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A recently proposed hybrid variational procedure for nuclear structure calculations is improved
and reformulated in a way that allows for going beyond the mean-Seld approximation. The numer-
ical feasibility of the resulting approach is tested by applying it in the 8-d shell. Selected examples
demonstrate that the procedure works equally well for odd-mass and even-mass nuclei, giving solu-
tions that rapidly converge to the exact ones.

PACS number(s): 21.60.Cs, 21.60.Jz, 02.70.—c

I. INTRODUCTION

The natural &amework for microscopic calculations of
the structure of all but the lightest nuclei is the nuclear
shell model. Its technology, known as shell-model config-
uration mixing (SCM), has developed to the point that
complete 0~ calculations are possible within the whole
s-d shell and even for some nuclei of the f pshell -[1].
Accordingly, high quality forces have been fitted to re-
produce a wide variety of nuclear properties [2,3]. At the
same time, the situation is not so optimistic as it may
seem at first glance. The major problem of the shell-
model configuration mixing method is that the number
of configurations increases drastically with the number
of single-particle basis states. Increasing the size of the
single-particle basis rapidly renders complete SCM cal-
culations not only impractical but impossible. One is
then forced to choose between using Monte Carlo meth-
ods [4] or truncating, in some way, the complete SCM
space. The question of how such a truncation is to be
performed in order to maximize the correlations included
with as few configurations as possible is at the crux of all
microscopic nuclear structure calculations. There have
been various approaches to this truncation, ranging &om
the extreme single-configuration approximation known as
the Hartree-Fock method [5] to the more recent many-
determinant VAMPIR approach [6]. Both of these are
basically variational approaches, in which one or several
particle or quasiparticle mean fields are consistently de-
termined and then used in a subsequent diagonalization
of the residual interaction. Such procedures have the at-
tractive feature that the truncation of the SCM space is
dictated by the dynamics of the many-body system itself,
rather than introduced ad hoc. On the other hand, the
price that must be paid in order to account for a large
part of the complete SCM dynamics using only a xnod-
erate number of configurations is the nonconservation of
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certain symmetries of the Hamiltonian. Those that are
violated most often are angular momentum and parity
conservation, and sometimes also particle number con-
servation. Thus, in order to obtain physical information,
one needs to restore the broken symmetries by using ap-
propriate projection operators, either before or after vari-
ation of the intrinsic states [5]. These projection oper-
ators, however, introduce technical complications which
result in orders of magnitude increases in the necessary
numerical effort. In order to end up with a manage-
able problem, one is then forced to impose restrictions
on the variational space. A whole hierarchy of various
possible ways of doing this was proposed about ten years
ago [7]. All are based on symmetry-projected Hartree-
Fock-Bogolyubov-type (HFB) quasiparticle Slater deter-
minants, which are allowed to break as many symme-
tries as possible. Since then, almost all of the result-
ing approaches have been used in realistic applications,
yielding very encouraging results [8]. The favorite among
them, known as (excited) FED VAMPIR [6], uses a
few symmetry-projected HFB-type states, determined
via variation after symmetry projection (VAP), to ap-
proximate each individual state of the many-body sys-
tem. To ensure the numerical feasibility of the method,
one still has to enforce axial and time-reversal symmetry
on the trial HFB states. This restriction makes odd-mass
nuclei inaccessible with the latest numerical realization of
the method. In addition, some states of even-even nuclei
cannot be described in this way, namely, those dominated
by the so-called "missing configurations, " as discussed in
[8]. Although these shortcomings are of a technical rather
than a fundamental nature, it is very doubtful that they
can be overcome in the near future.

In the present work, another possibility is explored. In-
stead of imposing axial symmetry and allowing particle
number violation in the trial state, mean fields of general
shape are allowed but the particle number is fixed. In
such an approach, the exp/icit inclusion of pairing corre-
lations is given up in favor of axial sym. metry violation.
This approach is motivated by our previous results, in-
dicating the importance of relaxing the axial symmetry
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restriction [9,10]. Since full angular momentum projec-
tion, even in its optimized form [9], requires threefold
integration and thus is too time consuming to be carried
out before variation, a hybrid treatment of the rotational
invariance is adopted. Compared to [10], the present
work contains two important improvements: (a) It goes
beyond the mean-Geld approximation by permitting sev-
eral symmetry-projected intrinsic states for the descrip-
tion of each state of interest; and (b) together with the
exact axial symmetry projection an approximate full ro-
tational symmetry projection before variation is carried
out. Since, as in the FED VAMPIR, several symmetry
projected mean fields are used to describe each individual
state of the correlated system, it is clear that the method
should in principle be able to reproduce the exact solu-
tions of the SCM.

