
PHYSICAL REVIEW C VOLUME 50, NUMBER 6 DECEMBER 1994

Mean-field description of ground-state properties of drip-line nuclei:
Shell-correction method

W. Nazarewicz, T.R. Werner, ' and J. Dobaczewski
Physics Division, OaA: Ridge National Iaborutory, P.O. Box 2008, Oak Ridge, Tennessee 87881

Department of Physics and Astronomy, Unioersity of Tennessee, Knoxville, Tennessee 87996
Institute of Theoretical Physics, Warsaw Uruoersity, uL Hoza 69, 00 681 -Warsaw, Poland

Joint Institute for Heauy Ion-Research, Oak Ridge, Tennessee 87881
(Received 6 June 1994)

A shell-correction method is applied to nuclei far from the beta stability line, and its suitability
to describe efFects of the particle continuum is discussed. The sensitivity of predicted locations of
one- and two-particle drip lines to details of the macroscopic-microscopic model is analyzed.
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I. INTRODUCTION

The theoretical description of drip-line nuclei is one
of the most exciting challenges today. The coupling be-
tween bound states and continuum invites strong inter-
play between various aspects of nuclear structure and
reaction theory, and calculations have strong astrophysi-
cal implications, especially in the context of the r-process
mechanism [1,2].

Theoretically, the physics of nuclei with very large val-
ues of neutron or proton excess is a challenge for well-
established models of nuclear structure and, because of
dramatic extrapolations involved, it invites a variety of
theoretical approaches. Since the parameters of inter-
actions used in the usual shell-model or mean-field cal-
culations are determined so as to reproduce the proper-
ties of know'n nuclei, the parameters may not always be
proper to be used in the calculation of drip-line nuclei.
One hopes, however, that spectroscopy of exotic nuclei by
means of a radioactive ion beam technique will lead to a
better determination of forces, at least those interaction
components that depend on isospin degrees of freedom.

The closeness of the Fermi level to the particle contin-
uum makes the theoretical description of drip-line nuclei
a very challenging task. To put things in some perspec-
tive, Fig. 1 displays the average potential wells, charac-
teristic of a typical beta-stable system (i2oSn), a neutron
drip-line system ( oSn), and a proton drip-line system
(iooSn). While the low-energy structure of i2oSn is al-
most exclusively determined by the particle-hole or pair
excitations across the Fermi level &om bound states to
bound states (corrected for polarization effects due to gi-
ant vibrations), the lowest particle-hole or pair modes in
drip-line nuclei are embedded in the particle continuum.
Consequently, any tool of nuclear structure theory that
aims at describing many-body correlations starting from
the mean-field-based single-particle basis [such as shell-
model, BCS, random phase approximation (RPA), etc.]
has to be modi6ed in the new regime.

One of the most important nuclear properties is its
mass. The ability of a theoretical model to reproduce
the nuclear binding energy is its ultimate test; it deter-

is correct. In this context, a good example is the inclusion
of the Coulomb redistribution energy term in the finite-
range droplet model —strongly motivated by the recent
mass measurements for the heaviest elements [5].

As far as the placement of nuclear drip lines is con-
cerned, it is not the absolute value of nuclear mass but
rather the mass difference between two isotopes that
is of interest. The difFerence between binding ener-
gies, B(Z, N), determines both the one-neutron sepa-
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FIG. 1. Schematic illustration of coupling between bound
states and particle continuum in drip-line nuclei. The poten-
tial wells are represented by the average Woods-Saxon 6eld
(plus Coulomb potential for protons)

mines its reliability and practical usefulness. There exist
many mass calculations (e.g. , those based on the nuclear
shell model) focused on a narrow region of the nuclear
chart. These calculations are very successful in repro-
ducing the data in a given region, but their applicability
to other nuclei is limited. In order to extrapolate far &om
stability, large-scale global mass calculations are usually
used (see, e.g. , Refs. [3,4]). Since their parameters are
optimized to reproduce known atomic masses, it is by no
means obvious whether the particle number dependence
predicted by global calculations at very large (or very
small) values of the relative neutron excess,
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ration energy, S (Z, N) = B (Z, N) —B (Z, N —1),
and the two-neutron separation energy, S2„(Z,N)
B„(Z,N) —B„(Z,N —2). If S„becomes negative, then
a nucleus is neutron unstable; the condition S„=Odeter-
mines the position of the one-neutron drip line. By the
same token, if S2„becomes negative, a nucleus is unsta-
ble against the emission of two neutrons; the condition
S2„——0 determines the position of the two-neutron drip
line. (Proton drip lines are defined analogously. )

Because of their sensitivity to various theoretical de-
tails, predicted drip lines are strongly model dependent
[6—10]. The variations between predictions can be at-
tributed to (i) fundamental difFerences between micro-
scopic approaches, (ii) different effective interactions em-
ployed within the same approach, and (iii) difFerent ap-
proximations used when solving the nuclear many-body
problem within a given approach. In this study, sev-
eral aspects of nuclear structure at the limits of ex-
treme isospin are discussed by means of the macroscopic-
microscopic approach. To test the inHuence of the parti-
cle continu»m on shell corrections and pairing energies,
we use the two versions of the shell-correction method
with the Woods-Saxon average potential (first version is
based on the standard averaging method and the second
version is based on the semiclassical Wigner-Kirkwood
expansion). In part II of this work [11], pairing prop-
erties of drip-line systems and the sensitivity of pre-
dictions to efFective forces are investigated by means
of self-consistent Hartree-Fock (HF) and Hartree-Fock-
Bogolyubov (HFB) approaches.

