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An effective two-body interaction is constructed &om a new Reid-like NN potential for a large
no-core space consisting of six major shells and is used to generate the shell-model properties for
light nuclei &om A=2 to 6. For practical reasons, the model space is partially truncated for A=6.
Binding energies and other physical observables are calculated and they compare favorably with
experiment.
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I. INTRODUCTION

In traditional nuclear shell-model calculations, only a
few particles or holes with respect to a closed shell are
treated as active within a restricted model space. In
a well-studied example, 0, the model space contains
one major shell, the 1s-Od shell, with two valence nucle-
ons. These calculations require effective-interaction ma-
trix elements along with calculated or empirical single-
particle (SP) energies as input. The effective interaction
could either be "phenomenological" (see, for example,
Refs. [1—3]) or "realistic" (see, for example, Ref's. [4, 5]),
depending on how it is obtained. Both types of effec-
tive interactions have been substantially used with suc-
cess, when good agreement with experimental spectra is
taken as the criterion. A phenomenological interaction
might be obtained by fitting selected energy spectra and
electromagnetic properties of the nuclei in the region of
interest.

In the case of a realistic interaction, which is our main
concern in this work, one usually starts with the Brueck-
ner reaction matrix G [6] (i.e., ladder diagrams) calcu-
lated from a realistic nucleon-nucleon (NN) potential for
a specified model space, and evaluates other diagrams
(e.g. , folded diagrams and/or core-polarization diagrams
[7]) using the G matrix. This renormalization proce-
dure is incomplete, however, because so far, the core-
polarization diagrams can only be included to, at most,
third order in the perturbation-theory expansion [8—10).
The incompleteness here presents a serious problem be-
cause convergence has not been attained within the low-
est few orders of the perturbation expansion [8, 11]. Sim-
ilar uncertainties exist when calculating the effective op-
erators [7] to be used in the model space.

Recently, attempts [12—17] have been made to avoid
the above difficulty by adopting a no-core model space in
which all nucleons in a nucleus are treated as active. It
is considerably simpler to obtain the effective interaction
for a no-core space since there are no hole lines and the
complicated core-polarization processes are absent. Con-
sequently, one is left with the ladder diagrams and the
folded diagrams for the effective interaction which may
include effective many-body contributions.

%'ithin the concept of no-core calculations, it is im-

portant to distinguish two cases. In the case we call a
"full" no-core calculation, one selects a set of d model-
space SP states and then generates the configurations
where all nucleons can occupy all orbitals in all possible,
Pauli-allowed, ways. In an "N~hO truncated" no-core
calculation, only those configurations are retained from
the full no-core case in which there are up to and in-
cluding N ~hO excitations of the lowest unperturbed
configuration (in harmonic oscillator notation) of the A.

nucleons.
To be more specific, let us consider a 2hD (i.e.,

N =2) shell-model diagonalization for Li in a no-core
model space consisting of the lowest four major shells
(Os, Op, 1s-0d, and 1p-Of ). In this case, the configuration
with a hole in the Osi shell and a particle in the 1s-Od

shell [i.e., (Os) (Op) (1sOd)i] is allowed. The configura-
tion [i.e., (Os) (Op) ] is also taken into account. However,
one cannot claim to have performed a "full" no-core cal-
culation because only one or two, out of four, Os nucleons
are allowed to be excited to the higher shells. Namely,
in this 250 truncated calculation, not all nucleons are
active, and there still is a partially inert core.

On the other hand, if one includes 2s-1d-Og and 2p-1f-
Oh major shells and performs a 4hO calculation for the
same nucleus, the configuration (Op) will be allowed,
leaving no nucleons in the "core" orbital Os i. Although
such a calculation is still restricted, it is surely more com-
plete than the 2hO calculation. It is not currently pos-
sible to actually carry out a full no-core calculation in
many cases we want to investigate. Our hope is that as
N increases, the results will converge and approach
those of the full no-core calculation.

Another practical issue of working with an N hO
truncated no-core calculation is that this facilitates the
accurate treatment of the spurious center-of-mass (c.m. )
motion. If (No + 1)hO is defined as the minimiim SP ex-
citation energy needed to lift a nucleon to the lowest un-
perturbed state outside the model space (No ——4 for the
sLi example above in the model space through the 2p1f-
Oh shell), then, for N = No, it is possible to obtain
no-core shell-model wave functions &ee of spurious c.m.
motion.

It is an ultimate goal of the nuclear shell model to be
able to start with a realistic NN potential and obtain
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unambiguous and converged results against the changes
in the size of the model space and in the choice of the
unperturbed basis. Convergence with model-space size
means convergence with increasing N and increasing
d, a dual convergence criterion.

