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Collective isospin excitations in nuclear matter droplets
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The isovector giant resonances in heavy nuclei are considered. These excitations correspond to
a gapless Goldstone mode which comes along due to the broken symmetry in the isospin space,
and can exhibit themselves in a nucleus where the numbers of neutrons and protons are not equal.
These modes can be interpreted as weakly damped Buctuations of the transverse isospin components,
which propagate through the nuclear matter. The dispersion law of such isospin waves is calculated
on the basis of the Fermi-liquid theory as well as by means of the semiclassical variational method.
The 6nite size of the nuclei leads to quantization of the spectra and results in a series of excited
states. The number of long-living excited states is strongly afFected by the Landau damping. The
orthogonality relations and energy-weighted sum rule are formulated. The collective isospin modes
of - Pb and other heavy nuclei are computed.

PACS number(s): 21.10.Re, 24.30.Cz, 21.65.+f, 21.60.—n

I. INTRODUCTION

A system of interacting fermions can exhibit a great
variety of collective Bose excitations. These collective
modes result &om the interaction between fermions and
do not exist at all in a perfect noninteracting gas. The
interaction plays an extremely important role when cal-
culating spectra or formulating the existence criteria for
weakly damped excitations. Even at zero temperature,
T = 0, Landau damping can make the existence of a long-
living collective mode impossible. For this reason one
cannot a priori make a certain prediction that some par-
ticular collective mode undoubtedly exists in any Fermi
system. Such a statement would strongly depend on the
specific features of the interaction potential that pertains
to the system under consideration. This is valid for both
the excitations in configuration space (like zero sound)
and spin modes.

The situation is quite diferent in the case of states
with broken symmetry, e.g. , in spin-polarized Fermi sys-
tems. In this case a gapless Goldstone mode must come
along as a result of the broken symmetry. (If the polar-
ization is produced by means of a static magnetic field,
there appears a gap in the spectrum, which corresponds
to the Larmor precession frequency. ) In other words a
collective magnetic excitation certainly exists in any in-
teracting Fermi system independently of what is the in-
teraction between particles. The appropriate calculations
for an infinite system were carried out primarily on the
basis of the Fermi-liquid theory [1—5]. A series of exper-
iments which confirmed the theoretical predictions was
performed with liquid He, quantum He- He mixtures,
and alkaline metals in an external magnetic field [6—8].
Collective spin waves of a quantum-mechanical origin can
propagate even in a rarefied polarized gas at high tem-

peratures [9—13], i.e. , when all particles obey the classical
Maxwell-Boltzmann statistics. Thus the phenomenon in
question can manifest itself in various many-body sys-
tems and under difFerent conditions.

In this paper we focus on the transverse spin excita-
tions in polarized nuclear matter. We will start with
the description of collective spin waves in an infinite nu-
clear system (for instance, neutron stars). However, our
primary goal is to consider spin modes in finite nuclear
matter like heavy nuclei. There might be many branches
of collective Bose excitations due to both the spin and
isospin degrees of freedom. To be specific we will con-
centrate on the transverse isospin modes only. In view
of this a nucleus where the number of neutrons N is not
equal to the number of protons Z provides us with a nat-
ural "polarized" nuclear system with a broken symmetry
in the isospin space. The effective degree of polarization
o. can simply be defined as

Z —N
o.=, A = N + Z.

A

The dispersion law of collective excitations in an infinite
polarized nuclear matter can be found on the basis of the
standard Boltzmann transport equation for the density
matrix. The finite-size efFects, i.e., quantization of the
excitation spectrum, may be obtained by applying the
appropriate boundary conditions. We will restrict our-
selves to considering large isotropic spherical nuclei (the
droplet model). To calculate the spectrum of collective
isospin modes we will apply a Fermi-liquid-like approach
[1,5] as well as a Lagrangian-based formalism [14] which
allows us to conveniently take into account the finite-size
efFects in nuclear systems.
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II. FERMI-LIQUID APPROACH
t~ l = I + Ts = a(p)I + b(p)rs.

