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Effect of memory time on the agitation of unstable modes in nuclear matter
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The spontaneous agitation of coQective modes in unstable nuclear matter is addressed arith an
extended Boltzmann-Langevin (BL) theory that incorporates a memory time in the stochastic force.
The growth of the modes is then governed by efFective diffusion coefBcients which are renormalized
by time-dependent factors, relative to the standard treatment. These correction factors deviate sig-
nificantly &om unity in the most unstable domain of the density-temperature phase plane, indicating
the ixnportance of including a memory time in numerical BL simulations of nuclear dynamics.

PACS number(s): 24.60.Ky, 21.30.+y, 21.60.Ev, 21.65.+f

I. INTRODUCTION

In the course of the past few years, the nuclear
Boltzmann-Langevin model [1] has emerged as a promis-
ing microscopic model for nuclear dynamics at inter-
xnediate energies. This model describes the evolution
of the one-body phase-space density for nucleons (and
any other hadrons present), as it evolves in the self-
consistent effective one-body field while subjected to the
effect of occasional Pauli-suppressed two-body collisions.
When the two-body collisions are ignored, the result-
ing Vlasov model [2] describes the self-consistent one-
body evolution of the system and is the semiclassical
analogue to the time-dependent Hartree-Fock (TDHF)
model [3]. The inclusion of the average effect of the two-
body collisions, along the lines pioneered by Nordheim
[4,5], leads to the much employed Boltzmann-Uehling-
Uhlenbeck (BUU) model which has been very successful
in accounting for a variety of phenomena in intermediate-
energy nuclear collisions, such as collective Bow and par-
ticle production [6,7]. When the fiuctuating part of the
two-body collisions is included as well, the Boltzmann-
Langevin (BL) model emerges [8], and it is then possible
to address processes exhibiting spontaneous symxnetry
breaking and catastrophic transformations, such as coxn-
pound nuclear fission or multifragmentation [9].

In all of these treatments, the collision term is as-
sumed to be local in both space and time, in accordance
with Boltzmann's original treatment. This simplifica-
tion is usually justified by the fact that the interaction
range, as measured by the residual scattering cross sec-
tion o.~~ 4 fm, is relatively small on the scale of a2

typical nuclear system, and the duration of a two-body
collision is short on the time scale characteristic of the
xnacroscopic evolution of the system. The resulting col-
lective motion has then a classical character, as is the
case also in TDHF. However, when the system possesses
fast collective xnodes, with characteristic energies that
are not small in comparison with the temperature, then

quantum-statistical effects are important and the stan-
dard treatment is inadequate.

In order to improve the one-body transport treatment,
a memory-dependent collision kernel was previously in-
troduced in the extended TDHF model [10]. Subse-
quently, the semiclassical version of this model was ap-
plied to the damping of collective vibrations in nuclei
[11). More recently, Ayik extended this approach to the
BL model by employing a finite memory time for the cor-
relation function characterizing the stochastic collision
term [12]. In the present work we adapt this extended
treatment to nuclear matter in the spinodal zone where
unstable modes exist.

The agitation of »~~table modes in nuclear matter
has been addressed within the standard BL model by
Colonna, Chomaz, and Randrup [13], who showed that
the dynamics of the collective modes is governed by a
simple transport equation. The modes are agitated by
a source term arising from the fiuctuating part of the
collision term and amplified exponentially by the unsta-
ble self-consistent efFective field. The characteristic am-
plification tixne tI, corresponding to a given wave num-
ber k is determined by the associated dispersion rela-
tion. As it turns out [14,15],the fastest-growing collective
modes, which are those that will become predominant,
have fairly high characteristic energies Ek = li/tk. For
example, for densities p 0.3pe and wavelengths of 7—
8 fm, for which the fastest amplification occurs, we have
EI, —8 MeV. This is clearly not small in comparison with
the temperature in the system, which is T 4 MeV, typi-
cally. Consequently, one xnust expect quantum-statistical
efFects to be important in the dynamics of the collective
modes and the standard BL treatment may therefore be
inadequate, since it treats the collective modes as classi-
cal.

We therefore reexamine the problexn considered in Ref.
[13], employing the extended theory of Ref. [12]. First,
in Sec. II, we brie6y review how the standard BL model
can be xnodified to incorporate a memory time. We then,
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in Sec. III, turn to the specific problem of collective
modes in unstable nuclear matter and show that, while
the general evolution of the modes retains the features
described in Ref. [13], the source terms are modified by
time-dependent correction factors that can deviate signif-
icantly from unity, and the growth of the unstable modes
is then correspondingly affected. Finally, we discuss our
results and outline the consequences in Sec. IV.