Encouraging results have been obtained recently for
very light nuclei in Ref. [18], by Ceuleneer et aL They
have performed a shell-model calculation for the T=O
states in 4He, where up to 10hO excitations from the
basic configuration [(Os i) ] are allowed. The only input
to the calculation is a set of two-body matrix elements
(TBME's) of a modified Sussex interaction. Since this
effective interaction does not have a theoretically derived
model-space dependence, they multiplied all two-body
matrix elements by a model-space-dependent parameter
which is adjusted to get the correct binding energy. The
step of deriving the dependence of this parameter on the
model-space size is now required to complete the dual
convergence test.

In this work, we will adopt a large no-core harmonic-
oscillator (HO) model space consisting of six major shells
(&om Os to 2p-1f-Oh). We will consider several light nu-

clei ranging &om 2=2 to A=6. An effective interaction
will be constructed for the above model space &om a
new Reid-like NN potential (denoted by Reid93) pro-
vided by the Nijmegen group [19]. Note that we will
use effective interactions constructed in exactly the same
manner for all the nuclei considered here. We will follow
an approach that favors the more accurate treatment of
the spurious c.m. motion and attempts to minimize the
neglect to the two-body "ladder" scattering procedures.
We have designed an even more accurate approach along
these lines which involves excitation-dependent effective
interactions and will be reported in a future work [20].

It is an established fact that for a small model space,
a mass-dependent two-body effective interaction gives an
overall better description [2, 21]. But we anticipate that
such a mass dependence will become weaker as the size of
the no-core model space is increased. Similarly, we expect
the effective many-body forces to decrease with an in-

creasing model space. Indeed, if an infinitely large model
space is used, the effective interaction reverts back to the
NN potential v, whose matrix elements are clearly inde-
pendent of the nucleus under consideration. Throughout
the remainder of this work, we assume that the model
space is sufficiently large and the SP basis is sufficiently
realistic that we can neglect the effective many-body in-

teractions. This will be investigated in a future effort,
which also addresses the rate our methods approach the
goal of satisfying the dual convergence criteria.

II. EFFECTIVE INTERACTION

For a no-core model space, the core-polarization dia-
grams are not present, and the taboo-body effective interac-
tion is simply the G matrix [6] plus the folded diagrams
series [22]. The G matrix is the sum of the ladder diagram
series which represents the multiple scattering processes
of two nucleons in a nuclear medium. We continue to
follow our philosophy given in Ref. [17] for the no-core G

matrix in large spaces which treats two-particle scatter-
ing via a realistic NN interaction v12 in an "external"
field u, which is provided by the other nucleons in the
same nucleus. Thus, we write

G(~) = vi2+ vi2 G(u))i+

u(r) = —Vo+ —mA r,
2

u(r) =0.
(2)

(3)

The latter choice corresponds to a plane-wave basis.
Some hybrid approaches have been developed which use
oscillator states for low-lying orbitals and plane waves,
orthogonalized to the oscillator states, for all the remain-
ing states [23, 24].

Although a shifted HO potential (2) does not have the
expected asymptotic behavior of vanishing exponentially
at large r, it was argued in Ref. [17] that the shape of
the assumed u at large r might not be very important
since, except for some weakly bound states, nucleons are
unlikely to move far beyond the nuclear mass radius.

One may further notice from Refs. [4, 25] that the two
seemingly very different one-body potentials in Eqs. (2),
(3) actually led to rather similar G-matrix eleinents, pro-
vided one makes a careful choice for the starting energy
(related to the choice of u). Note that the constant shift
Vo in Eq. (2) is more a matter of convenience, as a shift
of 2Vo can be made in the starting energy &u in Eq. (1),
i.e.,

—2VO, (4)

to cancel out Vo in the energy denominator [17].
In this work, we will approximate the nuclear mean

field by the HO potential (2) not only because this sim-
plifies the G-matrix calculation [25,26], but, more impor-
tantly, for the reason that this makes possible an exact
removal of the effects of the spurious c.m. motion from
our many-body wave functions. Once the G matrix G(u)
is obtained as a function of the starting energy, it will
not be difficult to evaluate the folded diagrams using the
techniques developed by Kuo and Krenciglowa [27] and
by Lee and Suzuki [28] and to obtain a starting-energy-

= V12 + V1 V12
(u —(hi+ h2+ vi2)

where h = t+u is the one-body Hamiltonian and u is the
nuclear mean field. The quantity ~ is the starting energy,
which represents the initial energy of the two in-medium
nucleons. The Pauli operator Q excludes the scattering
of the two nucleons into the intermediate states which
are inside the model space. It is therefore related to the
choice of the model space and will be specified in the next
section.