2 2
(7)

The dynamics and collective properties of an in6nite
Ferxni Quid at the zero texnperature can be described in
terxns of the collisionless quasiclassical transport equa-
tion [2] for the nucleon density matrix (distribution func-
tion) n:

Bgn+ 2[8p~. Vn+ Vn. B~e]

—2[Vi Bpn+ Bpn. V~]+ —[e, n] = O. (2)
h

The number of exceeding neutrons (or protons), i.e., the
effective degree of "polarization, " o, , is norxnally small

~n~ && l. (Moreover, the standard Fermi-liquid theory
does not hold to describe the transverse spin modes in a
strongly polarized, ~a~ & 1, system [15]. Formally carry-
iog out such a calculation would require integrating over
the Fermi sea, which is in an obvious contradiction with
the cornerstone of the Fermi-liquid approach. ) Keeping
the term linear in o. one can easily obtain

Here e is the self-consistent single-particle excitation en-

ergy. For small perturbations of the density matrix, 6n,
the self-consistent energy can be expressed as a linear
functional of bn:

np + n~ ~ np = e(pp —ep))

4 Bnp ~F
np —nn ~~—— cgck, E'p =

3 Bfp 2m'

(8)

«-(p) = T - ):f- (p p')~n- (p') (3)

where r labels difFerent isospin states. As was mentioned
earlier, no spin eKects will be considered in this paper.
That is why all spin indices are omitted here and through-
out, and averaging over the spin states reduces to the
extra factor 2 in the density of states when integrating

Pa

over momentum p. The function f describes the nucleon-
nucleon interaction and is the main quantitative feature
of the Fermi-liquid theory. In an isotropic "polarized"
Fermi Quid the interaction function takes the form

where the Fermi momentum, p~ = (3z' n/2)~~ h, has
been introduced. Here n is the density of nucleons, m'
is the nucleon eH'ective mass, and the index "0" refers
to the characteristics of the "unpolarized" system, i.e.,
where N = Z. On the Fermi surface (with radius p~)
the interaction function f (p, p') depends only on the
angle p between vectors p and p' as ]p~ = ]p'~ = py.
It is convenient to de6ne the dimensionless interaction
function go f, where go is the density of states on the
Fermi surface, and extend it in a series of the Legendre
polynomials P„(cosy) as usual, namely:

f- (p p') = 4(p, p')II'+ C(p p')r*r,'

+4 (p p ) (rsI + ~sI) + X(p p ) (rsrs) (4)

((0) = ) Z„P„(cos7),
n=o

2
'

2
(5)

rh

where I is the unity matrix, and n„and n„are the Fermi
distribution functions for protons and neutrons, respec-
tively:

np ——8(pp —ep), n„= 8(p„—e„).

Here, p,„and p are the Fermi energies for the proton and
neutron components. The single-particle energy spectra,
ez and e, for both species determine the self-consistent
energy e~ ~ in equilibrium:

Here, the summation over the indexi = 1, 2, 3 is used. As
will be demonstrated later, only the term with the func-
tion ( in Eq. (4) contributes to the spectrum of transverse
csospin modes.

Both n and i are, indeed, linear functions of the isospin
operator, i.e., of the Pauli matrices, ~;, i = 1, 2, 3. In
equilibrium the density matrix n is diagonal in the isospin
space:

Q(7) = ) F„P„(cos7).

AO;„g 4
b(p) = ', 0; g ———o.—Zp.