The dynamics of statistical nuctuations in nuclear mat-
ter was also recently considered by Kiderlen and Hof-
mann [16], who deduced the properties of the stochastic
forces &om the quantal Buctuation-dissipation theorem,
suitably generalized to unstable modes. They found siz-
able quantum eKects both inside and outside the spinodal
regime, a result consistent with our present investigation.

II. INCLUSION OF MEMORY TIME

In the Boltzmann-Langevin model the evolution of the
phase-space density f(r, p) is determined by a stochastic
transport equation

where Ix[f](r, p), and K[f] denotes the effect of the resid-
ual two-body collisions. It can be decomposed into
its average part K[f] and the fiuctuating remainder
bK[f]. Only the former part is retained in the ordi-
nary Boltzmann-Uebling-Uhlenbeck equation, which is

I

then devoid of stochasticity.
The Huctuating part of the collision term vanishes on

the average by definition, ~ hK(r, p, t) += 0. The aver-

age & . - + is taken with respect to the entire ensemble
of possible binary collisions resulting &om the specified
phase-space density f(r, p), and the functional depen-
dence of hK(r, p, t) on f has been suppressed in order
not to clutter the notation. The associated correlation
function is of the form

& b K(r, p, t) '/xK(r', p', t') &-= C(p, p'; t —t') b(r —r') .

(2)

In the standard Boltzmann-Langevin model, the colli-
0

sions are assuxned to be instantaneous and so C(p, p', t-
t') = C(pl p') h(t —t'), where the circle over the quantity
indicates that it is the one associated with the standard
BL model. The dependence of the correlation function

on the position r = r' has not been exhibited, since it
is in fact absent in the case of uniform matter which is
the object of the present study.

The finite duration of a two-body collision modulates
the corresponding &equency spectrum and it is conve-
nient to perform a Fourier analysis of the correlation
function (2),

C(p, p';t —t,') = ' l' ')C(p, p', (u) .2'
In accordance with Ref. [12], the kernel entering in (3) is
given by

C(p, ps;w) = h 6(p —pg) f f t w(a2;84;w)F(a2;$4)

+ ~~ D m ab;34;u) I" ab;34 —2u) a3;b4;u I" a3;b4 (4)

where L6 = E'3 + E4 —Ey —E'2 is the energy change ex-
perienced by the colliding pair of nucleons, equal to the
amount taken up by the collective mode.

The elementary transition rate u)(12; 34; (d) depends on
u both explicitly via the finite energy exchange +~ with
the medium and implicitly via W (12;34) which is pro-
portional to the square of the transition matrix element.
We expect W (12; 34) to be approximately of the forxn

W (12;34) = Wp(12;34)g((dt ), (6)

~h~~~ +(12;34) = fx f2f3f4+ fxf2fsf4 with f;—:f(p;)
denoting the phase-space occupancy factors and the cor-
responding vacancy factors being f;—:1 —f; The.
first term arises Rom the diagonal part of the Langevin
noise affecting only a single phase-space location, while
the terms in the second line express the correlations be-
tween the Buctuations at diferent locations in momen-
tum space. The frequency-dependent transition rate is
given by

xx)(12; 34;ur) = —[h(b, e —hu) + b(b, e+ M)]W (12;34),
(5)

]

where Wp(12;34) is the quantity entering in the stan-
dard treatment and the modulation factor g is pro-
portional to the Fourier transform of the residual in-
teraction responsible for the two-body scattering, with
t, denoting the duration of the particular two-particle
encounter. z Since g(0) = 1 it follows that the stan-

The situation may be rephrased as follows: The term
bK(r, p, t) in Eq. (1) is a stochastic function governed by
a certain distribution function which depends on the phase-
space density f, is zero on the average, and has a covariance
tensor given by Eq. (2).