II. SHELL-CORRECTION METHOD
AND PARTICLE CONTINUUM

The main assumption of the shell-correction
(macroscopic-microscopic) method [12—16] is that the to-
tal energy of a nucleus can be decomposed into two parts:

(2.1)

where E is the macroscopic energy (smoothly depending
on the n»mber of nucleons and thus associated with the
"uniform" distribution of single-particle orbitals), and
E,~,u is the shell-correction term Huctuating with par-
ticle number refiecting the nonuniformities of the single-
particle level distribution, i.e., shell effects. In order to
make a separation (2.1), one starts &om the one-body
HF density matrix p,

(2.2)
1—OCC

which can be decomposed into a "smoothed" density p
and a correction bp, which Suctuates with the shell filling,

EHp = Tr(tp) + —Tr Tr(pep) = E+ E „+O(6p2),

where

(2.5)

E = Tr(tp) + —Tr Tr(peP) (2.6)

is the average part of EHF and

E
„

= Tr(hHp6p) hHp = t+ Tr(gp) (2.7)

is the first-order term in bp representing the shell-
correction contribution to EHF. If a deformed average
potential gives a similar spectrum to the averaged HF
potential hHp, then the oscillatory part of EHp, given
by Eq. (2.7), is very close to that of the deformed shell
model, E,h, u E„.The second-order term in Eq. (2.5) is
usually very small and can be neglected [18].The above
relation, known as the Strutirwicy en, ,ergy theorem, makes
it possible to calculate the total energy using the non-
self-consistent, deformed independent-particle model; the
average part E is usually replaced by the corresponding
phenomenological liquid-drop (or droplet) model value,
E „.It is important that E,h, ~~ must not contain any
regular (smooth) terms analogous to those already in-
cluded in the phenomenological macroscopic part. (The
extension of the energy theorem to the case with pair-
ing is straightforward. The resulting expression for shell
correction contains an additional contribution from the
Huctuating part of the pairing energy; see Sec. VD.)

There are two single-particle level densities that define
the shell correction. The (deformed) shell-model single-
particle level density

g(e) = ) 6(e —e;) (2.6)

gives the single-particle energy, E, & . The smooth single-

particle energy, E, ~, is given by the mean single-particle
level density, g(e), obtained &om g(e) by folding with a
smoothing function f(z):

When considered as a function of the single-particle en-
ergies e;, the numbers n; vary smoothly in an energy in-
terval of the order of the energy difference between major
shells. The n s can, in principle, take values smaller than
zero and larger than unity [15]. Consequently, they do
not represent the single-particle occupations in the strict
sense.

In order to justify Eq. (2.1), the expectation value of
a HF Hamiltonian (containing the kinetic energy, t, and
the two-body interaction, 6) can be written in terms of

p and 6p [15,17]:

p= p+~p- (2.3)

The density matrix p can be expressed by means of the
smoothed distribution numbers n;,

(2.9)

p(z', x) = ) n;P;(z')P;(x). (2.4)
In Eq. (2.9), p is the smoothing range; it should be larger
than the typical distance between major shells. As fol-
lows &om Eqs. (2.7)—(2.9), the shell correction can be
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calculated by taking the difFerence between the sum of
occupied levels and its average value, i.e.,

8 h ll 8 p. . @ .p. ) E J &g(~)d~, (2.10)
'L —OCC

where A is the smoothed Fermi level defined through the
particle-number equation

(2.ii)

The folding function f(z) can be written as a product,

(2.12)

where u(z) is a weighting function and P„(z)is the so-
called curvature-correction polynomial of the pth order.
The smoothing procedure should be unambiguous; i.e. ,
the averaging should extract only the Quctuating part,
leaving the smooth part untouched. This condition de-
fines P~(z) for any specific choice of u(z) . For instance,
for the infinite potential well and a Gaussian weight-
ing function, a)(z) = 7r

~)' exp( —z ), the curvature-
correction polynomial can be expanded in a finite series
of Hermite polynomials of even order [15,19],

P„(z)= ) ,
HI, (z).

Ie=0, 2, ...
(2.13)

[For other examples of f(z), see Ref. [20].]
The smoothed single-particle energy can be expressed

in the form [20]

A

E, p
—— eg(e)de = ) e;n; + p d f

(2.14)

where the smoothed distribution numbers are

(2.i5)

Since the value of E, ~ should not depend on the smooth-
ing range p (or on the order of curvature correction p),
the second term in Eq. (2.14) must vanish, i.e.,

dE, p

d.
dZ. , (2.i6)

) -+ ) + de Ag,.„,(e),
0i—bound

(2.17)

If the above plateau condition does not hold, the Stru-
tinsky averaging method does not yield an unambiguous
result.

The treatment of the particle continuum in the shell-
correction approach is an old problem. For finite-depth
potentials, the sum in Eq. (2.9) should be replaced by
a sum over bound single-particle states and an integral
over positive-energy single-particle continuum, i.e.,

where Ag, „qis the continuum shell level density [21,22],

(2.is)

and b, is the corresponding phase shift (calculated for all
partial waves).

Already in 1970 Lin [23] pointed out that the contribu-
tion from the particle continuum can acct the value of
E,h, ~~, even for nuclei at the beta-stability line. In par-
ticular, he considered the positive-energy continuum in
the energy interval 0 ( e ( 20MeV to calculate the neu-
tron shell correction for Pb. No plateau in E, & was
obtained and the result turned out be strongly p and p
dependent. Soon afterwards Ross and Bhaduri [24) car-
ried out calculations along the same lines as in Ref. [23]
and demonstrated that, by taking into account contri-
butions &om all neutron resonances up to 100 MeV in
20sPb, the plateau condition (2.16) could be met.

Bolsterli et al. [19] made an attempt to simulate the
eKect of the continuum by using the quasibound states,
i.e., the states resulting &om the diagonalization of a fi-
nite potential in a large harmonic-oscillator basis. The
authors suggested a "working" prescription (the number
of oscillator shells should not be too large, K „12),
but no systematic analysis was carried out. (Later it
was shown in Ref. [25] that the inclusion of quasibound
states requires relatively high correction orders. ) In the
following, the Strutinsky averaging procedure including
quasibound states will be referred to as the standard av-
eraging method (SAM).

There have been some suggestions on how to gener-
alize the Strutinsky averaging procedure for finite po-
tentials. Bunatian et al. [15] exploited only the bound
states of a finite-depth single-particle potential and de-
rived modified expressions for the curvature correction.
This method was then improved and exploited in series of
papers by Strutinsky and Ivanyuk [26—28]. For instance,
Ref. [28] demonstrates that the standard way of comput-
ing shell corrections, based on quasibound states, leads
to serious errors in theoretical predictions for masses,
fission barriers, and deformation energies. They also
pointed out that the uncontrolled smooth component in
shell corrections, resulting &om the incorrect treatment
of continuum, can cause some renormalization of the pa-
rameters of the macroscopic energy formula, determined
from fitting the nuclear masses. Unfortunately, the re-
sults discussed in Ref. [28] suggest that the renormaliza-
tion procedure, based solely on bound states, produces
very unstable shell corrections in cases when the upper
limit of the averaging interval (i.e., the number of the
highest single-particle level considered) approaches the
actual number of particles. Actually, such a situation
happens at the particle drip lines.

