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Coherence of nucleonic motion in superdeformed nuclei:
Tovrards an understanding of identical bands
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The moments of inertia of superdeformed nuclei in the Hg-Pb region are investigated. Defor-
mation and pairing effects are treated self-consistently by means of the cranked Strutinsky Lipkin-
Nogami approach. Special attention is drawn to the role of the quadrupole pairing force, which is
crucial for the quantitative understanding of the moments of inertia, their dependence on N and Z,
and hence the identical band phenomenon.
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A new area of nuclear spectroscopy opened up with the
discovery of discrete high spin states at superdeformed
(SD) shape [1]. With the event of new detector arrays,
detailed spectroscopy in the second well is carried out
and new features emerge [2,3]. One of the most exciting
results relates to the discovery of identical bands (IB),
the first example of which was found in mass A = 150
region [4]. Shortly afterwards, similar IB were discovered
in is2Hg and i94Hg [5] and it was realized that most of
the SD bands in the mass A = 190 region can be grouped
into families of identical bands, with respect to certain
central nuclei [2,5]. Similar "families" of IB emerge in
the SD A = 150 region [3].

Following the experimental discovery, Nazarewicz and
co-workers [6] realized that the observation of identical p-
ray sequences in Dy and xszTb, as well as in Gd and

Tb, could be a fingerprint of the pseudospin symme-
try at extreme deformation and angular momenta. How-

ever, this interesting consequence of the IB phenomenon
does not explain the essence of the extremely weak po-
larization effects due to the odd particle/hole. Other
groups tried to gain understanding of the IB phenomenon
based on a pure single-particle approach [7]. In the limit
of the harmonic oscillator potential the dependence of
the moment of inertia on nuclear mass and deformation
(quadrupole) parameters is obtained by analytical formu-
las [8], and, consequently, numerical calculations can be
carried out with sufBcient accuracy. It has been demon-
strated that for certain orbitals the polarization effect,
h J( ) (J( )—:dI/d~), is very small, and hence occupying
these specific orbitals might result in identical bands [7].

All these considerations and similar algebraic ap-
proaches start &om simplified nuclear models. Since the
occurrence of IB is intimately linked to the understanding
of the moments of inertia as a function of N and Z, we
believe that more realistic assumptions are needed. The
polarizing effects due the presence of additional particles
have been investigated previously by means of the self-
consistent Hartree-Fock method [9] and in terms of rel-
ativistic mean field calculations [10]. Our present study
investigates the polarization in the presence of pair cor-
relations, with special attention to the quadrupole com-
ponent of the pairing force.

In contrast to the Dy region, the SD bands in the Hg
region are observed to relatively low rotational &equen-
cies where pair correlations play an important role. The
well-known effect of nuclear superiuidity does reduce the
moments of inertia with respect to its rigid body value.
In addition, the moments of inertia exhibit a smooth in-
crease over a large frequency range which is understood
in terms of successive alignment of vjq5j2 and vriq3g2 in
the presence of pair correlations. The direct consequence
of this interpretation is the expected downturn of J~ ~

at high spins being a result of exhausted quasiparticle

(qp) alignment. Recently, such a downturn was indeed
observed experimentally [11].

The presence of pronounced pair correlations in the
SD bands in the Hg region evidently excludes the ap-
plications of the simple, single-particle or similar al-
gebraic approaches in the explanation of the IB phe-
nomenon. The limitations of the latter method are
demonstrated in Fig. 1 where we present the results of
cranked-Woods-Saxon calculations with particle number
projection (PNP) and without (b, =0) pair correlations,
performed at constant deformation for the SD bands of
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FIG. 1. The kinematical J~ moments of inertia of
Hg (*), '