For example, if the initial and 6nal nucleon states are de-
scribed by plane waves, as is appropriate in (locally) uniform
matter, we would have W (12;34) i(pipqiV(r)q)ip3p4)i
iV(b.k)i, where V(k) is the Fourier transform of the two-
body interaction V(r). Thus, if this quantity is of Yukawa
form, V(r) exp( r/a)/r, t—hen W [1 + (ab, k) j
exp( — cu t, ). We have here—used that (b,q) = fx (d where
the energy change is b.e = hb, k . v, with v = h(k + k')/m
being the (average) relative velocity. Furthermore, we have
introduced a rough measure of the duration time t, of the
collision by vt = 2a.
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dard theory is recovered by putting C(p, p', hP) equal to

C(p, p', hp = 0) = C(p, p').
In our present study we adopt the simple form

g(hpt, ) = exp( —hp t /2), which expresses the expected
suppression of the high-kequency components as a result
of the finite duration of a two-particle encounter. The
eH'ective interaction range a may be estimated from the
residual cross section ma AN~ = 40 mb. Furthermore,
the relative speed of two colliding nucleons is v = 2v~,
since the active nucleons lie in the Fermi surface. We
can then obtain a rough estimate of the duration time,
t, 2a/v = 5—6 fm/c. This is a fairly brief length of
time as compared with the typical free travel time for a
nucleon, t t A/u~ 20—30 fm/c. One would there-
fore expect that the treatment developed in Ref. [13] will

still be applicable, but with suitably modified transport
coefficients. We show below, that this is indeed the case
and that the source terms 'V&" responsible for the agi-
tation of the unstable collective modes in nuclear matter
are simply replaced by effective coefficients of the form

17&" (t) = 'D&" y&" (t). The formal developments are ac-
companied by numerical illustrations corresponding to
typical scenarios.

~(t) = A P )dr exp( —ik r)6p(r, t). We note that
the spatial locality of the noise term in (1) causes the
problem to decouple,

& K),(p)'Kg(p') w= 6),g C(p, p'; t —t'), (io)

BUp, dp k v Bfo

Bp h k v —hp Bt

Thus, inside the appropriate spinodal zone, there are two
imaginary solutions associated with a given wave vector
k, |ds = ki/tP, = hips. The possible collective modes can
therefore be represented as

f (p t) = &'(t)f'(p) + & (t)f (p) (i2)

where the eigenfunctions are of the form

BUq k v Bf
Bp k vpaps BeP (13)

which simplifies the treatment significantly.
By summing the above equation of motion over the

momentum p, it is possible to obtain a dispersion relation
determining the frequencies up of the periodic solutions:

III. UNSTABLE NUCLEAR MATTER and have the normalization h D f dp f& (p) = 1.

Following Ref. [13], we start from uniform nu-
clear matter having a momentum density distribu-
tion of Fermi-Dirac form, f(r, p, t=0)=fo(e), and then
consider the early development of the deviations
caused by the stochastic part of the collision integral,
6f(r, p, t) = f(r, p, t) —f (e). The corresponding lin-
earized Boltzmann-Langevin equation is then

0 |9 8 0 p6f + v —bf ———bU f = Io*bf+ bKo, (7)Bt Br Br Bp

where Ip is the linearized approximation to the av-
erage collision integral K, and the stochastic term
bKp(r, p, t) = bKp[f P(r, p, t)] represents the rate of auc-
tuations generated in the specified initial state.

Because of the initial translational invariance, it is con-
venient to perform a Fourier transform with respect to
the position r:

6f(r, p, t) = ) fg(p, t)e*"',
0

A. Random-phase approximation treatment

The agitation of unstable collective modes in nuclear
matter was treated by Colonna, Chomaz, and Randrup
[13], by performing an orthogonal projection of the dy-
namics onto the space spanned by the collective modes.
In the present study we shall employ a simpler treatment
which can be derived by considering the time-dependent
response function and ignoring the single-particle poles,
in analogy to what is done in random-phase approxima-
tion (RPA) treatments [17]. These results can readily be
transformed into the form appropriate for the treatment
given in Ref. [13]. The two methods represent different
approximations and they are identical if the dynamics is
entirely collective, in which case they yield the correct
evolution of the system, within the general bounds of
linear-response theory.

We then define the two auxiliary functions

where 0 is the large vob~me of matter considered. The
Fourier coefficients fp, (p, t) are then governed by the cor-
responding transform of the above linearized equation,

which have the following convenient orthonormality
property:

|9 Bf' BUP
fj, + ik . v fg —ik—. v ~ = Ip * fg + Kg . (9)Bt OE Bp

(15)

Here ~(t) and BUp, /Bp are the Fourier transforms of the
induced density fluctuations 6p(r, t) and the associated
change in the self-consistent potential bU, respectively,
and Kg(p, t) is the Fourier transform of the Ructuat-
ing part of' the collision term bKp(r, p, t). For example,

provided that the normalization constant JVp, is taken as

BUp, 2 dp (k. V)2 Bf
Bp tg hD [(k v)2 + 7 ]2 BE
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Insertion of the collective form (12) into the equation
of motion (9) and subsequently projecting onto the func-

tions Qf, (p) leads to the following equations of motion
for the collective amplitudes A&(t):

d—&1.(t) = —&1 (t) + F (')
dt tI,

(17)

