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Practical formulation of the extended Wick's theorem and the Onishi formula
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The extended Wick's theorem for fermion operators, which is used to compute matrix elements
of an arbitrary operator between two difFerent quasiparticle vacuums, is reformulated to deal with
quasiparticle vacuums expanded in a 6nite single particle basis not closed under the canonical
transformation relating them. A new expression for the overlap of those quasiparticle vacuums is
also given.

PACS number(s): 21.60.—n, 21.90.+f

I. INTRODUCTION

The extended Wick's theorem for fermion operators
[1,2] and the Onishi formula [3] are widely used tools in
many body theories and more specifically in theoretical
nuclear physics. They are the essential tools in projected
mean field calculations and in the generator coordinate
method (GCM).

Given a canonical transformation 7 preserving the
commutation relations of fermion annihilation and cre-
ation operators (both single particle and quasiparticle)
the extended Wick's theorem allows the calculation of
general matrix elements of the form

(v l&7 lv)
(~17 lv)

'

where A is some product of annihilation and creation op-
erators and ly) is an arbitrary product wave function of
the Hartree-Fock-Bogoliubov (HFB) type. The matrix
element can be computed as the sum of all possible con-
tractions among two quasiparticle operators. The two
quasiparticle contractions and the overlap (y]7 lp) are
evaluated in terms of the matrix T de6ned as

2N
7- '&,7-=) T,,-&,

( rii Ti2 ll
( +21 +22 j (3)

it can be shown [1,2] that the only nontrivial contraction
is given by

(v 17 lv )

For the overlap we get the Onishi formula

(4)

where p; is a shorthand notation for the set
(cri, . . . , era, . . . , ai, . . . , a&, . . .) of quasiparticle operators
associated with lp) (i.e., nr, ly) = 0&. Writing T in block
form with respect to the creation and annihilation oper-
ators

(v I7 l~) = V'det(&»).

It is worth emphasizing here that 7 is only required to
preserve the canonical commutation relations. It can be
a Bogoliubov transformation (7 lrp) = ly ')), an element
of a symmetry group (the parity operator, the rotation
operator, the translation operator, etc.), or just a trans-
formation of the single particle basis.

In the derivation of the extended Wick's theorem there
is no explicit mention of the single particle basis in which
quasiparticle operators are expanded. However, it is im-

portant to explicitly consider the single particle basis
(which is supposed to be finite) when it is not closed
under the transformation 7 (that is, 7 ict7 contains
elements not belonging to the original basis). In this
case the restriction of 7 to our finite single particle basis
no longer preserves the canonical commutation relations
and the extended Wick's theorem apparently cannot be
used. Examples of such situations are the following: (i)
The transformation 7 represents a spatial translation.
The overlap between the translated and the original ba-
sis j dr P„'(r)P (r —a) is difFerent from zero for any value
of n, m unless we consider a plane wave basis. (ii) The
transformation 7 represents a spatial rotation and the
single particle basis is a harmonic oscillator basis with
different oscillator lengths along the three axes. (iii) The
transformation 7 transforms the original harmonic oscil-
lator basis with oscillator lengths b, b„, and b, to a new
oscillator basis with lengths 6', b„', and b', .

There is a simple solution to this problem: the single
particle basis has to be made large enough as to make the
7 transformation closed. However, it might happen that
the single particle basis has to be extended as to cover the
full Hilbert space rendering this procedure impractical-
as is the case in the examples mentioned above. To solve
this problem there are two alternatives: truncate the ex-
tension of the basis —being very careful in estimating the
effects of the truncation [4]—or restrict oneself to a sin-

gle particle basis in which the 7 transformation is closed
(this is the preferred alternative in most of the projected
calculations carried out up to now). However, using a
basis adapted to the canonical transformation 7 could
be a poor alternative depending on the problem at hand.
For example, if one has to deal with a spatial translation
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it is not very practical to describe a nucleus using a plane
wave basis.

In the following a method to overcome the aforesaid
problems will be presented. The single particle basis is
formally extended as needed but then the 7 transfor-
mation is factorized in a way that makes it possible to
express the final results (contractions and overlaps) in
terms of quantities defined in the original (not extended)
single particle basis.

