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Coulomb plus nuclear scattering in momentum space
for coupled angular momentum states
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The Vincent-Phatak procedure for solving the momentum-space Schrodinger equation with com-
bined Coulomb —plus —short-range potentials is extended to angular momentum states coupled by
an optical potential —as occurs in spin 1/2 x 1/2 scattering. A generalization of the Blatt-Biedenharn
phase shift parametrization is derived and applied to 500 MeV polarized-proton scattering from He.
The requisite high-precision partial-wave expansions and integrations are described.

I. INTRODUCTION

The theory and equations of quantum mechanics are
represented equally well in coordinate or momentum
space. Bound-state problems, which by definition deal
with normalizable wave functions, can actually be solved
equally well in either space, while scattering problems,
which in the time-independent Schrodinger theory deal
with non-norxnalizable states, are more challenging in
momentum space. This challenge arises, in part, because
boundary conditions are more naturally imposed in co-
ordinate space, and, in part, because non-normalizable
states contain singularities in momentum space and, ac-
cordingly, have no Fourier transforms [1]. In spite of
the difBculties, momentum-space calculations are impor-
tant because momentum space is where one derives the
nonlocal potentials of many-body and field theories, and
because there are fewer approximations needed in mo-
mentum space to handle them.

The Coulomb problem in momentum space has actu-
ally been "solved" a number of times —possibly starting
with Fock's study of the hydrogen atom [2]—yet no one
numerical approach appears to provides the requisite pre-
cision for all applications. The real "problem" is that the
Coulomb potential between a point projectile (P) and a
target (T),
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Kwon and Tabakin [3] solved the bound-state prob-
lem with the potential (1) by using Lande's technique [4]
of subtracting a term from (1) which makes its integral
finite, and then adding in a correction. Alternatively,
Cieply et al. [5] solved the bound-state problem by using
a modification of the Vincent-Phatak (VP) procedure [6].
This procedure gives the Coulomb potential a finite range
by cutting it ofF beyond some radius R,„t,as shown in
Fig. 1, and then corrects the asymptotic behavior of the
resulting wave functions. If the procedure is successful,
the calculated scattering will be independent of R,„&.

The VP cutofF procedure was originally formulated for
intermediate-energy pion scattering from light nuclei [6]
where it provided sufBcient accuracy for the small num-
ber of partial waves involved [7]. However, the accu-
racy has become a concern for intermediate-energy pro-
ton scattering where the proton's much larger mass leads
to correspondingly larger momentum transfers and cor-
respondingly greater numbers of partial waves. Crespo
and Tostevin [8] and Picklesimer et al. [9] have docu-
mented difficulties with the VP procedure, diKculties
which appear as a sensitivity of the computed phase shifts
to the cutofF radius or as a several-percent error in the
phase shift when compared to coordinate-space calcula-

T= V+ VGT

has a 1/q singularity arising from the infinite range of
the Couloxnb potential, and this singularity must some-
how be regularized before a numerical solution is imple-
mented. In (1), q = k' —k is the difference between the
final and initial momenta k' and k, and p(q) is a form
factor which accounts for the finite size of the target's
charge distribution and makes the potential well behaved
at large q (but not at q = 0).

Current address: Physics Department, Harbin Normal Uni-
versity, People's Republic of China.

FIG. 1. The VP procedure's partition of coordinate space
into a region r ) R in which the nuclear potential vanishes,
and a region r ) B,„tin which the Coulomb potential is set
equal to zero. The wave function in the outer region is denoted
by u&(r ) and that in the intermediate region by u&(ri, r).
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tions. Both Refs. [8] and [9] suggest algorithms to re-
duce the errors. Alternatively, Elster et al. [10] applied
the two-potential formula to the Coulomb and nuclear
potentials and outlined an. approach requiring multiple,
numeric Fourier transforms between coordinate and mo-
mentum spaces. In contrast, the study of intermediate-
energy proton scattering &om spinless nuclei of Arellano
et al. [11]simply made the VP procedure sufficiently pre-
cise by using the high-precision partial-wave expansions
developed by Eisenstein and Tabakin [12] (as a check,
they transformed the potentials to coordinate space and
solved the equivalent integro-differential equation).

In this paper we generalize the VP procedure so that
it can be applied to intermediate-energy proton scatter-
ing from spin 1/2 nuclei in which states of differing or-
bital or spin angular momentum are coupled. In the
process, we also generalize the Blatt-Biedenharn phase
shift parametrization of the scattering of two spin 1/2
particles so that it can describe channel coupling with a
nonsymmetric or nonunitary S matrix, as occurs when
scattering Erom an optical potential or when the phase
shifts are complex. Although our generalizations of the
VP procedure and computations emphasize working di-
rectly with S or T matrix elements, the connection to
phase shiRs is indicated.