Fj"(() = / ~
o~r(p)*K„(p, t) . (18)

These quantities vanish on the average, & E& (t) += 0,
and the associated correlation function has the following

spectral resolution:

-& F)", (t)'F), (t') &- = bye e ' (' ')Cr"," ((u)2'
= Cf" (t —t'),

where the collective correlation kernel is given by

if the average part of the collision term is neglected, as is

justified by the fact that its effect on the eigen&equency

o/I, is rather small [18]. Moreover, the effective (fluctuat-

ing) collective forces are given by

Ci",
" (~) = »s" X(~) (23)

0
where 217&" ——Cr",

"
(o/ = 0) is the collective diffusion co-

10

T and the characteristic energy ~ are small in com-
parison with the Fermi energy eF. However, the cor-
relation kernel C&" (u) given in(2) involves frequencies
well above the Fermi level, and so we need to improve
the above approximation somewhat. (It should also be
noted that the Ferxni energy is reduced by more than a
factor of 2 in that part of the spinodal region where the
fastest-growing modes occur, p = 0.3po.) On the basis
of numerical evaluations of the constrained integral in

(22), we have found that the above approximation can
be extended towards high &equencies by dividing by the
factor [1+ s(bio//es) /(1+ 2(T/es) )]. The (d depen-
dence is then correct to better than 10% up to well above
hu = 100 MeV, which is fully adequate for our present
purposes.

It is then possible to factor out the u dependence of
the correlation kernel,

(20)

with

I

&r (~) =)I „o „o0~(v)&b,v';~)Q~ (v')'

=-'/"-'f"-'f"-'J' "'( ')*
x W(12; 34; ~)fz f2 fs f4,
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representing the change in the observable Qf, (p) due to
the collision process 12 + 34.

The four momentum integrations in the expression (20)
for the correlation kernel are constrained by the energy-

conserving b function contained in the basic transition
rate to(12; 34; u) given in Eq. (5). For temperatures
small in comparison with the Fermi energy, T ((
the integrand is electively confined to the region near
the Fermi surface, due to the appearance of the factor

fqf2fsf4 When, .furthermore, the energy exchange is

small as well, Ru (& ~F, then the energy and angular

parts of the integrations approximately decouple. This
feature was exploited recently for the derivation of sim-

ple analytical approximation to the Boltzmann-I angevin
transport coefficient [19],utilizing methods developed in
condensed matter physics [20]. Proceeding in a similar

manner, we obtain
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This approximation is good when both the temperature

FlG. 1. Frequency modulation. The function X((d) express-
ing the frequency modulation of the collective correlation ker-
nels [see Eq. (23)]. (a) explores a range of temperatures
T = 3, 4, 6 MeV for a fixed value of the memory time t = 6
fm/c; (b) keeps the temperature fixed at T = 4 MeV while

varying the memory time t, = 4, 6, 8 fm/c. The density is
kept at the value p = 0.3po near which the fastest growth
occurs [14,15].
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xcothi
I

e ' ' = E~ i I
g(cut, ) . (24)

(hu)
l,2T ) I,2T )

This key function is displayed in Fig. 1 for a range of tem-
peratures T and for several diHerent assumptions about
the duration time t, . The function generally starts out
at y(ar = 0) = 1 and initially exhibits an increase re-
Becting X~(her/2T), before ultimately subsiding due to
the strong decay of g(ddt ). For our standard choice of
the memory time, t = 6 fm/c, the peak is situated near
fuu = 40 MeV. Naturally, the peak shifts inversely in re-
sponse to changes in t, . It should also be noted that the
peak broadens at the temperature T is raised, in accor-
dance with our expectation that a classical description
(i.e., no frequency dependence, as in the standard BL
model) should emerge at high temperatures.

The Fourier transform of the &equency modulation
function

~ 0, I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
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T=6 MeV
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Time t (fmlc)

efficient (the "source term") obtained when the collision
kernel has no memory, corresponding to the study made
in Ref. [13]. The frequency modulation is conveniently
given by the function

1+ (...)' r

1+ 6
— 1+2

(,) d,—;.t-( )
&(p p' t)

2n' Q(p pI)

is the time-dependent response function for the system.
This quantity is shown in Fig. 2 for the same scenarios
as considered in Fig. 1. Starting out from y(t = 0) )
0, the response function exhibits an oscillatory decay.
The first sign change occurs for t t. , and typically
only the first minimum is noticeable. As expected, the
time dependence of the response function grows gentler as
either the memory time or the temperature is increased.