II. DECOMPOSITION OF THE
TRANSFORMATION

The purpose of the extended Wick's theorem is to com-
pute the general overlap

4 1~7 lv')
(~171m')

'

where A is a general product of creation and annihilation
quasiparticle operators, 7 is a canonical transformation
preserving commutation relations, and ly), ly') are HFB
wave functions related by a Bogoliubov transformation
7g such that lp') = 7+i+).

Both HFB wave functions are supposed to be ex-
panded in terms of the same finite single particle basis
(the extension to different single particle bases for l&p)

and ly') will be treated in Appendix B). This basis

(lj)q, j = 1, . . . , N) will be referred to as basis 1. On
the other hand, those states of the Hilbert space basis
not present in basis 1 will be denoted by lj)2 (basis 2).
In general, the 7 transformation will mix states of basis
1 with those of basis 2. This mixing means that 7 will
no longer be a canonical transformation in the subspace
generated by basis 1. Therefore, we are forced to use the
full Hilbert space basis in order to apply the extended
Wick's theorem for the calculation of the overlap of Eq.
(6).

The efi'ect of 7 on the single particle creation and an-
nihilation operators of the full basis (basis 1 and 2) can
be expressed through a mixing matrix R defined as

t'R 0"=', 0 (R)- )
(10)

where R is the transformation matrix for the annihilation
operators and the special form of the transformation ma-
trix for creation operators is a direct consequence of Eq.
(8). From the above definition it is clear that R,~ are
the single particle matrix elements of the transformation
operator 7

R' =(~17lj)

provided that 7
l
—) =

l

—). With the two restrictions
imposed on 7 we can write it as (see Appendix A)

~ ~
~

~I ——exp ~ qcc,t~ ~ ~ (12)

However, it is more convenient to rewrite the above
expression as the exponential of an antisymmetric
quadratic form of annihilation and creation operators

(1
7 = Crexp —) p;(q&),,p,

where the antisymmetric matrix q~ is given by

0 T
(14)

and the constant Cr by

(1
Cr = exp

I
-Tr(q)

I

~

E2 )
In terms of q~ the transformation matrix R is given by

R = exp(0q~).

operators. ~ This restriction allows us to write the matrix
R in block diagonal form

From here it is easy to obtain the corresponding relation
for R

(c ) Ec )

RcrR = cr, (8)

The constraint on 7 of preserving the canonical commu-
tation relations implies that the mixing matrix R has to
satisfy

R = exp(q),

which also allows us to rewrite the constant C~ as

Cr = exp
l

—Tr[ln(R)]
l

=— det(R).
(1
E2 ) (18)

where cr is the matrix
Taking into account that we are dealing mith two dif-

ferent bases it is convenient to decompose R in a block

t'0 1 l~= [~* ~~]+ =
I 1 0)

In the following we will assume that the transformation
7 does not mix single particle creation and annihilation

The generalization to a transformation ~ixing creation and
annihilation operators is straightforward but seems to be of
little interest.
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form that makes explicit this fact,

R$ S]
~~ )

0) t'Y, 0 5 &I z, b

~x, 1) (o y, ) j, o (2o)

In the above expression 'R~ is the transformation ma-
trix among the states of the single particle basis 1 (i.e.,

(Rq), =q (iIrIg) q), Sq is the mixing matrix between
basis 1 and 2 [i.e., (Sq), . =i (iI7 Ig)2], etc.

The key point in the argument is to decompose R as a
product of three special transformations

opposite to the first transformation as it mixes elements
of basis 1 with those of basis 2 through a mixing matrix
Zq but it does not mix elements of basis 2. Determining
Xq, Yq, yq, and Zq is not a difficult task: the product of
the three matrices appearing in Eq. (20) is carried out
and equated to the expression appearing in Eq. (19). A
little algebra yields the result Xq ——7jR&, Yz = Ri,:My —7jR~ Sy and Zz ——Ri Sz, provided that Rz
can be inverted.