The proper treatment of resonances is not an easy task,
especially for deformed systems. Therefore, other meth-
ods of dealing with continuum are more useful in practi-
cal applications. In 1973 Jennings proved [29] the equiva-
lence between the Strutinsky approach and the semiclas-
sical averaging based on the partition function method
(Wigner-Kirkwood expansion). In the semiclassical ap-
proximation, the Fermi energy As~ is determined by
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Z(P) )
&sc p

(2.19)
1

fso(r) =
1+exp [(so(r)jaso]

(3.4)

and the smoothed energy of the system is

Eso = Nutso —l:q
-i t'Z(&)&

(2.20)

where Z denotes the Laplace transform and Z is the semi-
classical partition function [30],

2
Z(p) = — e ~~ (1+htpi+ f'l tp2+ )d pd r,

(2.21)

III. WOODS-SAXON MODEL AND THE
PARTICLE CONTINUUM

The deformed shell model used in this study is ass»wed
to be of the form of the average deformed Woods-Saxon
(WS) potential, which contains a central part, a spin-
orbit term, and a Coulomb potential for protons. All
these terms depend explicitly on a set of external (axial)
deformation parameters, Pp, defining the nuclear surface:

R(8; p) = ( (I9)rpA 1+) ppYgp(8), (3.1)

where H, is the classical one-body Hamiltonian of the
system and the m's are de6ned in terms of the one-body
potential. The partition function method was shown to
be an excellent tool for computing the average single-
particle energy [31—34]. In particular, Ref. [31] con-
tains an explicit numerical check of the equivalence be-
tween the Wigner-Kirkwood (WK) expansion and the full
Strutinsky averaging with the correct treatment of reso-
nances. (For more discussion, see Ref. [32], Table I.)

is a WS form factor. [Since the radius of the SO poten-
tial, ro s~, is, in general, diferent &om the radius of the
central part, the distance function entering Eq. (3.4) is
indicated by (so.]

The Coulomb potential for protons, V~, is assumed to
be that of the charge (Z —l)e distributed with the charge
density po(r) = ppf (r), where f (r) is the WS form fac-
tor of Eq. (3.2b). In our study we employed the set of
WS parameters introduced in Ref. [36]. These parame-
ters have been widely used in nuclear structure calcula-
tions around the beta-stability line and for neutron-rich
nuclei. So far, no attempt has been made to optimize
these parameters for very neutron-rich nuclei.

The eigenstates of the WS Hamiltonian

Hws = T + V+ VsQ + 3 (1+73) Vc (3.5)

(P,=0.0) (P =0.4)

10

are found by means of the expansion method in the ax-
ially deformed harmonic-oscillator basis. The oscillator
&equencies, ihu~ and Ru„have been optimized according
to Ref. [35]. In our calculations we used all basis states
belonging to N&N „(stretched) oscillator shells.

The pattern of eigenstates of the WS Hamiltonian
(3.5), as a function of the number of harmonic-oscillator
quanta included in the basis (10&N „&50),is displayed
in Fig. 2. The le& portion shows the results represen-
tative of the spherical shape. [Note that every single-

where the coefBcient ( assures that the total volume en-
closed by the surface [Eq. (3.1)] is conserved.

The deformed WS potential is assumed in the form [35]

Q -5
0
Q

W W M W M ~

V(r) = Vp [1+lcpI] f(r), (3.2a)

a~a=—-~ — -=

C~
a

a+ s s a C ~ ~ ~ 5 s

1f r 1+exp [((r)/a]
' (3.2b)

-5-

Vso(r) = ——(Vfso x p) . s.
M

Here Ic is a (dimensionless) SO strength factor and

(3.3)

where the function ((r) is equal to the (perpendicular)
distance (taken with the minus sign inside the surface)
between the point r and the nuclear surface represented
by Eq. (3.1). The difFuseness parameter a is independent
of Z and N. This choice of the WS potential guaran-
tees that the di8use region of the potential is constant
independently of the nuclear deformation.

The deformed spin-orbit (SO) potential is

a

~ ~ ~ ~ I ~ aa ~ Iaa ~ ala ~ aal ~ ~ a ~ I ~ aaalaaaal ~ ~ ~ a

10 15 20 25 30 35 40 45 15 20

Nose

25 30 35 40 45 50
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FIG. 2. Single-particle energies of the WS Hamiltonian
(3.5) for neutrons (top) and protons (bottom) in ~ Sn as
functions of N „(thenumber of harmonic-oscillator quanta
included in the basis). The solid (dashed) lines correspond to
s = + (s = —) orbitals. The left portion displays the results
for spherical shape (P2 ——0); here every single-particle orbital
is (2j + 1)-fold degenerate. The results characteristic of de-
formed shapes (Pq ——0.4) are shown in the right portion; each
orbital is twofold degenerate due to time-reversal symmetry.
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particle orbital is (2j + 1)-fold degenerate. ] The spheri-
cal symmetry is lifted in the right portion, representative
of the deformed situation (P2 ——0.4; here each orbital is
only twofold degenerate due to the time reversal symme-
try). It is seen that the energies of bound states (e; ( 0)
converge very rapidly with the size of the basis; the con-
vergence is achieved for N „14.The positive-energy
quasibound states representing the discretized particle
continu»m vary dramatically with N„.Asymptotically,
as the basis becomes infinite, quasibound states approach
zero energy (cf. Fig. 18 of Ref. [19] and related discus-
sion). This leads to an increased single-particle level den-
sity at e; ) 0 at large N „values. The only states which
are not strongly affected in the considered interval of N

„

are the high- j orbitals which are fairly well localized in-
side a pocket in the centrifugal barrier created at positive
energies by the mean-field potential.

The situation in protons is slightly less dramatic than
in neutrons. Because of the presence of the Coulomb
barrier ( 9 MeV in i Sn), the positive-energy single-
particle states below 5MeV are fairly stable. (They
represent narrow subbarrier resonances, interesting in the
context of proton emitters. ) Judging from the results
shown in Fig. 2, it is impossible to find an "optimal"
value of N „,at which the positive-energy quasibound
spectrum would become a fair representation of physical
continuum (resonances) .