A rigid prescription for the nuclear mean field u is not
necessary since the results will be independent of u once
the dual convergence criteria are satisfied. In most prac-
tical calculations, u is approximated by a one-body po-
tential of a simple and convenient form. The two most
common choices for u are a shifted HO potential and
zero:



50 LARGE-SPACE SHELL-MODEL CALCULATIONS FOR LIGHT NUCLEI 2843

independent effective two-body interaction (denoted by
(2)v e).

One must bear in mind that v,& obtained in this pro-
cedure depends on the ass»mption made for the one-body
potential in the G-matrix calculation. Especially in cases
when the model spaces are small and we are further &om
satisfying the dual convergence criteria, it is important
to use a u that sensibly represents the nuclear mean Geld
so as to minimize the neglected many-body interactions
[29] and higher than linear order "—u" insertions.

In Ref. [17] it is shown that u,& can be well approx-
imated by the G matrix calculated at starting energies
which are related to the initial unperturbed energy of
the two nucleons in the ladder scattering processes in a
simple way:

~'=~+2V, =..+., +a,
where e = (2n„+1+3/2)h0 are the HO SP energies (a
and b are the SP states that the two nucleons initially
occupy). Such a state-dependent choice for u' will lead
to a non-Hermitian G matrix, but the non-Hermiticity
is found to be small. The quantity 6 signifies the in-
teraction energy between the two nucleons. In a specific
application to sLi, it has been shown [17] that for h0=18
MeV, a value of —21 MeV for b, results in G(ur') which is

an excellent approximation to v,& . However, it is also ob-

served in Ref. [17] that v,g calculated for a smaller value
of h0 (e.g. , 14 MeV) tends to overbind 4He and sLi. In
a more recent investigation [30], it is further concluded
that the overbinding problem arises &om non-negligible,
many-body folded diagrams. Since it is rather involved
to evaluate efFective many-body forces, in general, and
many-body folded diagrams, in particular, we will omit
all folded diagrams from the present calculations.

We, therefore, adopt the average of G(tu') and its Her-
mitian conjugate, calculated for a HO basis with h0=14
MeV and ur' given by Eq. (5), as the effective interac-
tion. But the parameter 4 is not chosen to best approx-
imate v,g (which will lead to overbinding if the effective

I

many-body forces are not included); rather, it is cho-

sen to yield the experimental binding energy. Initially,
one might expect that difFerent values of b, have to be
used for difFerent nuclei. But, quite surprisingly, we Gnd

that good agreement with experimental observables can
be obtained with a nucleus-independent value of b, (—35
MeV). Results obtained with difFerent choices of h0 and
4 will be discussed in Sec. IIIE.

Our shell-model Hamiltonian will now be written as

( A ) A

+sM — ) 4 Tc.m. +) Gij + I coulomb
i=1 (j

+A/H, —-M /,
( 3

where t; = p2/(2m) are the one-body kinetic energies,

T, = (P, p;)2/(2mA) the c.m. kinetic energy, and
Vc „~ b the Coulomb interaction. The proton and neu-
tron masses are taken to be the same. The last term
(with %=10) in the above equation forces the c.m. mo-
tion of the low-lying states in the calculated spectrum to
be in its lowest HO configuration.

We remark that our calculations involve no free param-
eters other than those used in calculating the G matrix,
hO and L. Moreover, these two parameters are fixed at
14 MeV and —35 MeV, respectively, for all nuclei consid-
ered in the present work.

We emphasize that in a no-core calculation, we are
attempting to derive all shell-model properties &om an
underlying Hamiltonian HsM. Thus, there are no phe-
nomenological SP energy terms in HsM.

III. RESULTS AND DISCUSSION

As previously mentioned, we use a no-core model space
containing the lowest six HO major shells with 50=14
MeV. For A ( 4, we allow all Oh0 —750 configurations
within the model space. For A & 4, we allow all 050—5h0
configurations. Therefore, different Q operators have to
be used in Eq. (1) for A & 4 and A & 4:

for A &4: Q=l for nq &6, n2 &6, or nq+n2&8,
= 0 otherwise;

(7)

for A &4: Q= 1

=0
for ny+n2 + 6,
otherwise.

(8)

In the above equations, n=2n„+l is the principal quan-
t»m number for the HO SP states. It starts &om 0 with
n,=0 representing the first major shell (Os). For A=6,
due to the computer memory limitation, the n=5 shell
contains only the p orbitals; the f and h orbitals are left
outside the model space.

The shell-model matrix diagonalizations are performed
for the Ha~i&tonian HsM in Eq. (6) using the many-
fermion-dynamics code [31].The results are given in Ta-
ble I, which we will discuss in the following subsections.
The experimental results given in Table I are taken &om

[

Ref. [32] for A=3, Ref. [33] for A=4, and Ref. [34] for
A=5 and 6.