It is also possible to obtain an expression for X~, Yq,
and Zq in terms of the matrix decomposition of

(&)'
r,— R2 S~&

The first transformation does not mix elements of the
basis 1 with those of basis 2 but it mixes elements of basis
2 with those of basis 1 through the mixing matrix Xq (it is
the sum of the unity matrix plus an idempotent matrix).
The second does not mix elements of the two basis (i.e. ,
it has block diagonal form), while the third one is the

The result is Xy = S2Ll2, Y] —R2 S222 r2)
(Q+) ~ and Z+ = —g ~7

Using the above decomposition of R the full trans-
formation matrix R can be decomposed as the product
R = R(~)R(2)R(3)

&x,
'

0
1 —Xin

( Y, O

o y,
(Y~) ' 0

o (y )-' )

(1Z, o

1 0
-Z~ I j

(22)

where each of the transformations R(') preserves the
canonical commutation relations (i.e., R~'~oR~'l = 0).
The decomposition of R can also be expressed in terms
of exponentials of quadratic forms of creation and anni-
hilation operators (see Appendix A and [1])

T= exp ~,~c7i'R, cIi) exp cI,IlnYictiI)
—1

x exp c~eI1ngic~eI exp cpIRi SicIe)), (23)t

where the subscripts (1) and (2) stand for the operator
of basis 1 and 2, respectively.

( ~ & f Ut Vt ~ ( c &

t I

=
I ~z ~r I I,t I

= ~' I,t I. (24)

Taking into account that both set of quasiparticle op-
erators are related through the rB transformation

t'nl, &p)
t Ira'=

I pt Ik~) 4 )
(25)

and recalling that 7 and 7~ are linear transformations,
the effect of the transformation r7jy in the (n, a ) set is
given by

III. QUASIPARTICLE TRANSFORMATION
r r 'I,

I
ry~ =-wtzw'I

&~) &~ )
(26)

In the preceding section the 7 transformation for sin-
gle particle states has been decomposed as a product of
three simpler transformations. Now the effect of those
transformations on the quasiparticle operators will be
considered.

As we are dealing with two different HFB wave func-
tions we have to consider not only the effect of r but
also the effect of the Bogoliubov transformation rjy con-
necting Ip') with Iy). Therefore, let us consider the
total transformation operator r7jy. Let a„and P„be
the quasiparticle annihilation operators associated with
the quasiparticle vacuums Iy) and Ip') = 7~Imp), respec-
tively. The quasiparticle operators are linear combina-
tions of the single particle annihilation and creation op-
erators c;, c,.

T(~) W tR(i)

T( ) = W~R( )W'
T(') = W'ta(')W'.

(27)

(28)

(29)

With the above definitions, and taking into account that
R('), R', and R" preserve canonical commutation rela-
tions, it can be shown that this is also the case for the
T(')

In order to compute the transformation matrices T(') it

where W and R" are the Bogoliubov wave functions
of Eq. (24) associated with the quasiparticle opera-
tors o., nt and P, Pt, respectively. Denoting by T the
product TVtRTV' we decompose it as the product T =
T( )T& )T(3), where the T(') are given by
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is first necessary to consider what is the structure of the
Bogoliubov wave functions U and V in terms of the two
bases, 1 and 2. As only basis 1 is used to determine the
HFB wave functions, the U and V matrices do not mix el-
ements of basis 1 with those of basis 2. The structure of U
and V in the basis 2 subspace is somewhat arbitrary, the
only restriction being that the occupation probabilities
in such subspace have to be zero (i.e. , n„= 0, u„= 1).
%lith the previous considerations we can write U and V
in terms of basis 1 and basis 2 states as

U 0)j V
i

V oui
l0 d)' l0 0)'

B = U Riv" + V (Ri) U",
B=U (R, ) 'V'+V R,U',

for T( ) a,nd

T(s) & 1 U'tz&d' i
lo

V'~Z, d' i

(3)

22' = ll'

(34e)

(34f)

(35a)

(35b)

(35c)

where U and V are the wave functions determining iy)
and d is an arbitrary unitary transformation among the
basis 2 subspace. As ip) and ip') are expanded in the
same basis, the previous decomposition of U and V also
holds for U' and V'.

In order to simplify the algebra and the expressions
appearing in the following, T(') is written as

T(i)
(~) ()

l Tg& T~~ )
where T] y is the transformation matrix among annihila-

tion operators, Tzz is the mixing matrix between anni-
hilation and creation operators, etc.