In Sec. II we derive and reformulate the VP proce-
dure for uncoupled channels. Since the basic physics can
get obscured in the multiple steps of the VP procedure
for coupled channels, it is important to understand the
physics and notation of Sec. II before proceeding to the
coupled-channels case. In Sec. III we present our formu-
lation for coupled channels, and in Sec. IV we give some
sample calculations of 500 MeV proton scattering Rom
He.

II. UNCOUPLED STATES (0 x 0, 0 x 1/2)

defbital angular momentum and j = l + 1/2 = l+ is the
total angular momentum. For spin 0 scattering from a
spin 0 or spin 1/2 target, there is no coupling of diff'erent

channels in (2).
Equation (2) is valid as long as the coordinate-space

potential is of finite range —which in practice means that
at some radius the potential is small enough to be ignored
without significantly changing the predicted scattering
observables. Vfe indicate by the shaded area in Fig. 1
the region in which the nuclear potential V„actsand the
range for the nuclear potential by R. The coordinate-
space Coulomb potential does not vanish rapidly enough
to be considered as having a finite range, and although
its strength may be weaker than the nuclear potential, it
cannot be included with the nuclear potential in (2).

The Vincent-Phatak procedure sets the coordinate-
space Coulomb potential to zero (cuts it off) for all radii
r greater than some fixed value R,„q.

V:"'(.) = V.(.) e(R,„,—.).

Z Z 6V;"'(k', k) = [p(q) —cos(qR,„„)]
27r q

(4)

of the truncated Coulomb potential (3) has the q ~ 0
limit of Z~ZTe R2„~/(6x ), we see that the q = 0 sin-
gularity of (1) has indeed been removed. Because the
cutoff Coulomb potential is of finite range (in coordinate
space) and without singularities in momentum space, its
partial-wave decomposition can be added to that of the
nuclear potential,

Vi+(k, k) = V~,i+(k, k) + V, , i (k ik)~

The coordinate-space regions are illustrated in Fig. 1
where we assume that R„„tis larger than the range R of
the nuclear potential. Since the momentum-space trans-
form

Consider scattering kom a short-ranged, but nonlo-
cal, nuclear potential V„(r',r) and the infinite-ranged
Coulomb potential V, (r). Because the nuclear poten-
tial V„is nonlocal, the preferred method to obtain the
scattering amplitude is to solve the Lippmann-Schwinger
equation

T, (k', k) = Vi(k', k.) + — dp
E(kp) + i e —E(p)

'

(2)

with Vi i~(k', k) the partial-wave matrix element of the
momentum-space potential V (k', k). Here l is the or-

and when inserted into the Lippmann-Schwinger equa-
tion (2), this combined potential produces a well-defined
solution.

The solutions Ti~(k', k) of the Lippmann-Schwinger
equation in momentum space (2) can readily be trans-
formed into coordinate-space wave functions for all val-
ues of r [13]. Alternatively, just the on-shell element

Tip(kp, ko) can be used to obtain the wave function any-
place outside of the shaded region in. Fig. 1. In the
"outer" region r ) R,„t,both the nuclear and cutoK
Coulomb potentials vanish, and so the (unnormalized)
wave function there is expressed as a linear combina-
tion of the regular plus either irregular or outgoing so-

lutions [Fi(kpr) plus either Gi(kpr) or Hi (kpr)] of the(+)

potential-free Schrodinger equation [14]:

' e' '+&"'l [sinbi~(ko) Gi(kor) + cosbi~(ko) Fi(kor)] for r )R«q,
i+i)2(r) =

& Fi(kpr) + Ti+(ko) Hg~ ~(kor) for r & R,„t,,
, sin[kpr —hr/2 + hi~(kp)] for r() R,„t)~ oo .

(6)
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In (6) we have used two equivalent forms for the &ee
partial wave functions as well as the asymptotic limit.
The reduced T matrix element Ti~(kp) in (6) is related
to the preliminary" phase shift b~g by

Ti~(kp) = e' '+~"'l sinb'i~(kp)

and to the solution Tj~(k', k) of the Lippmann-Schwinger
equation (2) by

Tjg(kp) = p@T—[~(kp kp) p@ = 2kp
Ep(kp)Ez (kp)

p 0 +ET ko

(8)

Note, again, that we solve the Lippmann-Schwinger
equation with a potential which is the sum of nuclear and
cutoff Coulomb potentials. Accordingly, the preliminary
or unmatched phase shift b~ —i~ [which describes the wave
function (6) in the outer region of Fig. 1] incorporates

I

the effects of the naturally 6nite-range nuclear potential
and of the arti6cially truncated Coulomb potential. In
particular, effects arising from the finite extent of the
target's charge distribution are included in the charge
form factor p(q) in (1), and consequently are included in
the preliminary phase shift bz —~g.