2
' '" 3

(1O)

A small deviation of n from its equilibrium value (5) is
a linear function of ~ as well, and will be sought in the
form

~n-(p) = n-(p) —n."(p) = ~(p)I+ &s(p) .~s, (»)

where k = 1,2, 3, and the summation over duxnmy indices
is used here and throughout. The extra terms in the self-
consistent energy due to the Quctuations of the density
matrix can be calculated from Eqs. (3), (4), and (ll) and
read

Combining Eqs. (3)—(9) one can calculate the isospin-
dependent term in the self-consistent energy of a quasi-
particle in equilibrium [see Eq. (7)]:

' —&'" = «-(p) = ») W(»p')~(p') + &(p p')&s(p')]+ 2rs) [4(p, p')~(p') + X(p, p')&s(p')]
p' y'

+27"; ) ((p, p')A, (p'), i = 1, 2, 3.
p/
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Onp
A~ = g~(8, &p),

t96p

where 6I and p are the polar angle and azimuth in mo-
mentum space, i.e., on the Fermi sphere. We will be
seeking the eigenvalues of the transport equation for the
Fourier components: g~ oc exp(l. k r —nut) After s.ome
manipulations of Eqs. (2)—(13) we get

(~+0,„,—k v)q+(e, q)

d '
—

i
k. v+ '"'

I Z(e V»~', V')n+(~', V')

(i4)

Here v = p~n(8, p)/m', and n is a unit vector on the
Fermi sphere. The equation (and solution) for g can
be obtained from Eq. (14) simply by replacing ur ~ —~
and k ~ —k. However, such a solution does not provide
an extra branch of collective excitations. One can easily
see that both solutions correspond to the same physical
process.

Expanding the quantities u and v in a power series of
the small wave vector kv/~O;~q] && 1 (similar to the pro-
cedure used in Refs. [2] and [5]) one obtains the following
dispersion law:

(hk) 2

M = m*o.
2M ' (1+Z, )(l + —,'Z, )

(15)

Here, the quantity M can be considered as the effective
mass of the new elementary excitation. These collec-
tive modes correspond to fluctuations of the transverse
components of the macroscopic isospin. Spectrum (15)
looks, indeed, similar to that of spin waves in a magne-
tized Fermi liquid [15] due to the formal analogy in the
quantitative description. The physical meaning of the
solution obtained is, however, quite different. The ex-
citation in question, "isospinon, " can be interpreted as
a delocalized neutron (neutronic state) which can travel

Now we have a complete set of equations in order to cal-
culate the spectra of collective modes in nuclear matter
with finite isospin.

When substituting Eqs. (5)—(12) in the linearized
transport equation (2) one can easily convince oneself
that the whole system of equations falls into two sepa-
rate parts. The first part consists of two coupled equa-
tions for v(p) and As(p), which describe the oscillations
of the total nucleon density in the collisionless regime
(zero sound) and the longitudinal isospin waves (spatially
inhomogeneous oscillations of the relative concentration
of neutrons and protons). We will not consider these
types of excitations in this section.

The two remaining equations for Aq and A2 describe the
dynamics of the oR-'diagonal components of the density
matrix in isospin space, i.e. , the transverse isospin modes
which we are interested in. Instead of Aq and A2 it is more
convenient to use circular variables: Ay ——Aq 6 ~%2. In
the case of a slightly "polarized" system, ~n~ && 1, it is
natural to seek a solution in the form

through the system as a plane wave with the dispersion
law (15). It is fundamentally a collective mode due to
the interaction between nucleons rather than a single-
particle excitation. Such an excitation exists neither in
a perfect (noninteracting gas) nor in an "unpolarized, "
n = 0, nuclear matter. That is why the spectrum (15)
has singularities at o, = 0 and Zg ——0, k = 0, 1. A
formal crossover to the case of a = 0 or Zg ——0 nev-
ertheless exists. Although the spectrum (15) diverges if
n m 0 or Zl, ~ 0, the wavelength range, kv & ~B;„t], in
which the transverse isospin waves exist, shrinks simul-

taneously. The number of the "isospinons" is not fixed:
they may appear and annihilate. The isospin excitations
obey Bose-Einstein statistics.

Let us emphasize that the dispersion law (15) is the
exact solution in the long-wavelength limit, kv « ~A;„t;~.