Since, at the particle drip lines, the radial asymptotics
of wave functions are particularly important, it is in-
structive to relate N

„

to the radial dimensions of the
harmonic-oscillator wave function. Its size depends both
on the principal quantum number, N, and on the orbital

I

quantum number, 8. The classical major axis of the orbit
(N, E) is given by [37]

(r )'=L' N+yN' —/' (3.6)

IV. WIGNER-KIRKWOOD SEMICLASSICAL
EXPANSION

The semiclassical approximation for a one-body Hamil-
tonian, including SO interaction, was developed in
Ref. [31]. Denoting by U(r) a one-body potential with-
out the So interaction,

U(r) = V(r)+ 2 (1+rs) c( ), (4.1)

the particle-number equation (2.19) takes the form

where L= M is the oscillator length; i.e., for the
8=0 oscillator states, the classical outer turning point
is r =Ly 2N A weak dependence of r on N
makes it very difEcult, if not impossible, to describe the
asymptotic radial behavior of the wave function using
the expansion method in the harmonic-oscillator basis.
Prom this point of view, the direct integration of the
Schrodinger equation in a spatial box is superior. For in-
stance, for the nucleus Sn discussed in Fig. 2, the oscil-
lator length L appearing in Eq. (3.6) equals to about 2 fm;
hence r 10fm for N=12 and r 20fm for N=50.
(For a pedagogical example, see Fig. 19 of Ref. [19].) By
the same token, for a high-8 orbit with E=N the major
axes are r „7fmand 14fm for N=12 and N=50, re-
spectively.

S

N =
~ ~

d r (Asc —U) ' + -& (Vfso) (Asc —U) ' ——V U(Asc —U)
1 )2M't *'

3 2 2 1 2 1

3z2 (h2) 2M 4 16 (4 2)

The integral is cut off at the classical turning point (more precisely, the surface of turning points) defined by the
relation U(rsc) = Asc. Equation (4.2) for Asc is solved iteratively. The expression (2.20) for the smoothed energy is
slightly more complicated. In analogy to the notation introduced in Ref. [31], we may write

where

Esc —~scN E 3+8 g+E+g E g+E+g0 0 0 SO SO

S

2M
15n2 g

52
p

1

2M
24~2 I, h2 )

1
Q2 2 +SC

E+, —
~

~

dr, (—7V' U(VU) +5(V U)
5760m 2 (2M j (Psc —U) -' (VU) 2

+10[VU . V(V'U)]V'U —5(V'U)'VU V(VU)'/(VU)'
+ (V'U) V'(VU)' + VU VV'(VU)' —V'(VU)'VU . V(VU)'/(VU)'),

(4.3)

(4.4)

{4.5)

(4.6)

(4.7)

and
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2 )e2 s esc
d'r(&so —U) '

& 2&'(Vfso)' —(V'fso)'+ 48n2 (2M'

+Vfso V(V fso) — „—2~ (Vfso) V fso
(Vfso)'V'U
2 &sc —U

2—V fso V(Vfso)' + 2~ (Vfso) (4.8)

Some technical details of the calculations of the above
integrals, specific to our WS model, are discussed in Ap-
pendixes A and B.

The WK expansion [(4.2) and (4.3)] is only applicable
for one-body potentials whose first and higher derivatives
exist. This means that the method cannot be directly
applied to a wide class of single-particle models based
on the average Beld obtained by means of folding over
a sharp generating potential or a sharp density distribu-
tion. Examples here are the folded Yukawa potential [19]
or the Coulomb potential generated by the uniform den-

sity distribution; both are continuous in their values and
first derivatives, but are discontinuous in their second
and higher derivatives.

V. RESULTS

A. Quasibound states in the shell-correction method

The dependence of the shell correction (2.10) on the
size of the oscillator basis and deformation is shown in
Fig. 3 for a neutron-rich system (iMZr) and a neutron

I

drip-line nucleus ( 2Zr). In the calculations all the qua-
sibound states up to a cutoff energy of 131.2MeV/Ai/2
above the Fermi level were included. As expected, due
to the effect of increased density of quasibound states
arith N „,the shell correction is»~~table. It decreases
or increases linearly with Ne„,depending on the position
of the Fermi level. Indeed, for sZr the value of E,I„II
slowly increases with N „,while the opposite effect is
seen for i22Zr. The reason for this different behavior is
explained in Fig. 4 which shows the mean single-particle
level density (2.9) as a function of single-particle energy
e for iso i22Zr. For relatively low values of N „(e.g. ,
N „=12—14), the average level density increases mono-
tonically and it depends weakly on p (results for p=6 and
@=12are very similar). On the other hand, for N „=50,
there appears an artificial local minimum in g(e) located
at —7 &e& —5 MeV which is caused by a rapid change in
slope of g(e) due to a large number of quasibound states
at e&0. This Huctuation is caused by a polynomial cor-
rection; as seen in Fig. 4 the results for N „=50strongly
depend on p. The smooth single-particle energy is ob-
tained by integrating the product g(e)e up to the Fermi
level A; cf. Eq. (2.14). Since g(A)lv ..—i4 & g(A)lv —so

P,=0.30

0-

e 0

I ~ I . I . I ~ I ~ I ~ I I . I . I ~ I

I ' I ' I ' I '
I

' I ' I ' I ' I ' I ' I

~ -4
4P

~ -8

2-

-12-

4-

——- p=6, N=14
------ p-6 N-SO

p=12, N=50

Fermi level

-20-
a I ~ I a I ~ I ~ I a I I ~ I ~ I, I ~ I

10 18 26 34 42 50

3-

OSC

FIG. 3. Neutron shell correction for Zn (top) and Zr
(bottom) for three quadrupole deformations, Ps ——0, 0.3, 0.6,
as a function of the number of harmonic-oscillator quanta
included in the basis. For the SAM calculations we have
used 7=1.2Ms ——49.2MeV/A ~ and an eighth-order curva-
ture correction (p=g). All single-particle levels lying below
a cutofF energy of e,„t——3.2 Fuss 131 2MeV/A ——~ ab. ove the
Fermi level were included.