To describe physical scattering observables we need a
wave function which incorporates the full extent of the
Coulomb force (or at least one with a cutoff of atomic di-
mensions, which is essentially at infinity in Fig. 1). This,
in turn, requires that the preliminary phase shifts b~ be
corrected for the arti6cial cutoff. The heart of the VP
procedure is the observation that while there is no nu-
clear potential acting in the intermediate region between
R and R,„tof Fig. 1, there is the Coulomb potential there,
and that means that the wave function in the intermedi-
ate region must be a linear combination of regular and
irregular Coulomb waves:

( )
Fi(g, ko )+T;~(k )H,~+l(il, k )
sin kpr —l~l + ~r'+ + ai —q»(2kor)

for A+7 +Rcu
for r(& R,„t)m oo .

(9)

Here il = Z~Z~e2/v is the Sommerfeld parameter, Fj(g, kr) is the regular Coulomb function, and H&+ (g, kr) is the
outgoing Coulomb function.

The Coulomb-modified T matrix,

is unknown, and the purpose of the VP procedure is to determine it or, equivalently, the phase shift b&+. This js done
by the requiring that at r = R,„qthe intermediate region s wave function u&~(g, r) (a linear combination of Coulomb
waves) have a logarithmic derivative which matches that of the exterior wave function ui~(r) (a linear combination
of &ee waves):

I

u&~(&, r)
u(~(g, r)

V mRcut

«+(r)
ui+(r) T'~Rcut+

While r is not large enough to match the phases of the asymptotic wave functions in (6) and (9), we can match the
linear combination of free and Coulomb waves. This yields

Tjy(k) [Fj(g, kr), H&+ (kr)] + [F~(g, kr), Fj(kr)]

[Fj(kr), H&+ (g, kr)] + Ti~(k) [H&+ (kr), H&+ (g, kr)]
(12)

where the brackets indicate Wronskians evaluated at r =
R,„q[15].

As we expand the intermediate region by taking
R,„t—+ oo, the intermediate region's wave function
ui~ (kpr, g) becomes the final physical wave function &om
which we can extract the experimental scattering ob-
servables. Consequently, we can now use the standard
expression for the scattering amplitude describing scat-
tering &om a short-range potential in the presence of the
Coulomb potential. It is informative to note that if in-
stead of matching we had set the phase of the asymptotic
limit of the intermediate-region wave function ui~ (kpr, g)
[Eq. (9)] equal to that of the asymptotic limit of the ex-
terior wave function u~ i~ig2(r) [Eq. (6)], we would have
obtained

bi~ ~ b&~ + oi —gin(2kRc~t, ).

bi~ - 8;~+oi. (14)

When we determine the Coulomb-modified phase shift
via matching the wave functions' logarithmic derivatives
(12), we explicitly subtract the ln(2kR, „t)term.

Substitution of (14) into the usual partial-wave expan-
sion of the scattering amplitude, and some rearrange-
ment, leads to the final expression for the (spin-nonfiip)
amplitude for scattering:

I

The ln(2kR, „t)term, which arises &om the specific dis-
tortion of wave functions caused by the point Coulomb
force, is problematic in the R,„q~ oo limit. The detailed
analysis [14,16] shows that for all but the most forward
of scatterings, the standard expansion of the scattering
amplitude can be used with
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f(t)) = f;t(t)) + f" (t)) (15)

f~t(8) = —
2 exp(2i [op —r)lnsin{8/2)]),

2ko sin (8/2)

f (e) = ) (2l + 1)e ' ' (ee' ' —1) I (eIoeee) (17)
1

2ikp

= —) (2l+1)e ' 'Tf+Px(cos8),
0 l=o

{18)

where f't is the scattering axnplitude for a point Coulomb
potential, and f"' is the amplitude for nuclear scattering
in the presence of the Coulomb potential [17]. Note that
since the Coulomb-modified phase shift b&+ is defined in

(9) relative to Coulomb waves which are already shifted
by the point Coulomb phase o'(, the amplitude f"' also
includes the eKect of Coulomb scattering &om the finite
extent of the charge distribution.

kxk'
„

k —k' - k+k'
lk+ kil

(20)

& =
2

(lal' + Ibl' + lcl' + ldl' + lel' + lf I'),
1

(21)

Apollo = —Re(a'e+ b'f), (22)

Appp = —Re(a'e —b' f), (23)

D o-o = —(lal'+ lbl' —lcl' —ldl'+ lel'+ Ifl'). (24)

Once the a f—amplitudes are known, it is straightfor-
ward to calculate the experimental scattering observables
[18—20]. For example, the differential cross section, beam
analyzing power, target analyzing power, and depolariza-
tion parameters are

III. COUPLED STATES ( —x —)

A. Basic analysis

If the strong interaction couples orbital or spin angular
momentum states, we must generalize the VP method—
even though we assume that the Coulomb interaction re-
mains central and does not couple states. We assume
rotation invariance, parity conservation, and time rever-
sal invariance, in which case the spin-space structure of
the nucleon-nucleus T matrix is [18,19]

Here we use the tensor notation X„q„qwith the sub-
scripts p and t denoting the direction of the initial-state
projectile and target polarizations, the primes denoting
the corresponding final-state quantities, and a subscript
0 denoting zero or undetected polarization. Accordingly,
only P is polarized in the n direction in (22) while only
T is polarized in the rx direction in (23).

