually invoked
to fit experimental data.
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