B.The collective evolution

The equation of motion (17) for the collective ampli-
tudes can readily be solved formally,

t

Af, (t) = e"~' AI",(0) + dt'e "~' El", (t') . (26)
0

In the presently considered scenario, the initial system
consists of uniform nuclear matter and so the initial
amplitudes all vanish, Af, (0) = 0. Since the random
forces vanish on the average, -C El", (t) ~= 0, it then
follows that the amplitudes remain zero on the average,
-c A„"(t) w= 0.

However, each individual history displays a random
evolution of Af, (t) and the development of the average
magnitude of the amplitudes is, as usual, conveniently
described by the associated covariance coeKcients

&a" (t) -=+ At (t)'A" (t) &-

t t
(V+V ) ~ dt' gt e

0 0

x -& El", (t')'E„" (t") +,
which depend only on the magnitude k of the wave num-
ber k, due to the isotropy of the initial state.

When the memory time vanishes the correlation func-
tion in the integrand of (27) is proportional to b(t' —t")
and the scenario considered in Ref. [13] emerges. The co-
variance coefficients 8 I,

" then satisfy the following simple
equation of motion:

1.0

0.5
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CO
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I I I I
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\

\

t

\
'l

\

l
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I I I I
I
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I I I I

l

„""(t) = 217„"" + '„""(t),
&I

which has the solution
t

vv (g) 2+vv (v+v ))tg, t ggl —(v+v )pg, t

0

(28)

(29)

recalling that the initial fluctuations vanish, I'T&" (0) = 0.
With a finite memory time, we need instead to insert

the nontrivial resolution (19) into the integrand of (27).
It is then useful to introduce the following pair of corre-
lation functions for a given collective mode:

0 5 I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 5 10 15 20 25
Time t (fmlc)

FIG. 2. Response function. The response function y(t)
given in Eq. (25), for the same scenarios as in Fig. 1.

(3o)
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integration and then replace the integration variables t'
and t" by t —t' and t —t", respectively). These functions
are shown in Fig. 4, for the same cases as considered in
Fig. 3. It is important to note that the approach towards
the limiting values occurs fairly slowly, especially for the
mixed coefBcient g&+ (t), for which the weight factor is a
constant. It is therefore useful to note that the weighted
time averages in (33) may be related to the long-time
behavior of the integrands gi, (t), since those asymptotic
values are attained significantly earlier,

&ki =&i =2 "m [&i, (t)]) 0

= g„+ = tlim [Xi+, (t)+X„(t)] .

(34)

It also follows that the mixed coefficient approaches a
smaller value than does the diagonal one, g&+ & y&++.

Finally, we note that the diagonal coefficient can be writ-
ten on a simple alternative form directly in terms of the
frequency modulation function g(u):

d(u y(~)+VV
2~ 1 + ~2/2 (36)

TABLE I. Correction factors. The correction factors gz+
I

and y+& for the effective diffusion coefBcients BI"," govern-
ing the spontaneous agitation of collective modes with wave
number k in unstable nuclear matter prepared at a uniform
density p and having a speci6ed temperature T. For the in-

I
dicated grid in p and T, the correction factors g&" for the
fastest mode are displayed [15j. The duration time has been
taken to be t = 6 fm/c.
-++ I —+-
Xg /Xg

T=6MeV
T=GMeV
T=4MeV
T=3MeV

p = 0.2po

1.06/0. 94
1.20/0. 84
1.50/0. 64
2.29/0. 11

p = 03po
1.11/0.92
1.29/0. 79
1.67/0. 55
2.66/0. 00

p = 0.4po

1.14/0. 91
1.30/0. 84
1.66/0. 69
2.49/0. 41

p = 0.5po

1.10/0.95
1.23/0. 91
1.46/0. 85
2.03/0. 71

It follows from the above analysis that at sufficiently
large times, when the correction factors gi,

" (t) have at-
tained their limiting values y&", the behavior of the co-
variance coefBcients a&" (t) is equal to what would result
with a vanishing memory time, except that the time-

0 )
independent source terms B&" are replaced by the renor-

0 (
malized quantities 17I,

" y(oo)&" which are also indepen-
dent of time. (Of course, as the time keeps increasing,
the collective amplitudes will ultimately grow beyond the
linear-response domain and the analysis breaks down. )
The limiting values y&" therefore give a good indica-
tion of the magnitude of the inemory-time effect on the
growth of unstable modes.