The presentation is organized as follows. In Sec. II, the
basics of the approach are given. Some of the information
therein can be found in the literature (e.g. , [ll]) and is
included here to make the presentation self-contained.
The variational procedure is explained in some detail in
Sec. III. Section IV contains results of some selected
applications of the approach to realistic nuclear systems
in the 8-d shell. Finally, a discussion of the results and
the principal conclusions are collected in Sec. V.

II. BASIC FORMALISM

The intrinsic states of our model are normalized prod-
ucts of proton and neutron Slater determinants, similarly
to the so-called "multiconfiguration Hartree-Fock" [12].

I

For simplicity, we shall assume one type of particle in
what follows. Thus, an N-particle intrinsic state in an
M-dimensional single-particle basis is constructed as (I

—)
is the vacuum)

M

(2.1)

The creation operators at are built by using some Gxed
M-dimensional single-particle basis (e.g. , harmonic oscil-
lator or Woods-Saxon basis ) with creation operators ct:

(i =1,2, . . . , %) . (2.2)

The rectangular matrix A is chosen such that the proper
fermionic anticommutation relation for the a and at op-
erators is guaranteed:

M

) A';Au, ——b;~ .
a=1

Note that one does not need to specify the single-particle
states that are not occupied in (2.1). When no further
restrictions on A are imposed, the state (2.1) represents
the most general mean field (Slater determinant) within
the chosen single-particle basis.

In order to be able to use the above states, one needs
the following "building" blocks. First, consider the over-

lap between two intrinsic states IL) and IR). Using (2.1),
one obtains

N N

(L~R) = — a;(I,) a —
)i=1 j=1

M

= ) Ai, (L) A)v (L)Aib, (R) Aivb~ (R)(—Ic, c ~cb cb I

—)
ah=1

= det(At(L)A(R)) = det Af(L, R), (2.4)

where the last row defines the matrix JV. The next thing of interest is the transitional one-body density matrix. An
expression for it can be obtained by taking into account that a~ I4) = 0 for j ) I(I and inverting (2.2). One has

pba(L, R) =— {LIc~~cbIR) = ).A~~ (L)Abp(R)(Llama(3IR= ) At (L)Abp(R)
Odethf(L, R)

nP=l nP=1

{IIR)(A(R)JV 'At(R))b

In the last row the overlap (LIR) is assumed not to vanish. A similar calculation provides us with a relation between
the two-body and one-body transitional density matrices:

(I lc ctcgc, IR) = {LIR)(pub(L, R)p, (L, R) —pg~(L, R)p,g(L, R)) .

The logic of building up the three- and more-particle
overlaps using the one-body transitional density matrix
should now be obvious.

The intrinsic states discussed above have, in general,

]

neither definite total angular momentum nor definite
third projection of the angular momentum. In order to
obtain physical states, the rotational symmetry must be
restored by projection [5]. In this work we use the opti-
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mal finite sum representation [9] of the three-dimensional
Hill-Wheeler projection operator, involving Gauss- Jacobi
and Gauss-Chebishev integration formulas. More specif-
ically, the axial symmetry projector on J = M is given
by

L

PM = ) e' ~'R, (P ), )t), = + x, (2.5)
2=1

I@»& = ).usP~zl&s& . (3.2)

This somewhat simpler form of the Hamiltonian is used
in the actual calculations.

Our model space for the diagonalization of the above
Hamiltonian is spanned by several intrinsic Slater deter-
minants, projected on good angular momentum. This
implies many-body wave functions of the kind

and the full angular momentum projector by

L
PJ ~ ~ 'M( )++ ) 2M

I

Psl
e cos E2)

xtUsR(cx)) Ps) p~) ) (2.6)
~

(@»I HI&»&

(4»IW»&
(3.3)

The intrinsic states I4)s) and the mixing coefficients gs are
to be determined variationally. This means that, ideally,
one has to solve

where

(2i —1)
ps = arccos(»),

2L

R(O)IC) = R(O)atRt(O)l —),
M

R(O)atRt(O) = ) A, (O)ct,
a=1

M

A;(O) = ) bg~D', (O)As; .

Equipped with the above formulas, we can proceed to
discussing our variational procedure.