-10 -8 -6 -4 -2

e[MeV]
0

I

2

FIG. 4. Neutron average level density g for Zn (top)
and Zr (bottom) for P 0.23 as a function of single-particle
energy e. For the SAM calculations we have used the value
of p=1.2 ~0 and e „t——3.2 ~0. The average Fermi energies A

are indicated by stars.
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for ~22Zr (opposite holds for ~so Zr), this explains the ten-
dency seen in Fig. 3.

The instability of the shell correction with respect to
N „means that the total mass of a drip-line nucleus can-
not be estimated by means of the SAM. Moreover, since
in difFerent isotopes one obtains a difFerent dependence
on N „,the two-neutron separation energies are also af-
fected. In fact, as seen in Fig. 3 the deformation energies
can also be contaminated by the N „dependence. The
relative values of E,g,~~, computed at difFerent deforma-
tions, vary with N „upto N„,=14 (~ooZr) and N „=18
(~ooZr), while the recommended value of N

„

is 12—14
[19].

The results presented in this section demonstrate that
the uncontrolled error in E,I„IIcan seriously afFect the-
oretical mass predictions for nuclei far from stability. If
parameters of the macroscopic energy formula are deter-
mined by the global fit to experimental nuclear masses,
some part of the unwanted efFect of the continuum is ab-
sorbed by the isospin-dependent terms of the liquid-drop
(or droplet) model mass formula.

B. Plateau condition in the shell-correction method

In Fig. 5, the total spherical shell corrections for Zr
and ~ 2Zr (i.e., including proton and neutron contribu-
tions) are plotted as a function of p for difFerent val-
ues of JI. For the basis size we took the recommended
value of N„,=12. Neither for Zr nor for ~ Zr is
the plateau condition (2.16) fulfilled exactly. However,
while in the former case the fiuctuations of E,b,II with

and p are rather weak (for the "usual" values of

p=6, 8 and p/hue ——1.0—1.2 the local plateau in E,b,II is at
6.7MeV), in the latter case the variations in the shell

correction are more dramatic and no unambiguous values
can be extracted.

In the recent state-of-the-art large-scale mass calcula-
tions based on the folded Yukawa potential, Moiler et aL

[10] used p=kuoB, (B, is the ratio of the actual nuclear
surface to the spherical surface, i.e., B,=1 at spherical
shape), p=8, and N „=12.They noted that, in con-
trast to light nuclei which have very low density of single-
particle levels, the plateau condition is fulfilled for heavy
nuclei. Our analysis suggests that for nuclei far Rom
stability the plateau condition can also be violated.

C. Shell energies for the Wigner-Kirkwood smooth
energy

In order to estimate the continuum-related uncer-
tainty in the shell energy in typical SAM calculations,
we performed a semiclassical analysis using the WK
expansion. Figure 6 shows neutron shell corrections
E,&,II(SAM)=E, &

—E, & computed by means of the
SAM, Eq. (2.14) (N „=12,p=huo, p=8) as compared to
E,b,II(WK) =E,.I, —Esc where the smoothed WK energy
(4.3) is used. In both cases the same WS model was used.
The calculations were carried out for the well-bound
neutron systems ~MZr and ~ss'~ssQs (A„« —6MeV),
and for neutron drip-line nuclei ~20 4Zr and 06 26Os

(—4«& « —0.2MeV). The average deviation between
E,I„II(SAM) and E,b,II(WK) ranges from 0.4MeV in

Zr and Os to ~4.6WeV in Zr and ~7.6MeV in
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FIG. 5. Total shell correction at Ps=0 as a function of the
smoothing range p (in units of huo) for Zn (top) and Zr
(bottom). The three different curves correspond to p=6, 10,
and 14. The number of basis states used in the diagonalization
is N „=12.
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FIG. 6. Neutron shell corrections of the WS model,
E,I,III(SAM) and E,I,eII(WK), given by Eqs. (2.14) and (4.3),
respectively, as a function of quadrupole deformation for

Zr (top) and ' ' ' Os (bottom). The SAM
smoothing was performed with No„=12,p=~o, and p=8.
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Os. Generally, for the neutron-rich systems, the shell
corrections obtained by means of the SAM are lower than
the semiclassical ones and the difFerence increases with
N. Therefore, in the standard shell-correction calcula-
tions the nuclei around the neutron drip line are over-
bound. Another interesting result presented in Fig. 6 is
that the difFerence between E,h, ii(SAM) and E,h,ii(WK)
depends rather weakly on deformation. This suggests
that one can approximate E,h, ll by

E,h, ii(P) = E,i„ii(P;SAM) + E,h, ii(P = 0; WK)
—E,h, ii(p = 0; SAM), (5.1)

D. Location of particle drip lines
in the shell-correction method

In the macroscopic-microscopic method, the second
contribution to the shell energy comes &om pairing. Pair-
ing correlations play a very special role in drip-line nuclei.
This is seen &om approximate HFB relations between
the Fermi level, A, pairing gap, 6, and the particle sep-
aration energies. For instance, the neutron separation
energies S„andSz„aregiven by [9,41]

Sg„=—2A„,
(s.2)

(5 3)

where the spherical semiclassical shell correction,
E,i„ii(P= 0; WK), involves calculating one-dimensional
radial integrals only. The renormalization (5.1) can be
particularly useful in the large-scale global mass calcu-
lations, such as those of Ref. [10]. However, one should
keep in mind that this renormalization will not cure the
problems related to the plateau condition and the depen-
dence on N „discussed above.

It is worth noting that in the extended-Thomas-Fermi-
with-Strutinsky-integral approach [8,38—40] the smooth
energy entering their shell correction is defined by the
semiclassical method [39]. Consequently, their shell cor-
rections are free from the problems of the continuIIm.

In part II of our study [11], the pairing properties of
drip-line nuclei are discussed using the self-consistent the-
ory. Here, we only concentrate on the standard BCS or
Lipkin-Nogami (LN) treatment of pairing correlations,
which is used in the currently available large-scale mass
calculations [8,10].

The macroscopic part of the total energy, E „,al-
ready contains the average pairing energy, which ac-
counts for the main part of the even-odd mass cMerence.
Therefore, it is the fiuctuating part of the pairing energy

(pair)
shell pair pair (5 6)

that enters the expression for the total shell energy. The
pairing correlation energy, E~~„is usually computed us-

ing a monopole pairing interaction with a constant (state-
independent) strength G.