The spectrum of the isospin modes depends only on the
first two harmonics Zp and Zq whichever interaction be-
tween particles is considered. (Indeed, the effective mass
m of a single-particle excitation also depends on Fq in
accordance with the well-known relation of the Fermi-
liquid theory

mp

F= 1+ —,3'
where mo is the bare nucleon mass. )

In the simplest (but quite reasonable, in the case in
question) model the nucleon-nucleon interaction can be
considered as a pointlike one:

4~h'
U(rz —r2) = — (cI&I2 + d7y 72 )b(rz —r'2). (17)

mp

Then all Fermi-liquid harmonics Z„and F„ from Eq. (9)
with n & 1 are equal to zero, and the "isospinon" effective
mass M in the spectrum of the transverse modes becomes
simplified:

gp 16 pFd
M = mpo. , Zp ————

1+ Zp vr

The quantity d which determines the strength of the
nucleon-nucleon interaction can be both negative and
positive. If the effective mass M turns out to be negative,
one should choose the conjugate solution for g, which
can be obtained by replacing u —+ —~ and k ~ —k, and
corresponds to a positive effective mass.

The Coulomb interaction has been ignored in the cal-
culations (although it is the Coulomb interaction that
leads to a finite "degree of polarization, " n g 0, in equi-
librium). The results obtained for the spectrum of trans-
verse isospin fluctuations can be applied not only to sta-
ble nuclei in equilibrium but to long-living excited nu-
clei with n g 0 as well. The Coulomb interaction could
appreciably afFect the spectrum (15) only for extremely
large wavelengths irrelevant for a finite-size droplet of any
reasonable diameter. The role played by the Coulomb in-

teraction in the transverse isospin dynamics is similar to
that of the spin-spin dipole interaction (or magnetostatic
contribution) when considering the transverse spin waves

in spin-polarized systems.
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Stringari and Lipparini proposed an interesting hy-
drodynamic model to describe isovector collective modes

[16], which includes to an extent the effects considered
above. Despite the fact that this xnodel could provide a
quite correct qualitative description of the phenomena in
question, the quantitative results might be rather crude.
The hydrodynamic equations (a low-gradient expansion)
are not valid in Ferxni systems at T = 0, as the mean
&ee path for single-particle excitations becomes in6nitely
large. Under these conditions one should solve the col-
lisionless transport equation directly rather than derive
the hydrodynamic equations and then seek their solu-
tions. The hydrodynamic approach does not involve the
Landau damping, which plays an extremely important
role in a 6nite-size system and, as will be shown below,
can destroy most of the collective transverse modes. The
spectrum of collective isospin excitations obtained within
the model [16] is linear in the wave number k and does not
have any singularity as a function of o.. The spectrum of
the Goldstone mode, which results from the broken sym-
metry, must be quadratic in k and cannot be formally
defined in an unpolarized system, i.e., it should possess a
singularity at o. = 0. Thus the model [16] seems to work
satisfactorily when describing longitudinal isospin modes
but requires some xnodifications in order to describe the
transverse isospin dynamics.

Here, the spherical coordinates r, 8, $ are used, A is the
normalization factor, l and m are the polar and azimuthal
quantum numbers, Y& (8) are the standard spherical
functions, J~+~~2(z) is the Bessel function, and E denotes
the energy of the stationary states. The eigenvalues E are
determined by the boundary conditions, J~+~y2(kB) = 0,
where R is the radius of the droplet. In other words, the
energy spectrum of the isospin excitation is quantized
and may be described in terms of two quantum numbers
l and n~.

E(ni, l) = E„i = z(„,2MR2

1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d, 1h, . . . (23)

Indeed, it coincides with the sequence of levels in an in-

finite spherically syxnmetric potential well. The energy
spectra of the isospin excitations in the 8 states have a
particularly simple nuxnerical form:

where z~„are the zeros of the Bessel function,

J~+q~2(z~„) = 0, and the index n~ labels the zeros of

J~+zy2 at a given t. The sequence of the different sta-
tionary states is thus determined by the sequence of the
zeros of J~+zg2 for all possible l. When using the tradi-
tional classi6cation scheme the sequence of discrete levels
on increasing the energy can be displayed as follows:

III QUANTIZATION OF THE
EXCITATION SPECTRUM

m2n2h2
E(np, 0) = E(ns) =, n = 1, 2, 3, . . . . (24)