Hg (Q), and Hg(A), experiment and the-
ory. The pairing interaction is treated by means of the particle
number projection (PNP) before variation approach.
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Hg. In the single-particle limit the calculations
show that by adding two neutrons to, or removing two
neutrons from, the Hg core the resulting J( l = I /~
moment of inertia is essentially unchanged. However, the
calculated J( ) moments of inertia do not agree at all with
the experimental findings. This deficiency is remedied
by including monopole pair correlations, which qualita-
tively account for the main experimental trends in terms
of a smoothly increasing moment of inertia [2]. Still,
the quantitative agreement between theory and experi-
ment remains unsatisfactory. Moreover, the differences
between the moments of inertia for different nuclei now
increase considerably as compared to the calculations
without pairing. In the paired calculations, the align-
ment process is sensitively dependent on the Fermi sur-
face [12], yielding large difFerences as a function of neu-
tron number. The importance of this effect was realized
especially after the discovery of SD in ~soHg [13], which
triggered the present investigation to include higher order
correlations into the particle-particle (p-p) channel.

Already, early investigations by Migdal [14] showed
that the gauge invariant pairing interaction is of im-
portance for the moments of inertia (see also [15,16]).
Realistic calculations with a quadrupole pairing force
[quadrupole-quadropole (QQ) pairing] in the rare earth
region further corroborated this effect [17,18]. It was sug-
gested in Ref. [19],and recently estimated by Hamamoto
and Nazarewicz [20] in the framework of a simple model,
that QQ pairing might be of importance for understand-
ing the alignment process in the SD Hg region. In
the present study we therefore consider the Hamilto-
nian which contains the deformed mean-field potential
of Woods-Saxon type and a pairing interaction defined
as

(x~) ~ (w~) ~(w~)v p ~
= —Gp&g ~ g

(pp) 6op) A —Op jll —0)
P (a)Q„~P), A = 2, p = 0, 1,2. (2)

Qo = Q2p,

Q~ = ~(Q'„'+Q"„) p= 1)2. (3)

In order to avoid the commonly encountered prob-
lem of a sharp pairing phase transition, we use the
I.ipkin-Nogami approach. This method, being the ap-
proximation of particle number projection before vari-
ation, aims to minimize an operator up to second or-
der, 'R = H —A2(N —(N) ), with Aq calculated using
certain subsidiary conditions [24]. The resulting Lipkin-
Nogami equations (LNC) in the intrinsic frame of ref-
erence (cranking model) can be cast into the standard
form of cranked Hartree-Fock-Bogolyubov equations (for
details we refer the reader to [25—27]). In the case of
monopole and quadrupole pairing we derive the follow-

ing self-consistency condition for evaluating A2..

The monopole pairing strength Goo is determined by the
average gap method of Ref. [21] while G2„corresponds
to the self-consistent coupling constants of [22]. The
strength of the quadrupole pairing force stems Rom the
requirement of restoring the local Galilean invariance of
the system under A-pole collective shape oscillations [22].
Consequently, our approach does not involve any ad-
justable strength parameters. It has been demonstrated
by Kishimoto and Sakamoto that effective interactions in
the particle-hole (p-h) channel can be realized in general

by means of double-stretched operators [23]. Hence, the
natural extension to the QQ-pairing force also invokes
double-stretched operators (Q'„' = r" Y2„'):
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(5)

where p and e (y = mm') denote the density matrix and
pairing tensor, respectively. We use a good signature
representation, o.(6) = r = —i(+i) where T~r = pi) =
~r = ~i) = p~r = +i). The contribution to the pairing
field is

I

deformation. Secondly, the modification of qp levels cal-
culated at frequency zero is of the order of 100 keV as
compared to the calculations including monopole pairing
only, irrespective of deformation. This e8'ect is demon-
strated in Table I, where we show the relative shifts of
the qp energies of high- j orbitals calculated for SD Hg
using three difFerent versions of QQ pairing (involving
nonstretched, stretched, and double-stretched generators
respectively). At least three facts should be noticed here:
(i) In the cases of nonstretched and stretched QQ-pairing
forces (these are the versions used so far in the literature~

The use of double-stretched quadrupole operators has
several advantages. The coupling constants of the pairing
strength are essentially equal by analogy to the spheri-
cal case, G20 = G2q —G22, and almost independent of

In fact in [17] no radial form factor at all was taken into
account.
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TABLE I. The relative shift of the quasiparticle ener-
gies of the high-j orbitals jxsyq (neutrons), ixsyq (protons)
in the presence of difFerent kinds of quadrupole pairing in-
teractions (nonstretched, stretched, and double-stretched).
The shift stems essentially from the Y&0 component of
the force. The calculations were done for the nucleus

Hg at a representative deformation of the SD band

(Pg = 0.480, P4 = 0.072; p = 0').