Table I displays calculated values of the correction
I

factors g&" corresponding to the fastest-growing collec-
tive mode on a grid in the density-temperature phase
plane. Generally the diagonal renormalization coefficient
exceeds unity, whereas the mixed coefficient is less than 1.
Consequently, the agitation of the two collective modes

is enhanced, while their coupling is suppressed. Near

p = 0.3po and T = 4 MeV these effects amount to about
50%, while they fall off as the temperature is increased.

IV. DISCUSSION

The present investigation has focused on the effect of
a finite memory time in the stochastic term of the nu-
clear Boltzmann-Langevin equation on the agitation of
collective modes in unstable nuclear matter, by apply-
ing a recently proposed extension of the BL model [12]
in conjunction with the previously developed transport
treatment of spinodal matter [13]. In the standard BL
model, the stochastic term is local in time, as would be
appropriate if the two-body collisions can be considered
as instantaneous. Under such idealized circumstances,
density undulations are generated only indirectly as the
local rearrangements in momentum space are propagated
by the mean field. By contrast, the extended BL model
maintains the random force for a finite length of time and
thereby provides a direct coupling between the two-body
collision process and the collective modes.

The finite memory time introduces a certain gentleness
into the source term which is reQected in the suppression
of high-&equency components, as expressed by the mod-
ulation function g(art, ). However, since t, « ti, this
has little effect on the agitation of the collective modes.
Indeed, the factor g(ui, t,) produces a reduction of only
about 2% for the fastest mode, so it is apparent that this
effect is not essential.

Much more important is the quantum-statistical en-
hancement expressed by the factor E~(hu/2T). (In the
case of stable collective modes, the factor T guaran-
tees that the appropriate quantum-statistical equilibrium
is approached [12], whereas the standard BL treatment
leads to a classical (Boltzmann) equilibrium occupation
of the collective modes, Pi, exp( —hei, /T). ) Since the
characteristic energy Ei, = 5/tI, exceeds the tempera-
ture T, the factor T causes a significant enhancement
of the collective source terms PA, and, consequently, the
density undulations will grow correspondingly larger in
the course of a given time interval. The effect depends
strongly on the temperature T and the growth time tg,
but for the fastest mode and the most typical tempera-
tures, the enhancement factor is 50—100%, as shown in
Table I.

The memory time presents the shortest time scale in
the problem, in so far as it is expected to be given approx-
imately by the duration of an individual two-body colli-
sion, t, = ajv~ = 6 fm/c (twice the range divided by the
relative speed, which is about the Fermi speed since the
collisions only involve states in the Fermi surface). This
is considerably shorter than the growth time for even the
fastest unstable mode, which is about ti, = 20 fm/c. It is
also fairly short compared to the &ee propagation time
of a nucleon between collisions, tI„, A juy 20 fm/c.
One might then expect that the transport process would
retain a Markovian character.

However, the finite memory time in the microscopic
collision kernel gives rise to a nontrivial modulation of the
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effective source terms that agitate the unstable modes in

the spinodal phase domain, 17&" (t) = 17&" y&" (t). As a
consequence, the evolution of the covariance coeKcients
01",

" (t) then deviates &om what would be obtained with-
out a memory time, as expressed by the time-dependent

I
correction factors g&" (t), of which examples are shown in
Fig. 4. These factors can deviate significantly from unity,
particularly in the domain where the fastest growth oc-
curs. It therefore appears important to incorporate such
memory eKects in BL simulations, especially in the pres-
ence of instabilities.

The correction factors ultimately attain constant val-
ues, and the evolution is then similar to what the
standard treatment would give, except for the time-
independent renormalization of the source terms. But
this limiting simplicity emerges only relatively slowly,
particularly for the mixed factor, as is evident from the
illustration in Fig. 4.

The present analysis has been confined to the ideal-
ized scenario of initially uniform nuclear matter, which

can be subjected to near-analytic treatment by previ-
ously developed methods. Nevertheless, our conclusions
are expected to hold for more complicated dynamical sce-
narios, such as may be encountered in nuclear collisions.
Thus, if qualitatively reliable results are to be obtained
&om numerical simulations based on the BL model, it ap-
pears necessary to refine the treatment to take account
of the memory time in an appropriate manner.
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