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Second order efFects in the algebraic potential
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The energy dependence of the algebraic potential for heavy-ion elastic scattering near to the
Coulomb barrier is investigated. The inclusion of an additional term in the complex algebraic
potential to take into account the re8ection due to the imaginary well is proposed. With this new
term 12 elastic scattering angular distributions of the 0+ Cu system ranging from E = 39 to
64 MeV in the laboratory system were analyzed. The real and imaginary strengths of the algebraic
potential exhibit a dependence with energy similar to the dispersive behavior associated with the
threshold anomaly.

PACS number(s): 25.70.Bc, 24.10.—i

I. INTRODUCTION

The algebraic scattering theory (AST) proposed by Al-
hassid and Iachello [1] is a useful method for analyzing
heavy-ion scattering data. One of the most practical
versions of AST is based on SO(3,1) symmetry. In this
case the S matrix can be written as a ratio of two Euler
gamma functions:

behavior of v(E) that exactly reproduces the 8 matrix
obtained from realistic optical model calculations. This
study shows that second order contributions of the imag-
inary part to the real potential are very important and
should be included in the algebraic potential in order to
give a more precise description of the scattering between
heavy ions.

II. EXPERIMENTAL DETAILS

where e, called the algebraic potential, is equal to the
Sommerfeld parameter rl = pZqZ2e2/52k for the case of
a pure Coulomb interaction. In this case the symmetry
is exact. In order to take into account the strong inter-
action, the algebraic potential must be generalized to be
dependent on the angular momentum E:

v(e) = &+ v. (e).

Absorption can be taken into account by making the
algebraic potential complex provided Im(v) & 0 to guar-
antee unitary bound for the S matrix. A few models have
been proposed for the 8 dependence of the real and imag-
inary parts of the algebraic potential [1,2]. Also theoret-
ical investigations based on semiclassical methods have
given some insight into the shape of the algebraic poten-
tial for high values of E [3,4]. In general, these models are
based on a Woods-Saxon shape in f space similar to the
Woods-Saxon well commonly used in the usual optical
model calculations. By means of an inversion procedure
developed by two of us [2] we were able to investigate the

The elastic scattering cross sections for the ~ 0+ Cu
system have been measured using the 60 beam from
the 8UD Pelletron Accelerator. The detecting system
was a set of nine surface barrier detectors spaced 5
apart. The solid angle between each detector and the
target was 10 4 sr with an angular aperture b8 = 0.5'.
The typical thickness of the enriched (99.9%) Cu target
was 30 pg/cm2 evaporated onto a 5 pg/cm2 carbon foil,
for the low energy measurements 39 MeV & E~~b & 46
MeV and self-supporting targets with thickness between
60 and 80 pg/cm2 for the high energy measurements 47
MeV & E~ b & 64MeV. In both cases, a thin layer of gold
was evaporated onto the targets for data normalization,
and we have used a surface barrier detector as a monitor,
to be sure of no target deteriorations during the measure-
ments. The energy resolution was 200 keV, which allows
a good separation between the elastic peak and the in-
elastic group corresponding to the excitation of the first
five low lying states of the Cu nucleus. Figure 1 ex-
hibits as dots the experimental data for the measured 12
angular distributions in the ranges 39 MeV & E~ b & 64
MeVand40 &8, &175.
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FIG. 1. In the upper part we exhibit the imaginary part of
the algebraic potential obtained by inversion of optical model
8 matrix at the energies 42, 48, 56, and 64 MeV. In the bot-
tom the same for the real part of the algebraic potential.

curate but, for exact numerical results, Eq. (2) has to
be solved iteratively. We applied Eq. (2) to determine
the algebraic potential corresponding to a Woods-Saxon
optical potential in the Schrodinger equation that repro-
duces the elastic scattering angular distributions of the
60+ Cu system for laboratory energies &om 39 to 64

MeV. The parameters of this optical potential were as-
sumed to be constant in the whole energy range. In Fig.
1 we present the real and imaginary parts of the algebraic
potential obtained by inversion at the energies 42, 46, 56,
and 64 MeV. We observe that in spite of the fact that
the optical potential is constant with energy, the same
does not happen in the algebraic one. As the imaginary
part increases, the real potential bends down to negative
values in the region 8 & Sg. This is an indication that
there is a repulsive term in the potential which causes
the nuclear deflection function 2db„/de to be positive in
this region. The decreasing of the real algebraic potential
with energy for low values of E confirms the presence of a
repulsive potential. For higher values of the angular mo-
mentum E & Ez the algebraic potential becomes positive,
again decreasing exponentially with E as expected for an
attractive nuclear potential [3]. This repulsive term has
a simple optical interpretation. It corresponds to a re-
flection in the imaginary well that manifests with a real
phase shift and therefore a real algebraic potential. In
order to parametrize this term we suggest the following
form:

v. (e) = v.'(e)+~(v.'(e))' for )v, ]&1,

with

III. RELATION BETWEEN OPTICAL MODEL
AND ALGEBRAIC POTENTIAL

One of the most interesting aspects of the SO(3,1) S
matrix [Eq. (1)] is the simplicity of the inverse problem
S(e) to v(e). It can be easily solved by expanding the
S matrix in a Taylor series [2] around v and tatung the
first term of the expansion, and we have

v, (e) = v„f, (e) + iv; f, (e),

where v„and v; are the strengths and f„(e) and f, (e) the
Woods-Saxon form factors of the real and imaginary alge-
braic potentials, respectively. With these considerations
we have

v, (e) = v„f„(e) —av; f;(e) + iv; f,[1+2o.v„f„(e)].