III. VARIATIONAL PROCEDURE

Consider a Hamiltonian consisting of one- and two-
body parts:

H = ) e~c c)) + —) V))S).gc~cSc) cg
a abed

(3 1)

In what follows, we shall restrict our attention to the
action of the above operator on states of definite particle
number, i.e., on eigenstates of N = P etc . This makes
it possible to incorporate the one-body term of (3.1) into
its two-body term:

1 - t tH = — V ~dc chic cd,
abed

1
&as a = &at a+ (&o+&s)(& b~ —4~b ) .

(»)Pi+i (»))(0,2M) (0,2M)

M is an overall normalization factor, and» are the zeros

of the Jacobi polynomial PL, ' (»). The action of the(0,2M)

projector (2.6) on a Slater determinant is simple; one

only needs the action of the rotation R(n, P, p) on (2.1).
It is given by

(&~ IH(&) l&~&

(@elle&

where the variational states are eigenstates of J,:
= ).&sP~I&s& .

(3.4)

In the original Kamlah approach the value of A is given
by a complicated expression involving the expectation
value of the three-body operator HJ2 [5]. Instead of
evaluating A in this way, we determine its value by an
additional one-dimensional minimization.

Let us now summarize our hybrid variational proce-
dure: Suppose we have n —1 intrinsic Slater determi-
nants. The next, nth, one is determined by solving (3.4)
with the variation involving the nth Slater determinant
only but aO mixing coefficients for some chosen value of
A. The resulting Slater determinant together with the
n —1 fixed ones is used for solving (3.3) where only the
mixing coefficients gg, are varied. It is weO known that
variation of the mixing coefficients is equivalent to diag-
onalizing H in the nonorthonormal basis of the n pro-
jected Slater determinants. After this is done, A is mod-
ified and the above is repeated until a minimum for the
lowest eigenvalue is found. In general, all n Slater de-
terminants should be varied simultaneously. It has been
argued, however, that such a fine tuning barely changes

In all cases of practical interest, however, the triple in-
tegration involved in the projection operator P&& makes
the variation after projection intractable. Therefore, we
resort to a pedestrian version of (3.3)—the so-called hy-
brid treatment of the rotational symmetry [10]. Within
this scheme, the axial symmetry of the intrinsic states is
restored before the variation, while the full angular mo-
mentum projection is carried out after having determined
the intrinsic states. Since our goal is to approximate (3.3)
as close as possible, we employ an approximate full an-
gular momentum projection before the variation. This is
done by modifying the Hamiltonian H in the way pro-
posed by Kamlah years ago [13,5]:

H(A) = H —AJ

Thus our intrinsic Slater determinants are determined by
the requirement
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the final results [6]; we have independently arrived at the
same conclusion: The e8'ort needed to vary simultane-
ously all determinants, compared to the improvement of
the results, overrules such a procedure.

In order to complete the description of the variational
procedure, we have to discuss the variation of a Slater
determinant. Since, as a result of (2.3), the elements of
the matrix A from (2.2) are not independent, they cannot
be directly used as variational parameters. Therefore, we
take the representation of a general unitary matrix

—43

—45
0'

I
C:

UJ —47 .

11/2

21

S ~
9/2-

v 7/2

(3 5) ~ ~
k 5/2

k

where X is a Hermitian matrix, and use the elements of
the upper triangle of X as independent variables. Be-
cause of the redundancy of the last M —N columns of A. ,
their number is certainly greater than the minimal num-
ber of parameters needed to specify a Slater determinant.
We nevertheless adopt the representation (3.5) because
of its generality and because it is easily invertable, in
contrast to the usual one of Thouless. Now the variation
of a Slater determinant can be written as

2 3 4 5
Number of states

FIG. 1. Energies of 6ve members of the ground-state band
of Ne, calculated with A = 0. The dashed lines indicate the
energies of the corresponding exact SCM solutions.

N M

]bC) = b ) A;cti-)
4=1 a=1
M M

= ) bA~sctas~e) = ) bA, As, ctcs~e) .
ab=1 abc=1

From (3.5), it is easily seen that bAAt is given by 2 (1+
A)bX(l + At). Thus, we finally have

M

~bC) = —) ((1+A)bX(1+ At)) bctcs~C).
ab=1

IV. NUMERICAL APPLICATIONS

For the 6rst applications of the procedure described
above, we have chosen only a 1s0d single-particle basis.
There is a standard efFective force for this space [2], which
is also used in this work.