A. Binding energies

It is possible to obtain exact or nearly exact results
for ground-state energies of the lightest nuclei by solving
the Schrodinger or Faddeev [35] equations for realistic
NN interactions. This has been done for the ground
states of sH, He, and 4He [36—39]. Even for sHe and
6Li, preliminary results obtained by Wiringa in varia-
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tional Monte Carlo calculations have appeared [40]. Un-
like the few-body approaches in which one obtains al-
most exact results, at least for the ground state, the
effective-interaction shell-model approach involves some
uncertainties due to the truncation of the space and the
approximation made in calculating the effective interac-
tion for the truncated space. Consequently, the shell-
model approach to the above light nuclei, although being
able to calculate for a given set of quantum numbers the
excited states as easily as the lowest state, cannot match
the few-body approach in the accuracy of the results for
the ground state. Nevertheless, our ultimate goal is to
satisfy the dual covergence criteria. By using a large
no-core model space along with a reasonable effective in-
teraction, we hope to demonstrate that, in spite of its

present limitations, the effective Hamiltonian approach
gives a useful description of the low-lying states in light
nuclei.

Our results are encouraging as can be seen from Table
I. The calculated binding energies for the deuteron, tri-
ton, He, He, and Li are 2.103, 8.589, 28.757, 25.960,
and 30.648 MeV, respectively, agreeing quite well with
the corresponding experimental values of 2.225, 8.482,
28.296, 27.410, and 31.996 MeV. Of course, it is more rel-
evant to compare our results to those obtained in the ex-
act few-body approaches using the same potential. These
approaches show that existing realistic NN potentials
underbind light nuclei with A ) 2. Our calculations in-
volve a &ee parameter 6 which has been fixed at —35
MeV for all the nuclei considered. For A & 2, we can ob-

TABLE I. The results for H, H, He, He, and Li obtained in large no-core (consisting of
six HO major shells) shell-model calculations. The experimental data are taken from Refs. [32—34].
In the table, Ez is the binding energy (in MeV) and E (J„,T) the excitation energy (in MeV) of
the J„,T state. The ground-state rms point radius for protons g(r~~) (in fm), electric quadrupole
moment Q (in e fm ), and magnetic dipole moment y, (in y, ~) are also listed. The "experimen-
tal" g(r~~) was deduced from the charge rms radius g(rs) through (ignoring the neutron charge
distribution and other higher-order effects and assuming a proton rms charge radius of 0.81 fm)
(r~) = (r, ) —0.81

Observable

g~
g(r')

E.(0+, 1)

g~

E.(0+, 0)
E (0~+, 0)
E (0, , 0)
E (2, , 0)
E (2i, 1)
E (li, 1)
E (11,0)
E.(0;,1)
E (12, 1)

g~
g(r')

P

E (li, 0)
E (3i, 0)
E.(0+, 1)
E (2~+, 0)
E (2+i, 1)
E (ls, 0)

Calc.
Deuteron

2.103
1.653
0.857
0.242

3.754
He

28.757
1.488
0.000
26.135
22.848
24.351
25.739
26.338
27.337
27.418
27.905
'I.i
30.648
2.050
0.851
-0.116
0.000
2.959
3.607
5.485
6.505
7.828

Expt.

2.2246
1.95

0.8573
0.2859

unbound

28.296
1.46
0.00
20.21
21.01
21.84
23.33
23.64
24.25

25.28
25.95

31.996
2.38

0.822
-0.082
0.000
2.186
3.563
4.31
5.366
5.65

Observable Calc.
Triton

8.589
1.573
2.659
12.716
12.868
He
25.960
1.659
-1.864
-0.332
0.000
3.112
7.437
14.206
14.439
20.445
21.499
23.563
23.592
24.045
24.398
25.861
26.240
27.359
27.681

E~

P

E-4i -')
E-(-,'~ —,')
E-(-,'~ -', )
E-(-,'~ -', )
E-(-',

~
—,')

E-(-', , -', )

E-(l~ l)
E*(-,'~ -', )
E (~, , 2)
E-(l~ l)
E*(2~ -')

E*(-'„-,')
E*(-,', -', )

g~

E.( '„-,')-
E-(-,', —.')

Expt.