The origin of the partial-wave analysis [21] is the ex-
pansion of the T and V matrices in spin-angle functions:

(T(k) k))) 2 . (, ,)
(Tt', , (k', k)l

(V(k', k) j m . „,, &V,', ,
(' ')(k', k))

2T(k', k) = a+ b+ (a —b)o„o„+(c+ d)o o.

+(c —d)a, o, + e(a„+(r„)+ f((r„—a„).
(»)

Although not indicated in (19), a f are fun—ctions of the
initial and final momenta k and k'. The superscripts P
and T in Eq. (19) indicate the projectile and target, re-
spectively, while the subscripts n, I,, and m indicate a dot
product of P's or T's cr with one of the three independent
unit vectors

P,'...' (k') P ' (k) (25)

In (25), l, s, and j are the orbital, spin, and total an-

gular momenta of the target plus projectile, and p&,
'

is the spin-angle function. When we substitute the
expansions (25) into the three-dixnensional Lippmann-
Schwinger equation, we obtain the integral equations cou-
pling states with spin 0 and 1 (the singlet s and triplet t
states), as well as those coupling triplet states with dif-
fering orbital angular momenta:

Tj(ee)
2.2

Tj(~ )
22

Vi(») ~ p2d Vi(»)(k)p) Vi(~t)(kr p)+Vi(~~) @+ @(p) ViI«) (J )
) Vi(«) (k) )

Ti(»)(p k)
T '( k)

(26)

Ta(«)
2.2

Tj(et)
22

V'( ) d V'(" (k' ) V' ' (k' )jj + ~ ~ jj '~ jj
Vi (~&) @+ E(p) Vi(~t)(ki p) Vi (»)(kI p) Ti ('&)

( k)
(27)

Tj(«)—1j—1
g2(«)

j+1j —1

(28)

z ~(«)
j+1j+1

Tq(«jj—1j+1

I

V. . p dp V~. . {k,p) V. {k,p) T (.
(29)
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For the sake of compactness, we leave oK the (k', k) dependences of the leftmost T and V in (26)—(29), and use E+
as a shorthand for E(kp) +is.

Once these partial-wave I ippmann-Schwinger equations are solved, the on-energy-shell matrix elements

Tt, t(' ' (kp, kp) can be converted to phase shifts or summed to form scattering ainplitudes. In Sec. IIIB we show
how to extend the spin 1/2 x 1/2 phase shift analysis used for two nucleons [22]—[25] to nucleon-nucleus scatter-
ing with complex potentials. The summation of the partial-wave T matrices to form the spin-basis matrix element

(s m, p~T~sm, ) is derived in [21] for the pure nuclear case. As discussed in Sec. IIIC, when the Coulomb force is
present, there is a point Coulomb scattering amplitude added to the nonQip spin matrix elements, and a Coulomb
phase factor Ckt = exp(2iot) multiplying some of the partial-wave inatrix elements:

T,i(k', k) = (0, 0(T(1,1) = (so)

T..(k', k) =—(0, 0iTi0, 0) =, ) Pt(x)(2l+ 1) e&T„'")(k',k),
l=o

T (kp,pk) =
p ) Pj(p)I(l + 2)G~T~I (k, k) —pl(l + 1)(l + 2) T~~+& (k, k)

l=o

+(2!+ 1)GITj~j (k k) + (I 1)0(T~~ (1 k) pI (I 1)IT~I p (0 0) 1

(s1)

(32)

Tpp (k k) —= (0 0)T)0 0) =
p ) Pi (p)

(
(I + 1)ktTj~ (k k) + IktTj ~ (k 0) ~

l=o

+pl (I + 1)(!+ 2) Tt(~~ (I'P k) + pl (I 1)IT(( p (0 I'P)

Ti()(k', k) = ) Pt (z) Ttt (k—', k) Tt t+ (k', k) + Tt )~2 (k', k) — Ttt 2 (k' k)4+2
l=1

(33)

(s4)

l=1

Tl—l(tt) (kl k) T&+i(tt) (kl k) Tt —i(tt) (kl k)tl+2 I
l tl —2 (s5)

4w2 - '
[ l + 1 "

Q(l + l)(l + 2)

2l + 1 Tl(tt)(kl k) TI—i(tt)(kl k) Tl—i(tt)(kl
l(l + 1) " l Ql(/ —1) J

1
a(k, k) = —(Tii+Tpp —Ti i),

2

b(k', k) = —(T„+T„+Ti i),
2

c(k', k) = —(Tii —T,.+Ti i),2
1

d(k, k) = —(Tpp + Ti i —Tii) /(2 cos 8glp)
2

e(k', k) = (Tip —Tpi),
2

f(k', k) = i~2T, i.