We 6rst consider the ground-state band of the even-

odd nucleus Ne up to J =
2 . Addressing this rel-

atively "simple" problem, we expect our approach to
rapidly converge to the corresponding SCM solutions,
even with A 6xed to 0. The results of our calculations
together with the exact SCM energies are presented in
Fig. 1. All energies are with respect to a doubly magic

0 core. The convergence to the exact results is obvi-
ous, but what is more striking is that with only three to
four intrinsic states an accuracy of 0.3% in the spectrum
is achieved. Especially nicely reproduced are the excita-
tion energies, the errors being mainly due to an overall
shift of the spectrum upwards. As we shall see later, this
same feature persists in all our calculations.

As a next example, the nucleus Si near the middle of
the shell is considered. The m-scheme shell-model eon-
Gguration mixing for the ground state of this nucleus has
to deal with 80 115 Slater determinants. Within our ap-

e
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FIG. 2. Results of various approaches for the lowest four
states of the ground-state band in Si. Notations are ex-
plained in the text.

proach, we try to do the same job with only one or two
determinants, selected by the dynamics of the system.
Figure 2 shows the results of various approaches to the
energies of the lowest four members of the ground-state
band of Si. From left to right we have the exact di-
agonalization results (SCM), variation after full angular
momentum projection (VAP), the hybrid procedure from
(3.4) with one intrinsic Slater determinant (CHT), and
the same but with A fixed to 0 (HT). The crucial role of
the approximate full angular momentum projection be-
fore variation by introducing J as a constraint is clearly
seen.

To judge the quality of the approximation, however,
excitation energies alone are not enough. Further ob-
servables that test diferent aspects of the wave functions
need also to be considered. Recently, the spin structure
function of Si, which is of interest in astrophysics, has
been calculated within the same she11-model space and
using the same force [14]. Figure 3 shows a compari-
son of the SCM spin structure function with those ob-
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FIG. 3. Spin structure functions of the ground state of Si
as given by exact SCM [14] (solid line), CHT with one intrinsic
state (long-dashed line), and CHT with two intrinsic states
(short-dashed line). b is the oscillator parameter of the basis,

q is the momentum transfer.

—138
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Number of states

tained with our approach using one and two intrinsic
Slater determinants. Already with two intrinsic states
we achieve a very good description of the spin structure
of the ground state. Related to the spin is the magnetic
moment of the ground state. The measured magnetic
moment of Si is —0.55@~, well above the correspond-
ing Schmidt value of —1.9@~. The quenching of the mag-
netic moment is usually associated with two-body corre-
lations in the ground state. Thus, the (in)ability of an
approximate scheme to account for this quenching is an
indication of its (in)efficiency in describing such correla-
tions. The exact SCM result is —0.50@~., our approach
gives —0.36pN with one intrinsic state and —0.53pN with
two.

It is interesting to compare our hybrid symmetry-
conserving procedure to the most powerful symmetry-
conserving mean-field approach developed so far by the
Tiibingen group, the excited FED VAMPIR [6]. As noted
earlier, this method is based on the mixing of axially sym-
metric Hartree-Fock-Bogolyubov (HFB) Slater determi-
nants, projected on good proton and neutron numbers
and angular momentum. The intrinsic HFB states are
determined by a chain of variational calculations, similar
to those described above. For the sake of comparison, we
take the modified Wildenthal force and the corresponding
single-particle energies &om [6] and calculate the lowest
0+, 2+, and 4+ states of Si, mixing up to 6ve intrin-
sic Slater determinants. The results of our calculations,
together with those of the FED VAMPIR approach, are
displayed in Figs. 4—6. Once again, the importance of
the approximate full angular moment»m projection be-
fore variation is clearly seen by comparing the results of
the bare hybrid treatment to those of the constrained
one. In the case of J = 4, the approximate full angu-
lar momentum projection turns out almost exact. In all
cases, the hybrid procedure yields results that are equiva-
lent to, or better than, those of the FED VAMPIR. As in
the case of Si, the whole spectrum is shifted upwards,
but its shape is well reproduced. The excitation energies

FIG. 4. Energy of the Si ground state as obtained by the
various approaches: bare hybrid treatment with A = 0 (Q),
FED VAMPIR (E), hybrid treatment with A g 0 (~), and
full VAP (0). The dashed line indicates the position of the
exact SCM solution.