8.4819
1.41-1.62

2.9790
unbound

unbound

27.410

0.00
4+1
See
See
See

16.75

N/A

N/A

N/A

N/A

N/A

N/A
N/A

N/A

N/A

Low-lying positive-parity states (e.g. , a J =~, T=2 state at 5 MeV and J =s, T=s and

J =—,T= —states at 12 MeV) are predicted to exist See Ref. [3. 4] for more details
We identify the calculated 20.445 MeV state as the experimental 16.75 MeV state, because the

calculated state is dominated by the (Os) (Op) configuration.
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tain smaller binding energies (in better agreement with
exact calculations) by decreasing b, (i.e., making it more
negative) since the binding energies decrease monotoni-
cally with the decreasing L. Our adoption of a 4 value
that 6ts experimental binding energies stems fmm an as-
s»option that our neglected efFective many-body forces
and other corrections can largely cancel the neglected
(and largely unknown) true many-body forces.

It is worth mentioning that for the two-body system,
the deuteron, it is possible to obtain exact results even
with the efFective-interaction approach [41]. Our present
results for the deuteron are not exact due to our neglect
of the processes which are higher order in u. Our effective
interaction nevertheless gives a reasonable deuteron bind-
ing energy. In Sec. IIIC, we will further show that the
deuteron magnetic dipole and electric quadrupole mo-
ments also come out well.

B. Excitation spectra

For the deuteron and the triton, me obtain only one
bound state in the calculations, agreeing with experi-
ment and with exact calculations. For the deuteron, the
lowest state in the continuum is a J =0+, T=1 state,
which is unbound by 1.65 MeV (i.e., 3.75 MeV above the
ground state). For the triton, the lowest excited state is

a J =2, T=& state, unbound by 4.13 MeV. It has a
nearly degenerate J =2, T= ~~ state, unbound by 4.28
MeV. The T= 2 states are even higher in energy. There-
fore, these results do not support nn, pp, nnn, or ppp
bound states.

For 4He, the experimental level sequence of the low-
lying negative-parity states is correctly reproduced. The
excitation energies are consistently higher than the ex-
perimental results [33] by about 2—3 MeV. These results
are clearly an improvement over those obtained in our
previous study [16]. In that study, the excitation ener-
gies of these same states were obtained in a smaller model
space, including only four major shells, and were found
to be as much as 6 MeV too high when compared with
experiment (see Table I in Ref. [16]). The better results
we obtain here should be attributed mainly to the larger
model space and the improved NN interaction. From a
theoretical viewpoint, we have also improved the 0 ma-
trix by using a state-dependent starting energy of Eq. (5)
(rather than at a constant starting energy as in Ref. [16])
which better approximates the full eff'ective interaction
[»l.

We obtain the first excited state (J =0+, T=O) in He
at an excitation energy of 26.135 MeV. This is about 6
MeV higher than experiment but it is about 7.7 MeV
lower than the previous result (33.807 MeV) for the four-
major-shell space [16]. Again, the larger model space
used in this work is largely responsible for the decrease
in energy. A more accurate description of this state mill
require an even larger space. Indeed, in Ref. [18],where a
modi6ed Sussex interaction is used, excellent agreement
with experiment is obtained for this state only when up
to 1050 con6gurations are included.

The calculated ground state in 4He is dominated by

the (Os)~ configuration but it has a considerable amount
of "1p-1h" configuration (Os)s(ls)~ and "2p-2h" config-
uration (Os) (Op) . The 02+ state is dominated by the
(Os) s(ls) ~ configuration while the (Os) (Op)

2 and (Os)
components are also quite signi6cant.

The occupancies of the various model-space orbitals in
the 0& and 02 states are

~
He: Q+) = (Os)

'
(Qp)

' (sd) ' (other shells) '
)

(9)

~
He: 02+) = (Os) (Op)

' (sd) ' (other shells) '

(10)

Relative to the ground state, the 02+ state has only about
50% of the "breathing mode" (Os) ~(ls)~. However,
this result depends on the choice of the SP basis. If,
for example, a Hartree-Fock (HF) basis were used, the
oscillator-basis s states would mix to produce the HF s
states (e.g. , Os~@ and 1sup, etc.) so that the admixture
of the (Qs~p) (1s~p) component in the ground state
would likely be much smaller. This would lead to a larger
amount of (Os~p) (1s~p) in the 02 state.

Note that although our model space is not suHiciently
large to reproduce the first excited 0+ state in 4He at
the experimental energy, it does a fairly good job for the
"1hO" states. This gives us confidence in the results for
the low-lying states in He, which we present below.

The first excited state in sHe (J =2, T=2) is ob-
tained at an energy of 3.112 MeV, within the range of 3—
5 MeV given in Ref. [34]. The low-lying positive-parity
states are also of interest. Experimentally, there is a
famous J =2 state at 16.75 MeV. It has a dominant3+

(Os)s(0p)2 configuration and can be thought of as the
ground state of ~Li coupled to a 08 hole. This state cor-
responds to our calculated 20.445 MeV state in Table I,
which has the following occupation probabilities:

3+
20.445 MeV: — = (Os)

'
(Op)

' (sd) '

'22
x(other shells) '

to be compared to the occupation probabilities for the
ground state of 6Li,

~
Li: lz ) = (Os)

'
(Op)

' (sd) ' (other shells) '

(12)

Note that the fact that the calculated energy of this
J =

&
state is about 3.7 MeV higher than experiment is

more or less consistent with what me have seen in the case
of 4He where the "1hO" low-lying negative-parity states
came out about 2—3 MeV higher than experiment. It mill
be interesting to track the energies of these states as mell
as the excited states in 4He with increasing model-space
size.