In this study, the BCS and LN equations were solved
considering the N„(=Zor N) lowest single-particle or-
bitals. The average pairing strength, G „s,and the av-

er

erage pairing energy, E~;„were calculated according
to the average gap method [16,19,42] in the version of
Ref. [43]. We have also performed calculations using the
fitted pairing strength Gfi.

GfiIA = GP + Gi I, (s.7)

where the constants Go and Gi are obtained by a fit to
odd-even mass differences in a given region of nuclei.

There is an obvious advantage of using G „srather
than Gfiq when going far from stability. Since Gs„sis
inversely proportional to the average single-particle level
density at the Fermi level, G „soc g(A) i, this attenu-
ates the infiuence of quasibound states on pairing prop-
erties. Figure 7 shows the neutron pairing gaps for the

2.0 .-

1.5 .-

1.0 .-

0.5 .—

I
osc

S„=O
S,„=o

:-A„+A=a,
:- A„=0.

(s.4)

(s.s)

which leads to the following conditions for the one-
neutron and two-neutron drip lines: 3.0 .-

1.5 .-

I ' ' ' I ' ' ' I

N =40
OSC

I ' ' ' I ' ' ' I ' ' ' I ' ' ' I

P

In particular, the condition (5.4) nicely illustrates the
crucial role of the pairing interaction for determining the
one-neutron drip line; it shows the equal importance of
the single-particle field characterized by A (determined
by the particle-hole component of the efFective interac-
tion) and the pairing field, E (deterinined by the particle-
particle part of the efFective interaction). In fact, just
around the particle drip lines, particle-hole and particle-
particle channels are very strongly coupled, and the stan-
dard procedure based on a "two-step" treatment of the
pairing Hamiltonian (i.e., computing pairing correlations
after determining the single-particle basis) seems inap-
propriate.

1.0 .—

0.5 .—

48 64 80 96 112
Neutron Number

FIG. 7. Neutron BCS pairing gaps for the even tin iso-
topes as a function of N computed using the average pairing
strength G s [43] (solid line) or the titted pairing strength
GfiI [Eq. (5.7) for Gs=19.2MeV and Gi=—7.4MeV, dashed
line]. The single-particle spectrum (including quasibound
states) was obtained by diagonaliziug the WS Ha~I&tonian
in N „=12(top) and N „=40(bottom) oscillator shells.
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tin isotopes computed within the BCS approximation us-
ing G „zor Ggt. For neutron numbers 50&N+84 both
prescriptions for G yield fairly similar results. However,
for higher neutron numbers the pairing gap obtained with
Gg~ is much larger that that computed with G z, and the
result strongly depends on the size of the single-particle
basis. In particular, for N „=40the density of quasi-
bound states is so large that 4„$0for N=82. Since
the pairing correction (5.6) behaves as b,2, the efFect on

E,h, ii') is even more dramatic. Therefore, the contribu-
tion &om quasibound states to the pairing correction is
a source of another uncontrolled correction to the total
energy in the macroscopic-microscopic method.

The total energy of the shell-correction method,
Eq. (2.1), is divided into three parts:

4

3

2(
c

0

234

I

152

Mass Number
242 250 258 266

WK
SAM, N,=12
SAM, N „=40

-=8-&.~

184
I. . . I. . . I. . . I. . . I

160 168 176
Neutron Number

(s.p. ) (&air)E = Emacr + Eshe11 + Eshe11 (5.8)
FIG. 9. Same as in Fig. 8 except for the neutron-rich lead

isotopes.

where E
„

is the macroscopic energy of the Yukawa-

plus-exponential model of Refs. [44,45], E,h', Ii) is the shell

correction (2.10), and E,h~, &'I' is the pairing correction
computed using the BCS procedure. (Results of the LN
calculations are fairly similar and will not be discussed
here. )

The predicted one- and two-neutron separation en-
ergies for the neutron-rich tin and lead isotopes are
shown in Pigs. 8 and 9, respectively. The two-neutron
separation energies (top) were computed directly from
binding energies of even-even nuclei. Since no self-
consistent blocking was performed for odd nuclei, the
one-neutron separation energies (bottoin) were approx-
imated by means of Eq. (5.2). As seen in Figs. 8 and 9,
the infiuence of the continuum on the calculated positions
of drip lines is quite significant. The two-neutron separa-

142
Mass Number

150 158

WK
~ --o-- SAM, Nose=1

SAM, N -40

D.

o 'o

92 100 108
Neutron Number

116

FIG. 8. One- and two-neutron separation energies for the
even neutron-rich tin isotopes predicted in the shell-correction
method with the WS average potential and the Yukawa-
plus-exponential macroscopic model. The results based on
the semielassieaj Wigner-Kirkwood method (solid line) are
compared with those obtained using the standard averaging
including quasibound states. The smoothing was performed
with No„=12(dotted line), or %o„=40(dash-dotted line),
p=~p, and p=8.

tion energies calculated in the WK method are systemat-
ically lower than those obtained in the SAM and the dif-
ference approaches 1.6 MeV at N=106. This difFerence
results in a shift in the position of the two-neutron drip
line. According to the semiclassical approach, the nucleus

SniIIs appears at the two-neutron drip line, while in
the SAM calculations there are several ( 5) more stable
even-even tin isotopes expected. A similar trend is seen
in the position of the one-neutron drip line which in the
SAM calculations is overestimated by 2—4 mass units.

E. Fermi-level self-consistency condition

Ag t ——Am „—A+ A, p +bi, (5.9)

where Aq t is related to the neutron separation energy,
A „represents the macroscopic Fermi energy, A (or
Asc in the WK method) is the smoothed neutron Fermi
energy, A, ~ is the neutron Fermi energy of the single-
particle model obtained from the BCS equations, and
bA contains contributions &om the smoothed pairing en-

For the lead isotopes the Fermi level in the WK method
becomes positive at N 175, and consequently no solu-
tion to the particle-number equation (4.2) can be found.
At the same time, the value of S~„for N 174 is still
positive (Fig. 9) and equals about 1.7 MeV. This consti-
tutes a contradiction because, according to Eq. (5.3), the
values of S2„andA„should vanish simultaneously at the
two-neutron drip line.