Orbital
V/15/2

&&&3/Z

Nonstretched
+1286 keV
+1324 keV

Stretched
+538 keV
+634 keV

Double-stretched
—43 keV
+5 keV

[17,18]) these shifts are large and contain spurious, pro-
nounced deformation dependence. (ii) The shifts pre-
sented in the table are calculated using the selfconsis-
tent coupling constants [22] which are different for dif-
ferent versions of QQ pairing and rexnove, in part, the
spurious shape dependency of the interaction. For ex-
ample, the coupling constant for the K = 0 component
of Q'Q pairing (Gyp) responsible for the shifts discussed
here is roughly 3(1.5) tixnes smaller for the nonstretched
(stretched) force as compared to the double-stretched.
Also, the selfconsistent values of the quadrupole pairing
gaps are substantial for both nonstretched and stretched
versions (in contrast to the double-stretched interaction,
see, e.g. , Fig. 2). It requires an additional correction of
the monopole pairing strength to preserve a roughly con-
stant value of the odd-even mass difference. In the case of
deformation self-consistent calculations it must be done
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FIG. 2. Comparison of calculated and experimental dy-
namical ( ) JI moments of inertia of Hg. The pairing
interaction is treated within the LNC approach. Calculations
including monopole paring only are depicted by solid lines,
including the Qqo component by long-dashed lines, and the
one including Qqp and Qqi by short-dashed lines.

at each deformation separately. Moreover, due to the
state dependence of the interaction it can be done only on
the average [19]. (iii) In the case of prolate deformed nu-

cleus, all orbitals with positive quadrupole moment (es-
pecially those with low 0 and high j) were shifted up

[17,18]. On the other hand, within the double-stretched
pairing force, the average quadrupole moment is close to
zero, and Aqo can be either positive or negative. For
example, A&0 of neutrons in SD Hg is negative imply-
ing that the vjxs~q orbital is pushed down in energy (cf.
Table I and Fig. 2).

The above-mentioned facts clearly show that the three
versions of QQ pairing are different and cannot be com-
pared directly to each other. Moreover, only the double-
stretched version seems to have truly residual character,
allowing us to apply the formalism directly to lattice cal-
culations in deformation space. The form of the QQ-
pairing force touches the important questions of how to
construct residual interactions on top of the deformed
mean field. Our work seems to suggest that among the
hitherto used QQ-pairing forces only the present appli-
cation (double-stretched) is consistent with the deformed
mean field.

Figure 2 shows the self-consistent quadrupole pair-
ing gaps (upper panel) and the corresponding Ji~) mo-
ments calculated for Hg at constant deformation. The
calculated quadrupole 6's are of the order of 10—
20 keV/fm~ and hence QQ pairing contributes only lit-
tle to the total energy, bEi,„= —~b, p„~ /Gg„, since
the self-consistent value of coupling constant is G&

4 Ap
1.2 (1.8) keV/fm for neutrons (protons), respectively.
Nevertheless, our QQ-pairing force strongly in8uences
J~ ~, implying that it is of essentially dynamical char-
acter.