(sa)

(s9)

(4o)

(41)

The a f amplitude—s needed to calculate the spin ob-
servables (21)—(24) are then constructed from the T ma-
trices in the spin basis:

The partial-wave potential matrix elements used as
input to (26)—(29) are obtained by first evaluating the
potentials in the spin basis (s'm, ~V~sm, ), and then
expanding these spin-basis matrix elements in partial
waves. The expansions are the same as those of the T
matrix, (30)—(36), but with no Coulomb phase factors.
These expansions are then inverted to obtain the partial-
wave potentials V&, &(' ')(k', k) by numerically projecting
out the difFerent Pt (x) dependences and then solving
the resulting linear equations [21].

B. Extensions for optical potentials

Blatt and Biedenharn were the first to give the exten-
sion to the phase shift analysis needed to describe the
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scattering of two spin 1/2 particles in the presence of a
tensor force which mixes the orbital angular momentum
states [24,25). They assuined that the j = / + 1 states
within the nucleon-nucleon spin triplet have the asymp-
totic forms

(r) g —i[ler —(j+I)$] B i [Sr (j+—I) q ]
v ~oo

(44)

1
(cosa+ cosa ~e ' ++

det U
+sine+ sine +e ' -),

1
(sine + cos e +e ' ++

det U
—cosa +sine +e2ib

1
(sine~ cose+ e ' ++

det U
—cos 6+ sin 6+ e ))

2i8

1
(cos e+ cos E +e

det U

+ sin e+ sine +e ' ++ ).

(53)

(54)

(55)

The S matrix for the coupled system is then defined by
the relation among the A's and B's:

The T matrix elements used in the VP procedure and
computations are simply related to the S matrix elements
via (7) and (8):

21p@TII& (kO& ko) = biil —SI&—j~i I—j~i(kp). (57)

B+ S++ S+ A+
B S + S A (45)

where we use the shorthand notation

+ = (j =i+1). (46)

For NN scattering below the pion production threshold,
the S matrix must be unitary since Bux is conserved, and
symmetric since all terms in the Schrodinger equation are
real. For that case, the most general form for S, a uni-
tary and symmetric 2 x 2 matrix, is given by a similarity
transformation with a "mixing" parameter ~:

We note that (53)—(56) reduce to the standard, cou-
pled case [24,25] if e+ ——e +, and to the standard un-

coupled case if e+ ——e + ——0. For the symmetric S
matrix case, Stapp et al. [22] also gave a parametrization
of the S matrix in terms of the "bar" phase shifts, which
in some cases is more convenient for the phenomenologi-
cal parametrization of data. Note, however, that the bar
phases are not the ones introduced here, and even for the
NN case, the bar phases do not provide a diagonal rep-
resentation of the S matrix as do the Blatt-Biedenharn
phases.

C. VP procedure for coupled channels

[S) = [U] '[ '
][U], (47)

[U)
cos Ej slil ej
—sin E~ cos 6~

(48)

e'++ 02ib
[e' l= 0,2;s

[Ul = COS 6+ SlXl E

—S1Xl 6+ COS 6 (50)

cosa + —sine +
sin ~+ cos e+

det U = cos 6+ cos E + + sin 6+ six16

(51)

(52)

This leads to the S matrix elexnents S~~
Sj=I'+I,j=i+I (ko) having the forin

When dealing with nonidentical particle scattering
through an optical potential, the S matrix is no longer
unitary (which means the phases shifts become complex),
and as well, the S matrix is no longer symmetric (which
means there are now two mixing parameters). To de-
scribe this more general case, we assume (47) to be valid
but with a more general transformation matrix

The general approach we take for applying the VP pro-
cedure to channels coupled by an optical potential has
three steps. First, we transform the states to a new basis
in which there is no channel coupling. Second, we match
the exterior wave function in this basis u(kr) to an inter-
mediate region wavefunction u(r, q) (a linear combination
of Coulomb waves). Finally, we return to the original,
nondiagonal basis to calculate the scattering observables.

A possible implementation of these steps would be to
take our S matrix elements computed via (26)—(29) and
(57), assume they have the forms (53)—(56) in terms of
phase shifts and coupling parameters, and then search for
the (b', h++, ~+, e +) which satisfy these transcenden-
tal equations. The 8's would then be the phase shifts in
the basis iD which S is diagonal and we could use them for
matching. Instead, we have adopted a more direct —but
equivalent —approach in which we explicitly diagonalize
the S matrix, do the VP matching of the wave functions
in the diagonal basis to obtain the Coulomb-modified T
matrix elements, and then transform the xnatrix elements
back to the original basis where we calculate the observ-
able s.

Considering the complexity of the procedure, we enu-
merate the steps followed in a realistic calculation.