In the self-consistent theory (e.g. , HF+BCS or HFB),
the Fermi energy is equal to the derivative of the to-
tal energy (ground state energy of the even-even sys-
tem) with respect to the particle number. However,
in the shell-correction method this relation is violated
due to the particle-number inconsistency inherent to
the macroscopic-microscopic model. DifFerentiating both
sides of Eq. (5.8) with respect to N (assuming the param-
eters of the one-body potential to be fixed), one obtains
Bve difFerent Fermi energies, namely,
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ergy and the proton shell correction. (The quantity bA

is small and consequently is ignored in the following dis-
cussion to simplify the presentation. ) It should be noted
here that the finite-difference approximation to deriva-
tives of the single-particle energy with respect to particle
number (i.e., A, AsQ, and A, ~ ) cannot be applied. (The
deviation between derivatives and finite diHerences can
be as large as 10MeV.) The reason is that in the model
based on the average one-body potential, the variation in
the particle nIImber (say, from N to N+2) leads to (i) the
variation in the chemical potential and (ii) the variation
in the average potential itself. Indeed, the parameters of
the average potential depend smoothly on Z and N, and
this causes a quite sizable change in single-particle level
density with particle number.

In self-consistent approaches based on the two-body
Hamiltonian, the requirement AI I ——A, ~ is fulfilled
automatically. In the shell-correction method this re-
quirement can be referred to as the Fermi-level self
consistency condition:

A, (Z, N) = A(Z, N) or A „(ZN) = Asc(Z N)

(5.10)

for the SAM or WK methods, respectively
The parameters of the microscopic model are usually

adjusted to selected single-particle properties of nuclei
close to the beta-stability line, and the parameters of the
macroscopic model are found by a global fit to masses and
fission barriers. Therefore, it is not surprising that when
extrapolating far from stability, the particle-number de-
pendences of A „andA are different. In Figs. 10 and 11
the Fermi energies defined in Eq. (5.9) are shown relative
to Am

„

for the tin and lead isotopes, respectively. The
degree of inconsistency in A is measured by the magni-
tude of deviation b,A = A —A „.It is seen that ~b, A~

is rather small around N=82 and N=126 for the tin and
lead isotopes, respectively, and it reaches the value of
about LA=1 MeV at drip lines.
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The condition (5.10) defines a certain coupling between
the macroscopic and microscopic parameters in the shell-
correction method. Since 6A varies very smoothly as a
function of N (see Figs. 10 and 11), the condition (5.10)
is equivalent to

Amacr(Zs Nmin) = Asc(Zs Nmin)s Amacr(Zs Nmax) = 0s

(5.11)

where, for a given atomic number Z, Nm; and N ~ are
neutron numbers corresponding to proton- and neutron-
drip-line isotopes, respectively. [N can be computed
from Eq. (4.2) after putting AsQ = 0.]

The consistency between the microscopic and macro-
scopic parts of the energy in the shell-correction method
has been discussed by several authors. In particular,
Myers noticed [46], on the basis of the droplet model,
that the parameters of the single-particle model (such
as radius, potential depth, diffuseness) should be related
to the parameters of the macroscopic model. In the
global mass calculations by Moiler et al. [10] the pa-
rameters defining the single-particle Hamiltonian do de-
pend on the droplet model constants. In particular, as
in Eq. (5.16), the depth of the folded-Yukawa potential
depends linearly on the average bnlk nuclear asymmetry
of the droplet model, b.

To illustrate condition (5.11), we performed calcula-
tions based on the WS average potential with parameters
of Ref. [19],adjusted according to Myers [46]. Namely,
we used

ln5
a = asQ = 0.9 [fm]ln9 (5.12)

60 70 80 90 100 110 120
Neutron Number

FIG. 11. Same as in Fig. 11 except for the neutron-rich
lead isotopes.
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180
for the diffuseness and

Io = I'o—sQ = Ro 1 —(a/Ro) /A s' (5.13)

FIG. 10. Fermi energies of Eq. (5.9) relative to A, as a
function of N for the neutron-rich tin isotopes. The degree of
the inconsistency in A is measured by the magnitude of devi-
ation A —A, (SAM variant) or Aso —Amacr (WK variant).
The particle numbers at which Atop=0& A=O& ~sQ=Oq ~xnacr=Oq
and A, .~.=O are indicated by stars.

with

Ro ——Rp + 0.82 —0.56/R~, (5.14)

for the radius. The radius B~ and the depth of the po-
tential,
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FIG. 12. Semiclassical Fermi energy, As&, relative to A

for the lead isotopes. The parameters of the WS model were
taken according to Ref. [19]. The curves correspond to difFer-

ent values of the parameter 5 multiplying the neutron excess
coefficient I entering through 8 the formula (5.16) for the
neutron potential depth. The particle numbers N=N at
which Aso=0 and A „=0[Eq. (5.11)]are indicated by stars.

uum, can be as large as several MeV at the neutron drip
line. According to our calculations, this error depends
weakly on deforxnation. This suggests a possibility of
renormalizing E,h ~~ only at the spherical shape.

As demonstrated in our study, the use of quasibound
states as physical resonances can lead to serious devia-
tions when extrapolating oK beta stability. In particular,
the associated theoretical error in predicted particle drip
lines can be as large as AN=10. We also emphasized the
role of the self-consistency condition between the micro-
scopic and macroscopic Fermi energies. If this condition
is violated, the relation between the Fermi energy and
the separation energy is lost.

We hope that our work will be helpful for future global
calculations of nuclear masses in the &amework of the
one-body (macroscopic-microscopic) description. As will
be discussed in the forthcoming study based on self-
consistent two-body procedures [11],there are also other
uncertainties related, e.g. , to the choice of the effective
interaction. A deep understanding of the coupling be-
tween single-particle and pairing channels, and between
discrete states and particle continuum, is a key to the
physics of drip-line systems and a serious challenge for
future work.