The action of the Qqp component (——
) results in a

slight modification of J~ ~, the effect &om protons be-
ing negligible, see Fig. 2. These results are very different
from previous calculations at normal deformation, where
the Qqp component played a dominant role [17,18]. In
our approach, the key role is played by the Qqx term
(- — -) acting extremely coherently over the entire fre-
quency range. As a response to cranking, the AK = 1
scattering redistributes quasiparticles in a manner which
favors the angular momentum gain. The result is an
immediate increase of J~ ~ as expected from early calcu-
lations [14—16] and it is qualitatively in agreement with
[17,18]. With increasing frequencies, the Coriolis mixing
leads to a further enhancement of the AK = 1 pair scat-
tering up to the frequency of completed qp alignment or
crossing. The crossing frequency becomes slightly shifted
and, more importantly, the alignment gain of the high-j
orbitals is substantially reduced. Consequently, the J~ ~

moment of inertia Battens out in agreement with experi-
mental data. Finally, A~~ starts to increase first after the
qp alignment, and, therefore, the Qqq component does
not play an important role in our present investigation
(a weak Aqq effect was also found [17]).

Let us allow the following reBection about the rota-
tional structure of SD bands: At normal deformation,
the ground state band is crossed by the S band in a re-
gion of 105—14h. Since pair correlations are considerably
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FIG. 3. The systematics of calculated and
experimental dynamical moments of inertia
J of the SD bands of Hg up to Pb.
The lattice calculations include all compo-
nents of the QQ-pairing force. Note that the
experimental values of Pb are not unam-
biguously assigned to that nucleus.
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reduced in the S band, the full interplay of Coriolis force
and pairing interaction can be studied essentially in the
narrow region below the first band crossing. In contrast,
the alignment at SD shape in the Hg-Pb region occurs at
spins of 305 (for protons = 405), allowing for a more
detailed study of the interplay of single-particle motion,
rotation, and pairing. Since the alignment occurs so late
in SD nuclei, the efFects of pairing and especially higher
order pair correlations are given a much larger range of
inBuence.

In spite of the remarkable improvement as compared
to previous calculations, the high spin behavior of the
moments of inertia are not reproduced at constant defor-
mation. Therefore, we included the effects of deformation
changes induced by rotation and performed Strutinsky-
type calculations on a lattice in deformation space (in-
cluding quadrupole P2, p, and hexadecapole P4 degrees
of freedom). In these calculations we solve the LNC
equations self-consistently including the monopole and
quadrupole pairing channels. The calculations were per-
formed for the yrast SD bands of even-even Hg and Pb
isotopes from N = 110—116 and the results are shown in
Fig. 3. The discrepancy between all earlier calculations
and experiment are, to a large extent, removed. Our
calculations demonstrate the simultaneous role of shape
changes and pairing correlations. It turns out that an ad-
ditional coherence arises from the Q2i component of the
pairing force, resulting in an enhanced stability of the
nuclear shape. First after the neutron alignment a defor-
mation shrinking sets in, leading to a prolonged neutron
and more rapid proton angular momentum gain.

A few more comments are on place regarding our lat-
tice calculations. The i&3~2 proton alignment in the Hg
isotopes is occurring at a slightly too high &equency as
compared to experiment (Fig. 3). A slight lowering of
that crossing will further improve the agreement at high
spin (see, e.g. ,

i is4Hg). Similarly, the neutron cross-
ing is too early at N = 110. Some of these discrepancies
are related to the placement of the single-particle levels
in the Woods-Saxon potential used here [28]. A further

refinement of the p-h channel in order to better describe
the high spin behavior is necessary. One should also point
out that, in the presence of simultaneous high-j proton
and neutron alignment, a residual proton-neutron (p-n)
interaction in the p-h channel can play a role. In con-
trast to the p-p channel, our studies of the of the QQ p-n
interaction show [29] that the efFect is limited to a few
levels and reveal no coherent result when mixing addi-
tional configurations.