(1) Start with a microscopic, first-order, momentum-
space optical potential [20,26,27]
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V„(k',k) = N((t f+s+ tf"o~)p", (q) i [t~"so~o~+t~"o~ it,~~o~o~ i t~"~of oi~

+t (ir o + ir ir )]p (q))+ ~((to + t )p (q) + [to- + t

+t. '„o~ +t."„o,~, it. ', (o ~, i~, ~ )]p.,(q)). (58)

Here the subscripts a—e indicate that these terms origi-
nate from nucleon-nucleon (NN) t's with the same spin-
space structure as (19). The potential (58) manifestly
contains the spin 1/2 x 1/2 dependence of NN scatter-
ing weighted by form factors describing the distributions
of spin (sp) and matter (mt) for protons and neutrons
within the nucleus. The off-energy-shell NN t's in (58)
are transformed to the projectile-target center of momen-
tum kame with a Lorentz covariant prescription which
also optimizes the impulse and factorization approxima-
tions, and the off-shell variation is described with a sep-
arable potential [26,27].

(2) Add the regularized Coulomb potential V;"~(k', k)
[Eq. (58)] to the optical potential V„(k',k) [Eq. (58)].
Since the Coulomb potential is central, this electively
modifies the central potential term arising from t +& and

t++&. The Coulomb potential is accordingly added to the
diagonal spin-basis potentials V„,Vpp, and Vjq'.

~V..(k', k) ~ ~V..(k', k) ~
Vpp(k, k) ~ Vpp(k, k) + V (k, k). (59)

( Vi i (k', k) ) (Vi i (k', k) )
(3) Project out the partial-wave potentials from the

spin-basis potentials using the V versions of (30)—(36).
The spin-independent Coulomb potential is thereby in-

cluded in Vii
" (k', k) and Vii (k', k).

(4) Solve the coupled Lippmann-Schwinger equations

(26)—(29) for Ti, i' ' (k', k). This is equivalent to solving
for the wave function in the outer region.

(5) Convert the T matrix elements into S matrix ele-
ments via (57), and construct the nondiagonal S matrix

[s) s++ s+-
S + S

(6) Explicitly diagonalize the S matrix elements with
the similarity transformation

[s'] = [U][s)[U
0

,2,b (61)

[U] = S
A+ —S++

(62)

U
—1 (

[ ) dtU s+
E Ap S+p

A —S
1

2Ay ——S++ + S

S++ —S + 4S+ S +. (64)

We now know the diagonal elements exp(2ib~+).
(7) Extract the preliminary phase shift b++ (for the

outer region's wave function) or equivalently, the nor-
malized preliminary T' matrix [Eq. (7)]:

T++ ——e ++ sin b++.i8 (65)

Since we are in a basis in which there is no coupling, we
can match the outer wave functions to the linear combi-
nation of Coulomb waves of the intermediate region.

(8) Do the VP matching as in (12) to obtain the
Coulomb-modified amplitude T+'~ (or, equivalently, the
phase shift b~~) from the T++.

Tgg(k) [Fi(rI, kr), H,'+'(kr)] + [Fi(rl, kr), Fi(kr)]

[Fi(kr), Hi+ (g, kr)] + T++(k) [Hi~+i(kr), Hii+l (rI, kr))

[s ]=I',2ib+'+
(67)

and use the U matrix of (61) to transform S ' back to
the basis in which we calculate the observables:

[S" ] = [U) '[S'][U]. (68)

(10) Even though the method is guaranteed to diago-

(9) Now that we know the wave function in the inter-
mediate region, we transform back to the original basis
to extract the scattering amplitude. Form a Coulomb-
modified S' matrix in the diagonal basis,

nalize the S matrix, as an independent test, check that
the unitarity constraint is preserved throughout:

I si"i'I & 1 Sii (69)

(ll) We have split the total phase shift into the sum of
the point Coulomb phase 0~ plus the Coulomb-modified
phase shift P++. As done for the spinless case, we
separate out the point Coulomb scattering amplitude
kom the nuclear amplitude, leaving behind the Coulomb-
phase factor @i = exp(2ioi) in the diagonal (m', = m, )
spin-basis amplitudes T (k', k). Form the partial-
wave expansions of these amplitudes via (30)—(36).
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(12) Add the point Coulomb amplitude to the diagonal
spin-basis amplitudes:

~T..(k, k) ~ ~T..(k, k) q
Too(k, k') -+ Too(k, k') + f;(8).

(Txx(k) k') j (Txx(k, k') f
(70)

(13) Calculate the scattering amplitudes a f —via (37)—
(42), and from these the experimental observables, for
example, via (21)—(24).

IV. SAMPLE CALCULATIONS

f."""'(8)= f."(8)) (q) + O[(~~)'1. (71)

As a first test of our precision with the VP method,
we solved the Lippmann-Schwinger equation with only a
point Coulomb potential. We confirmed that our com-
putations reproduced the point Coulomb phase shifts
0'x [after rexnoval of the )7ln(2kR, „t)term in (9)]. We
concluded. kom this severe test that factoring out the
overall phase factor of e ' ' is helpful, and that 48—64
grid points are required in order for our solution of the
Lippmann-Schwinger equation to yield four- to five-place
precision in cr~. That precision in r~ is needed to obtain
a point Coulomb scattering amplitude fP which is indis-
tinguishable &om the analytic expression on a five-decade
semilogarithmic plot.