—i in(S/So)
Q(e+ 1+ig+ iv') + g(e+ 1 —iq —ivo) '

where g is the digamma function. For high partial waves

(e & 2eg) we have vo = 0 and

For large values of the Sommerfeld parameter we can use
the asymptotic form for the digamma function Q ~ ln
and one obtains

b„+ib;
ln[(e + 1)2 + g ]'& (3)

Equation (3) shows that the real and imaginary parts
of the algebraic potential are related to the phase shift
b„+ ib; in a straightforward way. In many situations
involving heavy-ion scattering, Eq. (3) is sufficiently ac-

.(e) = v„f„(e)—v,'f,-'(e) + iv, f, (e). (4)

Equation (4) has six parameters which are the two
strengths, the two grazing angular momenta, and the two
diffuseness for the real and imaginary parts. With these
parameters one reproduces very well the shapes of Fig. 1.
It is interesting to note that even if the real strength v„
is zero, we still have a contribution to the real part of the
algebraic potential that comes Rom the second term in
Eq. (4). We have also observed this fact in optical model

In our analysis we simplified somewhat the above equa-
tion. First we arbitrarily assumed a = 1, to reduce the
number of parameters involved. We neglected the posi-
tive term that modulates v, f;(e) on the assumption that
its effects are to a large extent taken under consideration
in the choice of the parameters for Im(v, ). The second
term we took explicitly into account as, being negative,
it cannot be simulated by any reasonable variation of the
parameters for Re(v, ). Therefore we set
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FIG. 2. The elastic angular distributions

for the 12 energies measured. The solid curve
is the result of our calculations.
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calculations when even with a zero real potential there
still remains a negative real phase shift which comes &om
the reQection in the imaginary well.

IV. ANALYSIS AND RESULTS

Using Eq. (4) we analyzed the 12 elastic angular dis-
tributions at energies ranging &om E~ b

——39 up to 64
MeV, the Coulomb barrier being at E~ b

——40 MeV. The
six parameters have been &eely varied to reproduce the
experimental data. In Fig. 2 we show our results. The
reduced chi square of the 6ts is about unity or even lower
at some energies. In Fig. 3 we plot the strengths of the
real and imaginary potentials obtained as a function of
the energy. The solid curve in Fig. 3 is only a guide to the
eyes. An interesting phenomenon occurs at the energies
around 43 MeV where the strength of the real potential
presents a maximum. This behavior is necessary to re-
produce the principal maximum of the difFraction of the
data at forward angles. If we do not increase the real
potential at these energies, the calculated angular distri-
butions become Bat in this region, in disagreement with
the experimental data which still present maxima for 42,
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FIG. 3. The values of the strengths v„and e; of the real
and imaginary parts of the algebraic potential as a function
of the energy.
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43, and 44 MeV. For lower energies the real potential goes
to zero since we are below the Coulomb barrier. Above
46 MeV the real potential seems to become constant.
The imaginary strength increases with energy although
apparently in a less pronounced way for higher energies.
This is expected due to the opening of reaction channels
mainly coming from the inelastic excitations. As can be
seen in Fig. 3, the real strength v„of v, (l) exhibits in
the neighborhood of the Coulomb barrier a variation with
energy similar to the one associated with the threshold
anomaly observed in the optical potential analysis us-
ing the Schrodinger equation [5]. We believe that this
anomalous behavior is observed in the algebraic poten-
tial because second order effects were taken into consid-
eration, leaving the real strength v„ in Eq. (4) directly
related to the real strength of the optical potentials used
in the Schrodinger equation. This point is at the moment
subject to further investigation.

The form factor grazing angular momenta, used in
the algebraic potential, follow approximately the rela-
tion Es = kB where k = /2y(E —Es)/5 and Es is the
Coulomb barrier. If we adjust R and Ep to reproduce
the values of the imaginary grazing angular momentum,

we obtain Eg ——32.2 MeV and R = 7.6 fm, which agree
with the values obtained from fusion measurements and
optical model calculations for this system [6].

V. CONCLUSIONS

We analyzed the elastic scattering angular distribu-
tions for the 0+ Cu system at several energies &om
the neighborhood of the Coulomb barrier E~ b ——39 up
to 64 MeV in the context of the algebraic scattering the-
ory. An inversion procedure allowed us to investigate the
relation between the optical model S matrix and the al-
gebraic potential and revealed that second order effects
like reQection in the imaginary well are very important
to give a realistic description of the scattering between
heavy ions. We propose a simple way to parametrize this
effect which seems to work very successfully for this sys-
tem. The 6ts obtained are of very good quality and allow
us to observe the behavior of the algebraic potential at
energies near the Coulomb barrier.
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