The calculation of T(') is straightforward. The results

for T„',making explicit the terms corresponding to each
basis, are

l ') l ') (36)

so that the total transformation 7y = g7gy can be de-

composed as

for T( ). At this point it is worth noting that both T]2
and T2& are zero due to the special decomposition of
R, Eq. (20). This will be shown to be crucial in the
calculation of the overlap and the proof of the extended
Wick's theorem.

Resorting again to the relation between a transfor-
mation matrix and the corresponding operator (see Ap-
pendix A) it is possible to associate to each transforma-

tion matrix T(') the corresponding operator 7&'

—Vtxi+d' )o'

for T( ),

T(z)
i

A 0
lo A&

(&) i&B o&~
12 0 0

T(l)
i

B 0
lo 0)'

(g) & A 0 ')

(i) I' 1 O )

l dtx, U

(g) ( 0
~ dtX V.

T2i ——0,(i)

T22 T$ $

(32a)

(32b)

(32c)

(32d)

(33a)

(33b)

(33c)

(33d)

7r =
y d&t[R)T~ 7~ 7~ (37)

(;) t'1 . (,)= exp
2 ).&gsQI,'v'Yv

I r

)

where p„ is the pt element of the vector (ai, . . . , ai, . . .)
and Q„'„ is an antisymmetric matrix such that T(')
exp(0Q(')). The explicit form of Q(') is irrelevant of the
arguments used in the following and, therefore, the op-

erator 7&~') will be directly written in its factored form

( 1 -()-i
x exp —) o.'„M~v n exp

~

——Tr L(')
. )

(39)

The general structure of the 7&') operators is of the form

with

A = U (R~)
' U" + V R,V", (34a)

The K('), L('), and M(') matrices are expressed in terms
of T(') as (see Appendix A)

A= d u, d",

A = U RgU'+ V (R, ) V',

2= d'(u, ) d',

(34b)

(34c)

(34d)

K T$2 T22() () ()

exp L ' = T2,
'

M = T22 T2( ) (~) (i)

(4Oa)

(4ob)

(40c)
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The only difBculty in the evaluation of these quantities

seems to be the calculation of the inverse of the T22 ma-
trices. However, this calculation can be greatly simplified
taking into account the following properties

=0. (54)

Here, K( ~ = 0 is a direct consequence of having T2y: 0.

(1 0)
l, x 1)!

!

t'1 Z&
(0 1)

( 1 0)
=E x1)

&1 —Z), )I.
In the preceding section the transformation operator

7z has been decomposed as the product [Eq. (37)] of
three special transformations 7&') having the properties

(41b)

Using them one can obtain the expressions for K( ~, L( ~,

and M('~
7T' 'lv') = Iv)

(v I 4 ' = (v I

(v I7 '"Iv» = p(--'. T [I("]).

(55)

(56)

(57)

—V X~+d
)

d XiV Ux+d )
0

~ "x,v
( 0 0

IEdxiU 0

0,

(42)

The first two properties stem directly &om the fact that
both K( ~ and M( ~ are zero and this is a consequence of
the special decomposition of 7 .

With the above properties the calculation of the over-
lap (pl7 ly') (Onishi formula) is straightforward:

(43)

(44)

(45)=0,

(41a) IV. WICK'S THEOREM AND ONISHI FORMULA

The fact that the 7& transforxnation does not have
a two-quasiparticle annihilation operators part (i.e. ,

M( ) = 0) is due to the fact that Ti2 ——0.
For 7&~

) the following expressions are obtained:

(2) l~
BA '0)

(.) &(A) '
exp L =

y )

exp( ——,'Tr[L '
)) = Qdet(A) det(A),

(46)

(47)

(48)

(49)

where the matrices A, A, B, and B are those of Eqs.
(34a), (34b), (34e), and (34f).