As the next test, we computed pure Coulomb scatter-
ing of 500 MeV protons from the finite charge distribu-
tion of sHe. While in this case we have no exact answer to
compare with, we do have the first Born approximation
amplitude,

We obtained an essentially perfect reproduction of (71).
This means we can include finite Coulomb effects, in
addition to the long-range Coulomb force, to at least
this level of precision [(Za) 0.02%]. To obtain this
agreement we used 48 grid points in the solution of the
Lippmann-Schwinger equations (26)—(29), and increased
the number of Gaussian integration points used in our
partial-wave projection,

1

Vi(k', k) = x V(k', k) Px(cos 8I,&) d(cos8I, &), (72)
—1

until the partial-wave summation

&max

V(k', k) ) (2l + 1)Vj(k', k)P((cos 8s ),) (73)

reproduced all oscillations present in V;"'(k', k). We
show a reproduction of this type in Fig. 2 where the many
oscillations arising froxn the cos(qR, „e)term in the cut-off
Coulomb potential (4) are evident. We obtained six-place
reproduction of V;"e(k', k) using l „=48 partial waves

and 96 integration points in the partial-wave projection
(72). Ten-place reproduction demanded l „=96. We
expect these number to scale as kR, and so larger nuclei
or higher energies will require more partial waves and
grid points. For these calculations we used analytic nu-

clear form factors, although we also were successful for
C using numerical Fourier transforms of Wood-Saxon

densities [21]. However, we found that noise and insta-
bility appear for form factors which falloff slowly in q. In
those cases, a cure is to impose a rapid falloff for q values
beyond the limit of experimental measurements.

An important requirement on the VP method is that
the matching radius, which we take equal to R,„t,be

10

10

V„(exact)
Partial Wave Sum - -"-

~

«&il lk k')
~

10
3

d xx/dn p —He

500 MeV

-10
10

—1.0 0.4

~ I ~

COS Okk.
0.4 1.0

Q -1.-
10

a

—3
10

Rcut= 6 fm.
R „,= 10 fm.
Hausser et al.

40
O (deg)

FIG. 2. The nuclear-plus-Coulomb potentials in momen-

tum space for the spin triplet state with m, = m, x = 1 as
a function of the cosine of the angle between k and k'. The
summation (73) of partial-wave potentials essentially overlaps
the input potential.

FIG. 3. The differential cross section for 500 MeV proton
scattering from He. Calculations performed using a cutoQ'

radius in the range 6 fm & B „t,& 10fm fall within the two

curves. The experimental data are from Hausser et aL [28].



50 COULOMB PLUS NUCLEAR SCA'l l'BRING IN MOMENTUM. . . 3045

10

8

-1
10

-3
10

VP method

No Coulomb

Hausser et al.

/dn p-' He

500 MeV

R,„qwhich led the authors of Ref. [8] to search for an
alternative to the matching method. For psHe at 500
MeV, we find that using R,„q& 5 f'm produces unstable
results (presumably cutting off some of the nuclear po-
tential), but as seen in Fig. 3, we obtain stable results for
6 fm & R,„&10 fm.

In Fig. 4 we compare the nuclear-plus-Coulomb cross
section and polarization (solid curves) to those calculated
without Coulomb (dashed curves). The exact handling
of the Coulomb potential is seen to have a signi6cant, al-
though small, effect in the semilogarithmic plot of do'/dO,
and a more pronounced efFect for Aoo„o.

0.8 V. CONCLUSION

0.4

8 0

-0.4

-0.8
I I

40 0 (&eg)
c.m.

80

FIG. 4. The difFerential cross section and analyzing power
(unpolarized target, projectile polarized in normal direction)
for 500 MeV proton scattering 6.om He. The solid curves
give the exact results using the VP method and the dashed
curves give the results if no Coulomb force is included. The
experimental data are from Hausser et al. [28].

We have extended the Vincent-Phatak procedure for
the exact inclusion of the Coulomb potential in momen-
tum space to calculations of proton scattering &om spin
1/2 nuclei in which spin-dependent forces couple orbital
and spin angular momenta channels. As part of that ex-
tension we also generalized the Blatt-Biedenharn phase
shift analysis for the scattering of two spin 1/2 parti-
cles to cases where the S matrix is no longer symmet-
ric (optical potentials or complex phase shifts). Al-

though our formulation and calculation is for a more
complicated spin dependence than examined by Arrel-
lano et al. [11],we confirm their finding that the VP pro-
cedure can be made sufficiently accurate for applications
to intermediate-energy proton scattering by using high-
precision partial-wave expansions and large numbers of
partial waves.

larger than the range of the nuclear force (in order to be
able to express the intermediate region's wave function
as a linear combination of pure Coulomb waves). How-

ever, increasing R,„qmakes the cutoK Coulomb potential
more oscillatory and more difficult to handle in momen-
tum space. In fact, it was the sensitivity to changes in

ACKNOW'LED GMENTS

It is our pleasure to thank Shashi Phatak and Lanny
Ray for helpful discussions and suggestions. We grate-
fully acknowledge support &om the U.S. Department of
Energy under Grant No. DE-FG06-86ER40283.