A microscopic understanding of the moments of in-
ertia and their dependence on nucleon number is es-
sential for the IB phenomenon. Extending the pairing
interaction to higher order and calculating pairing and
deformation self-consistently, one is for the first time
able to reproduce quantitatively the moments of iner-
tia of the SD bands in the Hg-Pb region over the en-
tire &equency range. In the absence of low-lying band
crossings, the SD Hg-Pb nuclei become an excellent tool
for detailed studies of the interplay of collective rota-
tion, single-particle motion, and pairing interaction over
a multitude of states. The double-stretched QQ-pairing
interaction treated within the LNC approach levels out
the isotonic differences in the alignment pattern, which
were present in previous calculations, without essentially
affecting the single-particle structure. Within the mean-
field approach it appears difficult to discuss results on a
1 keV level, especially in the presence of interpolation on
a lattice. However, our calculations clearly suggest that
the additional correlations induced by the QQ-pairing
force, essentially by the Q2i term only, play a key role
in the understanding of the experimentally deduced mo-
ments of inertia and hence the IB phenomenon. The
nucleonic motion at SD shape appears to be correlated
to an extent that overcomes the expected difFerences due
to changes in nucleon number.

This work was supported by the Swedish Institute (SI),
Polish State Committee for Scientific Research (Contract
20450 91 01), and Swedish Natural Science Research
Council (NFR).



2892 W. SATUKA AND R. WYSS 50

[1] P.J. Twin et al. , Phys. Rev. Lett. 57, 811 (1986).
[2] R. Janssens and T.L. Khoo, Annu. Rev. Nucl. Part. Sci.

41, 321 (1991).
[3] P. Twin, Nucl. Phys. A574, 5lc (1994).
[4] T. Byrski et al. , Phys. Rev. Lett. B4, 1650 (1990).
[5] F.S. Stephens et aL, Phys. Rev. Lett. B4, 2626 (1990);

B5, 301 (1990).
[6] W. Nazarewicz et al. , Phys. Rev. Lett. 64, 1654 (1990).
[7) Z. Szymanski, Nucl. Phys A. 520, 1c (1990); I. Ragnars-

son, Nucl. Phys. A520, 76c (1990).
[8] A. Bohr and B. Mottelson, Mat. Fys. Medd. Dan. Vid.

Selsk. 30(1) (1955).
[9] Chen et al. , Phys. Rev. C 46, R1582 (1992).

[10] J. Konig and P. Ring, Phys. Rev. Lett. 71, 3079 (1993).
[11] B. Cederwall et al. , Phys. Rev. Lett. 72, 3150 (1994).
[12] R. Bengtsson, I. Hamamoto, and B. Mottelson, Phys.

Lett. 73B, 259 (1978).
[13] M.W. Drigert et al. , Nucl. Phys A530, 452 (1991).
[14] A.B. Migdal, Nucl. Phys. 13, 655 (1959).
[15] S.T. Beliaev, Nucl. Phys. A24, 322 (1961).
[16] I. Hamamoto, Nucl. Phys. A232, 445 (1974).

[17] M. Wakai and A. Faessler, Nucl. Phys. A295, 86 (1978).
[18] M. Diebel, Nucl. Phys. A419, 221 (1984).
[19] R. Wyss, ORNL Physics Division Progress Report 1991,

p. 1S6.
[20) I. Hamamoto and W. Nazarewicz, Phys .Rev. C 49, 2489

(1994).
[21] P. Moiler and R. Nix, Nucl. Phys. A53B, 20 (1992).
[22] H. Sakamoto and T. Kishimoto, Phys. Lett. B 245, 321

(1990).
[23] H. Sakamoto and T. Kishimoto, Nucl. Phys. A501, 205

(1989).
[24] H.C. Pradhan, Y. Nogami, and J. Law, Nucl. Phys.

A201, 357 (1973).
[25] P. Magierski et al. , Phys. Rev. C 47, 2418 (1993).
[26] W. Satula, R. Wyss, and P. Magierski, Nucl. Phys.

A578, 45 (1994).
[27) B. Gall et al. , Z. Phys. A 348, 183 (1994).
[28] V.A. Chepurnov, Yad. Fiz. 6, 955 (1967).
[29] W. Satuia, R. Wyss, and F. Donau, Nucl. Phys. A5B5,

573 (1993).