Above the two SP states (the ground 2 state and

the first excited 2 state) and below the 20.445 MeV

state, our calculation also gives three positive-parity
"150" states, a 2 state at 7.437 MeV and nearly de-



2846 D. C. ZHENG, J. P. VARY, AND B.R. BARRETT 50

x(other shells) '

5+
14.206MeV: — = (ps) s.ze7(p&) o.sos(sd) o.mi

21

x (other shells) '

3+
14.439MeV: — = (Os)

'
(Op) (sd)21

x(other shells) '

(13)

(14)

(15)

There have been previous theoretical predictions [34, 42]

that there is a
&

state at about 5 MeV and z and

states at about 12 MeV. These predictions have not
been fully confirmed experimentally, but they are well
supported by our results, again, keeping in mind that
our calculated "150" states are probably about 2 or 3
MeV too high.

In addition to the above low-lying states, we have also
listed in Table I a few other bound states of He which
have an energy not much higher than the experimental
16.75 MeV state.

The low-lying energy spectrum of Li obtained in this
calculation does not show much improvement over that
in Ref. [16]. It again appears to be more spread out than
the experimental spectrum.

C. M1 and E2 moments

Since we are using a large no-core model space, we
choose to use bare operators (e~=l, e„=p, g„'=5.586,
g„' = —3.826, g~ =1.0, g~ =0.0) to calculate the magnetic
dipole (Ml) and electric quadrupole (E2) moments in
leading approximation. The calculated results are also
given in Table I. It should be emphasized that only the
nucleonic degrees of &eedom are taken into account in
calculating these moments. Proper considerations have
to be given to the effects of the meson exchange currents
(MEC's) before critical conclusions can be drawn Rom
the comparison of the calculated moments (especially the
Ml moment) with data.

The calculated M1 moment p for the deuteron is
0.857@~. This agrees with the experimental result of
0.8574@,~. However, this fortuitous agreement will be
vitiated to the extent that the ignored MEC contribu-
tion is significant. Even if the MEC effect is negligible,
the value that we obtained for the deuteron M1 moment
is not theoretically exact. This is made evident in the
discussion below.

The deuteron M1 moment is related to the D-state
probability PD as

l ('H) = Ps p('~i) + Pr l ('D~)
= (1 —Pz) )0.880 + P~0.310 (y N ) (16)

generate
&

and
&

states at 14.206 and 14.439 MeV,
respectively. These states are dominated by the config-
urations (Os) (sd) and (Os)s(pp) . The occupancies of
the orbitals in the model space are

1+
7437M V — =(0 ) (0 ) ( d)21

With this equation, a calculated value of 0.857pN for

p( H) leads to PD=4.0%. However, the exact P~ for the
Reid93 potential is in fact 5.7% [43], implying a p( H) of
0.848p~. We, therefore, see that the tensor force is some-
how weakened when we go &om the bare NN potential
to the effective shell-model interaction in Eq. (6) for our
no-core model space. This infers the size of the neglected
contribution to the magnetic moment operator arising in
the theory of effective operators. It has been shown in
Ref. [44] that the tensor force strength can be further re-
duced by core-polarization diagrams (mainly the Bertsch
bubble diagram [45]) that one must take into account
when calculating the effective interaction for a small, one-
major-shell, model space outside an inert core.

The calculated deuteron quadrupole moment Q is
0.242e fm, somewhat smaller than the experimental
value of 0.286e fm . This agrees with the above obser-
vation that the effective tensor force in our no-core shell-
model interaction is weaker than that in the original NN
potential. The reduced quadrupole moment may also
arise &om the fact that its operator involves a radial de-
pendence (r~) which needs to be renormalized when we

truncate the infinite Hilbert space to our finite-size no-
core HO model space. Thus we reason that, for our model
space, tbe renormalization effects are larger for the E2
operator than for the M1 operator which does not have
a radial dependence.