[1] E. Hernandez and A. Mondrsgon, Phys. Rev. C 29, 722
(1984); G. Garcia-Calderon and R. Peierls, Nucl. Phys.
A265, 443 (1976).

[2] V. Fock, Z. Phys. 98, 145 (1935).
[3] Y.R. Kwon and F. Tabakin, Phys. Rev. C 18, 932 (1978);

D.P. Heddle, Y.R. Kwon, and F.Tabakin, Comput. Phys.
Commun. 38, 71 (1985).

[4] A. Lande (private communication).
[5] A. Cieply, M. Gmitro, R. Mach, and S.S. Kamalov, Phys.

Rev. C 44, 713 (1991); M. Gmitro, S.S. Kamalov, and
R. Mach, ibid. 38, 1105 (1987).

[6] C.M. Vincent and S.C. Phatak, Phys. Rev. 10, 391
(1974).

[7] R.H. Landau, S.C. Phatak, and F. Tabakin, Ann. Phys.
(N.Y.) 78, 299 (1973); R.H. Landau, Comput. Phys.
Commun. 28, 109 (1982).

[8] R. Crespo snd J.A. Tostevin, Phys. Rev. C 41, 2615
(1990).

[9] A. Picklesimer, P.C. Tandy, R.M. Thaler, snd D.H.
Wolfe, Phys. Rev. C 30, 2225 (1984).

[10] Ch. Elster, L.C. Liu, and R.M. Thaler, Los Alamos
National Laboratory Report No. LA-OR-90-2126, 1990;
C.R. Chinn, Ch. Elster, and R.M. Thaler, Phys. Rev. C.
44, 1569 (1991).

[11] H.F. Arellano, F.A. Brievs, snd W.G. Love, Phys. Rev.
C 41, 2188 (1990).



3046 LU, MEFFORD, LANDAU, AND SONG 50

[12] R.A. Eisenstein and F. Tabakin, Phys. Rev. C 26, 1

(1982).
[13] The Coulomb waves used here are consistent with a

Lippmann-Schwinger equation (2) in which the nonrel-
ativistic expression E(p) = p /2p is used for the en-

ergy. In our applications we use the relativistic expression

E(p) = gpz + mz + gp2 + mzT which is not fully con-
sistent with these Coulomb waves (although the forms
for the Coulomb waves appropriate to the Klein-Gordon
and Dirac equations are known, we are not aware of
any discussion of the forms appropriate to the relativisic
Schrodinger equation we use). While this introduces some

inaccuracy into our calculation, it does not affect the
thrust of this paper which is to outline the extensions to
the VP method for two spin 1/2 particles and to demon-

strate that the requisite precision is attainable. We sus-

pect it would be a better approximation to use relativistic
Coulomb waves.

[14] We use the conventions and normalizations found in
R.H. Landau, Quantum Mechanics II (Wiley, New York,
1990).

[15] Since this Wronskian is a functional of the solutions from
two different Schrodinger equations, it is not independent
of r.

[16] L.S. Rodberg and R.M. Thaler, Introduction to the Quan
turn Theory of Scattering (Academic Press, New York,
196?).

[i?]

[i8]

[19)

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

M J. Paez, M E. Sagen, and R H. Landau, Comput.
Phys. Commun. 52, 141 (1988). Note that the factor-
ization of exp(2io~) was not made properly for all parts
of the scattering amplitude in this code and this may lead
to numerical problems.
J. Bystricky, F. Lehar, and P. Winternitz, J. Phys.
(Paris) 39, 1 (1978).
P. La France and P. Winternitz, J. Phys. (Paris) 41, 1391
(1980); correction in L. Ray et al. , Phys. Rev C 37, 1169
(1988).
R.H. Landau, M. Sagen, and G. He, Phys. Rev. C 41, 50
(1990).
T. Mefford, RH. Landau, L. Berge, and K. Amos, Phys.
Rev. C 50, 1648 (1994).
H.P. Stapp, T.J. Ypsilantis, and N. Metropolis, Phys.
Rev. 105, 302 (1957).
A. Gersten, Phys. Rev. C 18, 2252 (1978); 24, 2174
(1981).
J.M. Blat t and L.C . Biedenharn, Rev.

Mod�.

Phys. 24,
258 (1952).
J.M Eisenberg and W. Greiner, Nuclear Theory (North
Holland, Amsterdam, 1972), Vol. 3, p. 39.
M.J. Paez and R.H. Landau, Phys. Rev. C 29, 2267
(1984); 30, 1757 (1984); Phys. Lett. 142B, 235 (1984).
R.H. Landau and M. Sagen, Phys. Rev. C 33, 44? (1986).
Q. Hausser, J. Phys. (Paris) Colloq. 22, C6-99 (1990).