The dispersion law derived in the previous section is
valid only in the case of an in6nite nuclear system and
cannot directly be applied to finite nuclei. In the latter
case the continuous momentum k is no longer a good
quantum number to characterize excited states of nu-
clei. To find the correct classification of the energy levels
one needs to quantize the excitation spectrum using the
boundary conditions. To simplify the problem we will
consider the nucleus as a spherical droplet. The bound-
ary conditions for the macroscopic isospin T;, i = 1,2, 3,

T, = Tr ) ~n (p),
p

(19)

reduce to the criterion that there should be no isospin
current through the surface of the droplet. The equation
of motion for the circular component, T+ ——Tq + I.T2,

—iBgT+ —— V' T+,2M (20)

coincides, in fact, with the Schrodinger equation for a
particle with mass M. The solutions describing standing
isospin waves in a spherical droplet correspond to the
eigenfunctions of the stationary states, which have the
usual form [17]:

cd+Oq~t —k v p 0. (25)

In the long-wavelength lixnit where the frequency u is
given by Eq. (15), this criterion reduces approximately
to kv ( ~O;„q~, which is equivalent to the following con-
dition:

ZlnV 4( —fo.Zp[ —. (26)

One can easily conclude that the transverse isospin mode
(n~, l) exists if the following inequality is fulfilled:

In contrast to an in6nite potential well the number of
collective excited states (transverse isospin modes) in a
heavy nucleus may be finite (or even zero). The Landau
damping provides a xnechanism that destroys collective
excitations with high enough wave numbers k. Micro-
scopically a collective mode of the Fermi-liquid type can
be interpreted as a bound state of a particle (nucleon)
and a hole in the Fermi sea. If the collective excitation
moves too fast, it turns out to be unstable with respect
to the decay in a particle-hole pair. The threshold above
which the Landau damping coxnes into effect and kills
the isospin waves can easily be seen from Eq. (14). The
corresponding criterion thus reads

t'k) '~'
&+(r, 8, P) = A

~

—
~

Jf+y/2(kr)Y&~(8)e"E")
2 pFR

[nZp[ ) 1.3z)„A (27)

It should be pointed out that criterion (27) applies to
the transverse isospin excitations in the long-wavelength
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R = TpA Tp 1.1 x 10 cm. (28)

Then the Fermi momentum p~ can be easily calculated
as follows:

(9z)'~' n
p~ — ———1.4 x 10 g cms

2 TQ
(29)

Substituting Eqs. (28)—(29) into Eq. (27) we finally ar-
rive at the existence criterion for transverse isospin exci-
tations in heavy nuclei:

—A aZp & 1.«„3 )

limit only. At high wave numbers, kv )) fO;~tf, the in-
fluence of the "isospin polarization" on the spectrum of
collective excitations becomes negligible. Under certain
conditions (in the one-harmonic approximation, Z„= 0,
n = 1, 2, 3, . . ., the conditions reduce to the criterion
Zp ) 0) the isospin waves of the zero-sound type with
the linear dispersion law u oc ck can still propagate in the
system. In this case the dispersion curve u oc k for the
isospin modes in the long-wavelength limit, kv « fO;„~f,
converts smoothly into the linear dispersion law ~ oc k
at high k. However, in this paper we will be limiting
ourselves to considering the low-lying excitations only.

In the opposite case (Zp & 0 in the one-harmonic ap-
proximation) high-frequency isospin waves with a linear
spectrum do not exist at all. Nevertheless, the transverse
modes with quadratic spectrum certainly propagate in a
"polarized" system provided criterion (27) is satisfied.
When increasing the quantum numbers n~ and l (i.e., ef-
fectively the wave number k) Landau damping comes into
effect and destroys the collective modes at kv fO;„,f.

The radius of the nuclear droplet, R, is, of course, de-
termined by the mass number A of the nucleus, and can
be estimated as [17]

edge of criterion (31) and therefore requires a more de-
tailed and accurate calculation. Such calculations will be
carried out in the next two sections.