Using the decomposition of R it is easy to show that

det(R) = det(Yj) det(Px) = det(Ri) det (M2 ) . Tak-

ing into account the expression for A and the pre-
vious relation, we can write det(A) = det(M2)
det(Rx)/det(R). This allows one to write the constant
term appearing in the expression of 7&( ) solely in terms
of quantities defined in the basis 1 subspace,

(,) det(A) det(R, )exp —2iTr I, 2

det R

Finally, for 7& we get

K() =0

~(s) I&
0 U tZid

g0 0

(el&~lv ') = (~l&~lv) = g«~(&)(~l&PIv)

= Qdet(A) det(Ri). (58)

=— (v IA7~lv). (59)

This shows that the only relevant part of the transfor-
mation is given by 7xxr = 7&( ) exp (—ntK(2)nt).

Now a new set of quasiparticle operators (d„, d„) sat-
isfying canonical commutation relations (but not neces-
sarily being Herxnitian conjugated) is defined as

dl

Using the transformation properties of 7z [see Eq.
(36)] and those of exp (2ntK(2)nt) (see Appendix A),
we establish the linear relation between the (d&, d~) and
the (n„, nt ) sets

T.. ) (, 0 ' ) E n )

The above result gives us an expression of the overlap
solely in terms of quantities defined in the basis 1 sub-
space. It diH'ers &om the usual one in the definition of
the matrix A, Eq. (34a), and the extra det(Ri) [for the
definition of Ri see Eq. (19)].

To prove the extended Wick's theorem and to compute
the contractions, the property of 7& given in Eq. (55)
is used to write the overlap of the operator A as

A ' = (v!A7
' exp(-xntK(')nt)lv)

&v 17 lv ')

(s) ( 0 V' Zid'
—d Zx+V' d' Zi U "V'~Z d' )

T( ) T(i)K( ) + T(i)
(61)
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where the matrj. ces T&~, T&2, T22 have been defined in(~) (~) (~)

Eq. (32) and Kf l in Eqs. (46), (34a), (34e).
Noting that

(v 14d-Iv) = 4-
(vl4d-Iv) = Til T12 + K Tll(&) (~) (2) (i)

P,1/

(65)

(66)

(vI&w =o (62)

and inserting in the expression
7g 7~ as needed, we express the

(6) as a mean field value of d and
tors

of A(n, nt) as many
general overlap of Eq.
d quasiparticle opera-

(v I ( ~ ~')+Iv'')
(v I&lv ') (63)

As d„, d„are linear combinations of the quasiparticle
operators a, at associated with Irp), the matrix element

(v IA(d d)lv) (64)

can be computed using the usual Wick's theorem as the
sum of all possible contractions of the d and d opera-
tors. Using the definition of d and d we obtain for the
contractions

(v14d-Iv) =0
(vied-Iv) = 0.

(67)

(68)

Using the relation of Eq. (63) and taking into account
that the matrix element of Eq. (64) can be computed as
the sum of the contractions given in Eqs. (65)—(68) the
proof of the extended Wick's theorem is complete.

Finally, the structure of the only nontrivial contrac-
tion (yId„d„Iv) can be determined by using the explicit

form of Tii, Ti2 [Eqs. (32)] and K~2l [see Eqs. (46),
(34a), (34e)] in terms of the 1 and 2 subspaces. However,

the final result involves rather lengthy expressions and
therefore it is convenient to use the relation

V A+ UB = Rgv", (69)

which can be obtained using the explicit expression of
the A and B matrices and the unitarity relations of the
Bogoliubov wave functions, to simplify the final result,

(v 14d-Iv) =
-BA-' (A+) 'V'&7i d-*

~
—d 7iV*A ' —d X,U(A~)-'V t7, d )

(70)

A=U R', U'*+V R,V'*,

B = U'R, V'*+ V'R, U'*,
(71a)

(71b)

which are the usual expressions previously found in the
literature [2]. Moreover, if one takes into account that the
unitarity of Rq implies that its determinant is a phase,
it is clear that the overlap of Eq. (58) reduces to the
usual Onishi formula [3]. The (p]d„d„Iy) contraction is

in this case only different &om zero if both indexes p and
v belong to the basis 1 set thus reducing to the usual
contraction [1,2].