The need for using an effective operator to evaluate
the root-mean-squared (rms) radius (or any other ob-
servable that involves it) is evident from Table I, where

the calculated rms point radius r„ for the proton in

the deuteron is 1.488 fm, significantly smaller than the
experimental value of 1.95 fm. The large renormalization
of the rms radius operator required for the deuteron is
not surprising since it is a very loosely bound system; the
wave function obtained in the truncated HO model space
does not represent the exact wave function very well. The

calculated r„value for Li is also smaller than the ex-

perimental value. However, the results of r„ for H

and He are in good agreement with experiment. Note
that we have evaluated these rms radii with "intrinsic"
wave functions, and so the quoted results are &ee of spu-
rious c.m. contributions.

Our calculated Ml moment for the triton is 2.659p,~,
about 11% smaller than the experimental value of
2.979@~. To a large extent, this discrepancy may be
explained by the MEC effects that we have not taken
into account. Indeed, in Ref. [40], it is shown that the
inclusion of the MEC effects in a model-dependent way
leads to a 14% increase in the triton Ml moment from
2.588@~ to 3.010p~, in close agreement with experiment.

For the ground state of He, the calculated Ml and E2
moments are —1.864pN and —0.332e fm, respectively.
Again, the MEG effects have to be considered when com-
paring these results with experimental data, which, to
our knowledge, are not available.

It has been dificult in the past for theory to reproduce
the E2 moment for the ground state of Li. However, the
calculated E2 moment is —0.116efm, which is remark-
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ably close to the experimental value of —0.082e fm . Our
calculated Ml moment is 0.851@~,which is about 3.5%
higher than the experimental result of 0.822p~.

D. ESects of the Coulomb interaction

Since we include the Coulomb interaction, the isospin
symmetry is not strictly conserved. But the isospin im-

purity caused by the Coulomb interaction is generally
very sxnall. For the bound states of 3H and 3He, the
calculated values for isospin,

4T2 +1—1
~calc =

2
(17)

are 0.500000 and 0.500022, respectively. Note that H
has only one proton, and so isospin is still a good quan-
t»m number. In He, the calculated isospin shows only
a 0.0044% deviation from the half-integer value. T, ~, is
0.000046 for the ground state of 4He; it is 0.500016 and
0.500024 for the ground states of He and Li, respec-
tively. The small isospin impurity for the ground states
in these nuclei is due to the fact that all these states
do not have any nearby state with the same J but a
different T From .perturbation theory, one knows that
the relatively weak Coulomb interaction will not induce
much isospin mixing to these isolated states.

The Coulomb interaction has sizable effects on the ab-
solute energies of the system, as is well known. Our cal-
culation shows that, due to the Coulomb repulsion, the
binding energy of He is 0.725 MeV less than that of H
and the binding energy of 5Li is 1.024 MeV less than that
of 5He. The experixnentally observed differences in the
binding energies for the above two pairs are 0.764 and
1.073 MeV, respectively. They are quite close to our cal-
culated values, as one might expect since the Coulomb
interaction is a perturbation in these light systems. Nev-
ertheless, our results for the Couloxnb energy are model
dependent [in that the matrix elements of the Coulomb
interaction in the shell-model Hamiltonian (6) were eval-
uated using a HO basis and possible renorxnalization cor-
rections from the excluded space were ignored]. A smaller
Coulomb effect of about 0.64 MeV was obtained in a more
model-independent analysis [46) for the sH-sHe pair It.
is also believed that other charge-symmetry-breaking ef-
fects contribute to the difference between the binding en-
ergies of H and sHe as well [47).

E. Dependence on hA and lL

The results presented so far are for the basis parameter
hO Bxed at 14 MeV and the starting-energy parameter
4 Bxed at —35 MeV. We will now discuss the sensitivity
of the results on hO and L. Table II shows calculated
results for selected properties of He for a few different
choices of hO and L. The degree of independence of
the results on these two paraxneters is a measure of the
convergence, which is related to the size of the model
space.

We Brst Bx 6 at —35 MeV and vary hO &om 14 MeV to
17 MeV and then to 20 MeV. The ground-state binding
energy E~ of He shows a variance of less than 2%; it in-
creases from 28.757 MeV for h0=14 MeV to 28.879 MeV
for hO=17 MeV and then decreases to 28.336 MeV for
hO=20 MeV. A more stringent test of the convergence
comes from the rms radius, which, in a OhO HO shell-
model calculation, would be proportional to (hA)
and would, therefore, show some 16%'s decrease when
hO is increased ft.'oxn 14 MeV to 20 MeV. Our 6hO re-
sults for the proton rms point radius r~ are 1.488 fm

for hO=14 MeV, 1.434 fm for hO=17 MeV, and 1.428
fm for h0=20 MeV, showing a decrease of only 4%. In
a zeroth-order estimate, the excitation energy E (02, 0)
of the Brst excited 0+ state is 2hO. Our 6hO results
are 26.135 MeV for hO=14 MeV, 25.934 MeV for hO=17
MeV, and 27.704 MeV for hO=20 MeV. These results
show a rather weak dependence on the choice of hO.
Note that the above results for E (02+, 0) are still several
MeV higher than experiment, but they can be further
improved (i.e., lowered) within the same model space by
employing an excitation-dependent effective interaction
[20].