IV. VARIATIONAL APPROACH TO
COLLECTIVE EXCITATIONS

In its conventional formulation, the Fermi-liquid ap-
proach has been designed to describe the properties of
extended systems. Finite systems present peculiar fea-
tures which deserve special attention. One may ask how
the presence of a boundary will acct the spectrum of
collective excited states and what is the correct formu-
lation of the boundary conditions which are expected to
apply not only to the mass flux but also to the momen-
tum flux. A rather successful variational approach has
recently been developed to deal with this kind of situ-
ation and to answer these questions [14]. The method
starts &om a Lagrangian formulation of the collisionless
transport equation and uses an approximation based on
a variational assumption which has the eH'ect of replacing
the Landau damped modes by a discrete set of modes.
The boundary couples the modes, so that, in the pres-
ence of the boundary, undamped modes may have a small
admixture of the modes which would be damped in the
absence of the boundary. In any case, the Landau damp-
ing is not regarded as the sign of an instability but as the
result of an interference effect [18].

We now adapt the method developed in Ref. [14] to the
description of the propagation of isospin fluctuations in
Rnite systems such as droplets of nuclear matter. To this
end we consider the phenomenological Hamiltonian in
agreement with the pointlike nucleon-nucleon interaction
(17),

A simple model of contact interaction (17) provides us
with the range of the mass and charge numbers, A and
Z, in which one can expect the existence of transverse
isospin excitations. When combining Eqs. (18) and (30)
we obtain the following relation:

2a=)
2mp

+2 ) [c'I(i)I(j) + d'T(i) a(j)]b(r; —ri), (32)

Z & — A- - — A ~ —«.1 1 vr /t
2 3 Tp

8 3 fdf
(31)

For fd[ = 0.35 fm (see Appendix) one can easily con-
vince oneself that there is a large variety of heavy, stable
or long-living, nuclei (for instance, p2 U, p44Pu, ps Cm,
s2ssPCm, zss Cf, etc.) for which criterion (31) is fulfilled,
and which are good candidates to exhibit the transverse
collective isospin resonances. For such nuclei the spec-
trum of "isospinons" can fairly well be described in terms
of the quadratic dispersion law and Eq. (22). Inasmuch
as the Fermi-liquid harmonic Zp is positive, violating cri-
terion (31) does not mean that the collective isobaric
excitations disappear due to the Landau damping (see
above). It means only that these fiuctuations possess a
linear dispersion law rather than the quadratic spectrum
(15). s2 Pb is probably the most interesting objective
for experimental study, which lies, however, right at the

o l I+~,
np+ n

o n„) 2
(33)

with nz ——6(ey —hz), n = 0(e~ —h ). We introduce the
self-consistent densities np ——2(n~+n ), n3 —2(np n )
and the self-consistent energies ep ——2(e~ + e ),
2(ep —E ). Then n = npI + nsws. The equilibrium self-

consistent (effective) Hamiltonian E = EpI + 6s7s reads'

where c' = (4vrh /mp)c—, d' = (4xh2/m—p)d, and a =
7y, 72, 73

A semiclassical approach is adopted, so that the sys-
tem of nucleons is described by a distribution function n
which depends on isospin. The equilibrium distribution
function reads
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-= p'
+ try ding rg —rg

2mo

x [c'I(l)I(2) + d'T(1) T(2)]n(2)
( p'

+ c'pp
~

I + d'p373 —epI + e3T3&
(2mp )

with p() ——2g f[d p/(2ir) ]np, p3 ——2g f[d p/(2ir) ]n3,
ep = p /2mp + c pp& and 63 —d p3.