V. DISCUSSION AND CONCLUSIONS

In the present paper we have proposed and tested a hy-
brid symmetry-conserving variational procedure for nu-
clear structure calculations. The basic idea behind it

—133
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—136
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Number of states
5 6

FIG. 5. Same as Fig. 4, but for the first 2+ state.

of the transitions 0+ + 2+ and 0+ ~ 4+ are plotted in
Fig. 7, showing that two intrinsic states are enough to
reproduce the spacing in the spectrum.
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FIG. 6. Same as Fig. 4, but for the 6rst 4+ state.

is the mixing of variationally selected general deformed
Slater determinants with partial restoration of rotational
symmetry before and after the variation. Before varia-
tion, the axial symmetry is restored exactly and the full
rotational symmetry approximately, using an approach
similar to that proposed by Kamlah years ago. After
the intrinsic states are determined, they are projected
on good total angular momentum and then the Hamil-
tonian is diagonalized in the resulting nonorthonormal
basis. Since the Slater determinants are themselves over-
complete in the many-body Hilbert space, it is clear that
by increasing the number of intrinsic states the above
procedure is capable of yielding exact eigenstates of the
many-body Hamiltonian. Therefore, the relevant ques-
tion is, how fast is the convergence to the exact eigen-
states' The rate of convergence depends on how much
of the important correlations can be accounted for by a
single symmetry-projected intrinsic state. Which correla-
tions are important depends on the two-body force, and

e

CA
4
Cl

Cl

0

6
LLI

o ~ 0 C3

0 1 2 3 4 5 6
Number ot states

FIG. 7. Excitation energies for the 0+ —+ 2+ (~ ) and
0+ -+ 4+ (o) transitions. The dashed lines indicate the posi-
tions of the correspoading exact SCM solutions.

it is widely accepted that the most important compo-
nents are the pairing and quadrupole-quadrupole ones.
As discussed by Lipkin long ago [15], the only natural
way to describe correlations using independent particle
states is to allow them to break the symmetries of the
Hamiltonian. The correlations due to pairing imply par-
ticle number violation, and those due to the quadrupole-
quadrupole force imply deformation in the usual sense. In
order to work with physical states, we need to restore the
broken symmetries by projection. Unfortunately, for nu-
merical reasons it is not possible to do this simultaneously
for the particle number and the angular momentum. The
standard compromise is to enforce axial symmetry and
thus to work with axially symmetric HFB mean fields;
this is the basis of the VAMPIR approach. In this work
we have explored another possibility —enforcing particle
number conservation and allowing general deformations
of the mean fields. The results reported in the previous
section suggest that trading particle number violation for
axial symmetry violation is a good bargain. Since this
comes as a bit of a surprise, let us try to understand how
it comes about.

Consider for instance two particles moving in a single
j shell and interacting with a pure pairing force. The
exact ground-state wave function of this system is well
known [5]:

IGS) = (i+ —,') ).c' c' I-) .
m&0

On the other hand, a general Slater determinant for two
particles projected on good axial symmetry is given by

IC'o) = Poaia21 —)

= ) (A iA 2 —A iA 2)c c

It can be easily checked that taking A 2 ——A q and
A 2

———A q for all m ) 0 makes the above two states
identical (up to normalization). The intrinsic Slater de-

terminant at~a&I —) is triaxial; thus we see that project-
ing a triaxial intrinsic state on J, = 0 can in principle
produce an eigenstate of the pairing Hamiltonian. With
an increase in the number of particles the situation gets
much more complicated. We have examined numerically
the case of j =

2 with up to eight particles and have
found that in all cases axial-symmetry-projected general
Slater determinants provide a very good approximations
to the exact eigenstates, in fact always better than those
of the conventional BCS approach. Recently a shell-
model diagonalization of a pure pairing force in the fp
shell has been found to produce triaxial states too [16].
This all seems to indicate that there is a subtle connection
between "deformation" in gauge space (particle number
violation) and deformation in the usual sense, which cer-
tainly caHs for a better understanding.

Coming back to our variational procedure, we should
not fail to mention its shortcomings. The most serious
is that it is not justified for certain many-body states.

] +As an example, consider the lowest 2 state of Ne. If
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we vary the intrinsic states after projecting on J, = 2,
we end up approximating the J =

2 component of its

ground state rather than its 2 state. Introducing
the approximate full angular momentum projection be-
fore variation (A g 0) slightly improves the situation, but
in general we do not recommend the application of our
procedure to states that are higher in energy than states
of higher spin and with all the same other quantum num-
bers, since in such cases the quality of the approximation
is rather poor.

The results of these first applications of the hybrid-
symmetry-conserving variational procedure are very en-
couraging. Leaving the selection of the relevant configu-
rations to the dynamics of the many-body system allows
one to describe its states in terms of a small number
of angular-momentum-projected general deformed Slater

determinants. The ability of the method to deal with
even-even as well as with odd-mass nuclei should make it,
despite the limitation discussed above, an extremely use-
ful tool in addressing important nuclear structure ques-
tions, often of relevance to other fields (see, e.g. , [17]).
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