The result for the subspace spanned by the basis 1 is iden-
tical to the usual expression for this contraction except
for the different definition of the A and B matrices [Eqs.
(34a), (34e)]. On the other hand, the contractions for
those pairs of indices containing at least one index of ba-
sis 2 cannot be compared with any previous result. They
show the peculiarity of containing the arbitrary trans-
formation d [see Eq. (30)]. At a first glance this seems
rather suspicious but, as it will be shown in the next
section, the d matrix never appears in the calculation of
overlaps of operators.

For unitary transformations not mixing basis 1 with
basis 2 (Si = 7j = 0 in R), Ri has to be an unitary
matrix [i.e. , (Ri )

i = Ri]. In this case the A and B
matrices of Eqs. (34a), (34e) are given by

I

operators will be presented.
In the Hartree-Fock (HF) limit we can consider that

basis 1 is the self-consistent single particle basis of the
occupied states. Therefore, the U matrix is zero and V
is equal to the unity matrix. The A matrix of Eq. (34a)
is simply Rq and then the expression of the overlap Eq.
(58) reduces to

(v171v ) = det(Ri). (72)

(v IQ7 Iv')
&vl&lv')

' (73)

where Q is a single particle operator

Q = ) Q,,c,.c, .t (74)

Taking into account that R~ are the matrix elements of
the transformation operator 7 in the basis 1 (i.e. , the
self-consistent basis), it is clear that the previous result
coincides with the well-known I owdin formula [5]. The
generalization of the previous limit to the more general
overlap (v17 Imp') requires the use of two different single

particle basis for Iy) and Ip') and the reader is referred
to Appendix B for further details.

Now we turn to the calculation of the overlap

V. SOME APPLICATIONS

In this section the Hartree-Fock limit for the overlap

(p171y) and the calculation of the overlap of one body

Using the inverse Bogoliubov transformation, we can ex-

press the creation and annihilation single particle opera-
tors in terms of the quasiparticles associated with Iv)
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&vIQ7Iv') - v &v l~» (v,'.~t + &'-~-) 7 Iv'&

&vl7lv'& „- *' *"
&vl&lv'&

(75)

Using now the contractions

that in the calculation of overlaps of operators the 6nal
result does only depend on quantities de6ned in the orig-
inal basis. The results obtained are of great importance
in the practical application of the angular momentum or
center of mass (among others) projection of HFB wave

functions.

=( Id dtl &=a
(v I&lv'&
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(~lq l~') = T v q(v'+Uc~)
&v 17 lv'&
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Using the explicit form of the matrices entering the above
expression as well as known properties of the trace, we
obtain after some algebra

&~lq l~') =T [v q„(v'+Vox-')
(v 17 lv')

+V qig7g(V 'A )], (79)

Tr V (qiiRi + qi27i)V 'A (80)

The matrix (qiiRi + qi27i);~ can be written as

) i&'lql~&»(~l&l~&i+ i(~lql~&»&~17 li&i

where Qii and Qi2 refer to the matrix elements of Q in
the basis 1 subspace and to the overlap of Q between
basis 1 and 2, respectively. The previous trace can be
simplified by using the property of Eq. (69) to

APPENDIX A

1
7 = exp —) pq;, p,

~ ~

(A1)

In this appendix we present some well-known results
concerning the efFect of a linear canonical transforma-
tion operator on a given set of creation and annihilation
operators. Although we have closely followed the ap-
proach of Balian and Brezin [1] the main results of their
work are summarized here for convenience of the reader.
The reader interested in further details should consult
the original reference.

Given a set of fermion annihilation and creation opera-
tors obeying canonical commutation relations fc, c) (the
notation c is used for creation operators as they do not
necessarily have to be the hermitian conjugates of the
annihilation operators) the operator

m

which allows us to finally write the overlap of Q as

(v IQ&lv ')

«17 lv'&

(81)

(82)

where p; is a shorthand notation for the vector
(ci, . . . , civ, . . . , ci, . . . , c~, . . .) and Q is an antisymmet-
ric matrix, transform the annihilation and creation oper-
ators in the following way:

As it was said before, the overlap of Q can be expressed
solely in terms of quantities defined in the basis 1 sub-
space.