R~ = 1.16A ~ (1+&) [fm],

V„,~ = (52.5 p 48.7b) [MeV],
(5.15)

{5.16) ACKNOWLEDGMENTS

depend on the relative neutron excess coescient I
through

I(l —0.0056Ai~ ) + 0.0028Ai~ (1 + I2)
1 + 3.15/A'~

+0.338 + 0.00062A i (1 —I) (5.17)

VI. CONCLUSIONS

The main objective of this study was to investigate the
inBuence of the particle continuum on the shell-correction
energies of the xnacroscopic-microscopic method. The
shell corrections obtained by means of the standard aver-
aging method were compared with those calculated with
the semiclassical Wigner-Kirkwood expansion technique.
The systexnatic error in E,g ~~, due to the particle contin-

Figure 12 shows AA=Asc —Am«, for the lead isotopes.
Diferent curves were obtained by multiplying by a fac-
tor b (=1.00, 1.05, 1.10, 1.15, 1.20) the neutron excess co-
efficient I entering through h' expression (5.16). (Direct
renormalization of b is much less convenient since it leads
to the modification of the isoscalar part of the potential
depth. ) As can be seen from Fig. 12, the standard value,
b=1, gives values of Asc too small, in particular when the
neutron number approaches N „;the resulting value,
N =194, is much larger than that of the xnacroscopic
model, N=182 (as indicated in Fig. 12). However, by
increasing the value of b by 10'%%uo conditions (5.11) can
be met for the considered lead isotopes. It remains to
be investigated whether the Fermi-level self-consistency
condition can be consistently ful6lled for other isotopes.
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APPENDIX A: SEMICLASSICAL
APPROXIMATION TO THE WOODS-SAXON

MODEL

The semiclassical equations (4.2) and (4.3) are defined
through the high-order derivatives of average potentials
entering the WS Hamiltonian. In order to calculate VV
and V V, we took advantage of certain geometric rela-
tions specific to the definition of the WS potential (3.2).
Figure 13 shows the surface geometry typical for an ax-
ial system; here the nuclear surface, r=R(8), is given by
Eq. (3.1). Given the radius point r=r'o~ (see Fig. 13) the
function f(r) represents the distance k~v ~~] [taken with
the minus (plus) sign inside (outside) the surface R(8)].
Denoting by n [n=V'((v )] and t the normal and tangent
unit vectors to the surface at point A, respectively, one
can write
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and R'=dR/d8 and R"=d2R/d8 . Finally, by means of
Eqs. (A2)—(A4), one obtains

Vn=V (= +=2= 1 1.
e+( n+( (A5)

In the spherical case, ((r) = r —R, g = rl = R, and
Vn = 2/r, as expected. For given r, the distance ~c(r)
and the vector R are calculated numerically by solving
the equation d~r —R(8)~/d8=0. By denoting

V(n, ) ( ) (A6)

one can compute the derivatives appearing in Eqs. (4.2)
and (4.3). For example,

FIG. 13. Geometric relations bebveen a vector point t', the
distance function ((r), and the nuclear surface, R(8). The
unit vectors n, t, and h (normal, tangent, and binormal vector
fields of R) represent the Frenet frame field on R.

~y(~) g(~+~)

(VV(n) )
2 (V(m+1) )

2

V2V(n) V(n+2) + V(m+1)V2( (A7)

r = R+n((r), (A1)

where R=rc~. By acting with the gradient operator on
both sides of Eq. (Al), one obtains

(Vn)((r) = 2- VR. (A2)

(A3)

where the curvature radius, g, and r)=~r~c~ are given by

R'+ R' R'+ R"
R + 2R' —RR«' 1 —R'cot8/R' (A4)

In order to calculate VR, one computes the gradient in
the Frenet kame defined by three unit vectors n, t, and
b=t x n. The result is

The derivatives higher than 2 involve quantities such as
n V(V2$) or V4(c which are computed numerically by
means of the finite-difFerence method. It is known that
the standard parametrizations of the nuclear shape give
rise to a singularity of higher derivatives at r=0, or to
their large variations at 8=0' or 8=90' [47,4S]. In or-
der to achieve better accuracy of higher-order terms of
the WK expansion, it has been assumed that the WS
potential is constant for the values of ((r)((„;t———7a.
We have checked that up to Pq 0.7 the results are stable
with respect to variations of f„;t

It is interesting to note that although (VV) =(V(~))2
is a simple analytic function of f(r), the Laplacian V2V
depends both on ((r) and 8; see Eqs. (A7) and (A5).
This will lead to slight modifications of some discussion
in Refs. [49,50], where V2V was assumed to depend solely
on the distance ((r)

Special care should be taken when integrating singular-
ities at Asc = U in Eqs. (4.2) and (4.3). A practical way
of handling singularities at rsc is to employ the identity

f 3 4( )
"'

ds 4(r, 0) —4( sc(Q), 0) 2
( )

4(rsc(O), 0)
v'&sc —U,. v'&sc —U (BU/B")~~;.(n)

..~(n)
+2 d04 rsc O, O

&min (&)

r QAsc —U(r, 0)
(BU/Br)

.(B'U/Br 2)

(BU/Br)
(AS)

where 4(r) is a function of r = (r, 0) and the integration
is performed over the vob~me surrounded by the surfaces
r = r; (0) and r = rsc(O). In the above equation,
the singularity at vs~ has been removed at the expense
of generating singularity inside the classical region at
(VU) =0. (Such a situation happens for the protons,
due to difFerent radial behaviors of WS and Coulomb po-
tentials. ) In practice, however, the identity (AS) is only
used in the narrow region around rsc where (VU) is
never zero.

APPENDIX B: COULOMB POTENTIAL OF THE
FERMI DISTRIBUTION

The Coulomb potential generated by the WS (Fermi)
charge distribution (3.2b) is given by

Vc(r) = d r'
1+exp X(r')/a] Ir —r'I (B1)

In the axial case this integral can be reduced to two di-
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mensions (with integrand involving complete elliptic in-
tegrals). Since

V'Vc(r) = 4—+pc(r), (B2)

the contributions &om the Coulomb potential to higher-
order derivatives in Eqs. (4.2) and (4.3) are calculated
easily using expressions derived in Appendix A.

For a spherical shape, the angular integrations in
Eq. (Bl) can be performed explicitly to give

Vc(r) = — dr'r' pc(r ) +4 "r'r'pc(r')
T O

(B3)

Finally, the radial integrals are computed by means of

identity

1

I + exp[(r —R)/a]

I+ ) (—I)"exp[ —n(R —r)/a] if r (R,
n=1

—) (—1)"exp[—n(r —R)/a] if r ) R.
n, =1

(B4)

The resulting fast-converging series gives Vc with desired
accuracy.
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