We then Bx hO at 14 MeV and vary 6 &om —20 MeV
to —35 MeV and to —50 MeV. The results are also shown
in Table II. As one would expect, the ground-state bind-
ing energy E~ of He decreases with decreasing A. As
6 decreases &om —20 MeV to —50 MeV, E~ decreases
by 19.7% from 32.864 MeV to 26.389 MeV. Again, these
should be compared to the corresponding OhO results,
which are 35.805 MeV for 4=—20 MeV and 23.797 MeV
for b,=—50 MeV, a change of 33.5%. The change in the
rms radius is 4% when 6 decreases from —20 MeV to
—50 MeV. Note that the rms radius anticorrelates with
the binding energy: As we decrease 6, the binding en-
ergy decreases while the rms radius increases.

It should be pointed out that for h0=14 MeV, the

TABLE II. Selected properties of He in the 65O-space calculation for various values of the HO
parameter h,O and the starting-energy parameter A. The results for 50=14 MeV and E=—35 MeV
from Table I are repeated here for the sake of comparison.

Observable
Es(MeV)

R (O~+, 0)(MeV)

hO=14
28.757
1.488

26.135

A = —35 MeV
SO=17
28.879
1.434

25.934

50=20
28.336
1.428

27.704
1.439

26.661
1.488

26.135

hO = 14 MeV
A= —20 A= —35
32.864 28.757

A= —50
26.389
1.499

23.240
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choice A= —50 MeV, yielding a binding energy of 26.389
MeV, is probably more appropriate, since most realistic
NN potentials are found to underbind He by a few MeV
(see, e.g. , Ref. [38]). With 4=—50 MeV, the excitation
energy E (02, 0) is 23.240 MeV, only 3 MeV above the
experimental value.

IV. CONCLUSIONS

In this work, we have constructed an effective inter-
action for a six-major-shell no-core model space Rom a
new, Reid-like, NN potential (known as Reid93) from
the Nijmegen group [19]. The effective interaction has
been applied to calculate nuclear structure properties for
a few light nuclei, ranging &om the deuteron to 6Li. The
results are very encouraging. Not only are the binding
energies of these nuclei well reproduced, the energy spec-
tra are also in good agreement with experiment. In par-
ticular, the experimental level sequence of the low-lying
negative-parity states in He is correctly reproduced, al-

though the excitation energies are about 2—3 MeV higher
than experiment. Based on our current and previous ef-

forts, we expect that this discrepancy will be reduced
as we more closely satisfy the d.ual convergence criteria,
convergence against increasing N „and d, where N
signifies the highest unperturbed energy of the configu-
rations taken into account and d represents the number
of SP states included in the model space.

The magnetic dipole and electric quadrupole moments,
calculated using bare operators with meson. -exchange-
current effects neglected, are also in reasonable agree-
ment with experiment.

For He, in addition to the two low-lying SP negative-

parity states 2 and 2, we have obtained a low-lying

state at about 7.4 MeV and two nearly degenerated

states (2 and 2 ) at 14.2 MeV and 14.4 MeV. The
latter three, dominated by the configuration (Os) (sd),
are mainly SP states with one (sd) neutron coupled to

the ground state of 4He. The actual energies of these
predominantly "1hQ" states could be about a few MeV
lower, as in the case of 4He. The previous theoretical

predictions of a 2 state at about 5 MeV and 2 and

states at about 12 MeV are therefore well supported
by our results. The 16.75 MeV state, resulting &om the
ground state of sLi with a (Os) proton removed, is repro-
duced at an energy of 20.445 MeV.

The Coulomb interaction, which is included in the cal-
culations, accounts for the bulk part of the differences
in the experimental binding energies of mirror pairs (sH-
sHe and sHe-sLi). We have also seen that the Coulomb
interaction induces a very small amount of isospin impu-

rity to the ground states of the light nuclei considered.
An extension of the current approach to heavier Op-

shell nuclei will be straightforward. Our results for A=2—
6 have given us optimism that our approach would be
able to give a good description of neighboring nuclei as
well. This is presently being investigated.

Of course, since the size of the shell-model matrix in-
creases quite dramatically with an increasing number of
nucleons, it is unlikely at the present time that one can
apply the no-core approach to a much heavier nucleus,
like Ca. In this regard, the Monte Carlo shell-model
approach [48], in which the size of the calculations in-

creases only moderately with the number of active nucle-
ons, offers some promise.
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