VI. CONCLUSIONS

In this paper the extended Wick's theorem and the
Onishi formula have been reformulated to consider the
situation where the single particle basis is not complete
under the transformation operator appearing in the cal-
culation of the overlaps. It has been shown that the
overlap can be expressed in terms of quantities de6ned
in the noncomplete single particle basis. Although the
contractions appearing in the application of the extended
Wick's theorem are diferent &om zero for those indexes
not belonging to the original basis, it has been shown

Ec) (c) (A2)

The transformation matrix T is related to Q through the
relation

T = exp [nq],

where cr is the anticommutator of the p; operators

(0 11
~v = h' ~'l+ =

I I
~ql 0

(A3)

With the above de6nition of T it is easy to show that
this matrix satis6es the relation

(A4)

which is equivalent to say that 7 preserves the canonical
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commutation relations fc;,ci}= h,~.
The opposite is also true: Given a transformation ma-

trix satisfying Eq. (A4) there is an operator, exponential
of an antisymmetric quadratic form of creation and anni-
hilation operators, which produces the desired transfor-
mation. The operator is unique if we restrict it to be the
exponential of an antisymmetric form; otherwise it is de-
fined within a multiplicative constant. The origin of this
constant can be easily understood if a general matrix Q is
considered in Eq. (A2) instead of an antisymmetric ma-
trix. The quadratic form pQ7 can be decomposed as the
sum of two terms pQgp and pQ~p which are the sym-
metric and antisymmetric parts of Q, respectively. Using
the commutation relations [p;, p~]+ ——0;i it is straight-
forward to show that the symmetric part reduces to a
constant 2 Tr(Qgo).

Now we will consider some useful transformations (see
[1] for further details)

7& —.exp[ —g, p;(Q~); p~] and apply the decomposi-
tion to 7~.

APPENDIX B

In this appendix we consider the situation in which the
two quasiparticle vacuums Iv2& and Ip') are expanded in
two diferent single particle bases.

I et us denote by ct and at the creation operators of the
bases in which the quasiparticle operators of l(p& and lv'&

are expanded. Both bases are related through a unitary
transformation 7, such that

The effect of 7, on the quasiparticle operators associ-
ated with l(p'&

T() (1 Xl ~ 7 ( ) = exp —cXc(0 1)
eY

I

-+ 7'"
( 0 e

—y )
1= exp [cYc] exp ——TrY
2

T =
I Z ~7 =exp —cZc(2) f 1 0 ) (2) 1

Z 1) 2

(A5)

(A6)

(A7)

fp) (U't V't1 (n~ „(n)
I pt I

=
I v T ~T I l,t I

= lv'
I

is to transform them into a new set

, (p) f p& (U't v'tl f c)7.'
I pt I

7.=
I ) ) C

W't
I(c )'

(B2)

(B3)

where X and Z must be antisymmetric matrices so that
the corresponding T satisfies Eq. (A4). In Ref. [1] it was
shown that any transformation operator 7 exponential of
an antisymmetric quadratic form of fermion annihilation
and creation operators can be decomposed as the product
of three elemental transformations of the type mentioned
above Eqs. (A5), (A6), and (A7),

lv'& = 7-.lv'&. (B4)

Using the previous relation we can write

which has the same Bogoliubov wave functions U' and V'
but is expanded in the single particle basis of IV2&. The
quasiparticle vacuum of the (P, Pt) set, l&p') is therefore
related to lrp'& through the same transformation

7(~)7(2)7(s) (AS)

The X, Y, and Z matrices are related to the transforma-
tion matrix

&s l&7lv'& &v I&77-.lv '&

(v 17lv'& (v I77 lv'&
' (B5)

T»»
I

T(~)T(2)T(s)
( T21 T22 )

(A9)

of 7 through the relations X = Tqz(T22), exp( —Y) =
T22, and Z = (T22) T2q. For a general operator 7
[i.e. , the matrix Q in Eq. (Al) not having any sym-
metry property] one has to write it first as the prod-
uct of the constant exp[2 Tr(oQs)] times the operator

&v = o(il7lj&~ (B6)

where li&o and
I j&q stand for those states associated with

the creation operators c,- and at, respectively.

so that we have reduced the problem to the one treated
in this paper but using instead of 7 the transformation
operator 7~ = 77,. The transformation matrix 8 as-
sociated with 7~ is given by
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