By [, ]sc we denote the semiclassical limit of the com-
mutator. Let 4, A be operators in the isospin space and
let f, g be either operators in the configuration space or
their Wigner transforms, depending on the context. We
write

[~, n]sc = 0. (36)

Indeed, we have

1rbI + 7=3 I —~3
[e, n]sc = (ep, np) + (e„,n„j = 0. (37)

2
"'"

2

By S we denote the generator of isospin fiuctuations
of the distribution function,

The self-consistency condition may be written in the
form

[fb„A] = -(b,A+Ah)(f, )+ fg[b„A].
S = Spry+ Sg~g) (38)

In the right-hand side, f, g are functions of r, p. In the
left-hand side they are operators.

where Si and S2 are c-number functions of r, p, and
t. The dynamics of small-amplitude Huctuations is con-
trolled by the second-order Lagrangian

ll & = —&r r&l11(SrS 'S]rr + -&r fSl'(S &]rc(S,1&]rr.
2

——tritr2 dl'1 dl'2[S n)sc(1)[S,n]sc(2)T(l) T(2)b(ri —r2) (39)

Simple algebra leads to

[S n]sc = ~((S1 no) + 2S2n3)T1

+L((S2& np) —2Sln3)T2& (40)

[S,e]sc = L((S1&ep) + 2S2e3)'71

+~((S2&ep) 2Sie3)» (41)

[S,&9SS]sc = ~((S1,Sij+ (S2, S2))I
+2&(S1S2 S2S1)T3' (42)

The Huctuation of the distribution function is bn
a[S, n]sc. Its time evolution is determined by the La-
grangian (39).

V. LAGRANGIAN AND EULER-LAGRANGE
EQUATIONS

By pFP and pFN we denote the Fermi momenta for
protons and neutrons, respectively. It is convenient to
introduce some notation: bo —— 3(pFp + pFN)& b3

3 (pFP pFN)& O 13 (pFP + pFN) & 3 13 (pFP pFN) &

1 3 3 5 5 1 5 5

es ——[2gj(2s) ]d'bs.
Also the following approximation is introduced:

Si,(p, r, t) = $1,(r, t) + p Qi, (r, t), k C (1,2). This ap-
proximation preserves the Goldstone mode and has the
effect of replacing the Landau damped modes by a dis-
crete set of modes. We follow now a variational approach
which is similar to the one developed in Ref. [14]. The
Lagrangian which determines the time evolution of the
fields ps, Qz is derived from Eq. (39) and reduces to

L' =
1 f r&'r(bo(S rbrrbr + S &&rrbr S &&lrbl S rbrrbr )+2br(blSr S2S1)

+2t3(~, ~2-~2 ~,)+ [( 41) +( ~2) ]
mp

to+ (Cln&]pinBpi/lip + Bn&/lipBn@ip + Bni/llp~p41n + ~n2/&2n~pl'2p + ~n P2p~n42p + ~n42p~p@2n)
mp

2t3
3 o . (422/21 —4102) + (@1 42+ 41 2]b2 —W2 &41 —42&. 4'1)

mp

~ b~
~ 3(+1 .&1+&2 . 42) + '

[( +1)'+ ( +2)']k.
3

(43)
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The Euler-Lagrange equations read

bp bp t3
2/2 ——V QI = V PI —2 V-Q2, (44)

b3 mpb3 mpb3

~ bp - bp t32/I+ —V. v)2 = — V Q2 —2 V Q„(45)
b3 mpb3 mpb3

A2 ——2t-'3Ag + V' Ag)
tp

2mpt3

tp
Ag ———2~302— V A2.

2mpt3

Making use of V A; = —k A,. we get

(52)

2tsg2 —bpVQI ———2 V/2+ 4tses@I + V QI
mp mp

e b2

g3 tp
2tsgi+bpV$2 ———2 V/I —4tsesg2 — V Q2

mp mp

2t e b'l
(47)

The boundary conditions at r = a (the nuclear radius)
are also derived from the Lagrangian and read

( tpk' )263—
2mpts)

(54)

( bp & (bp
FI~—

l

= —C
l

—K'4I~ + 2F2~ l, (55)") &b.
" ") '

In order to obtain the equations for the longitudinal
modes (such that V x vpi = V x Q2 = 0) it is con-
venient to define the scalar functions F, = V Q, , i C

(1,2), and to make the local ansatz QI
——pi„costd„t,

'i(2 = 1I/P2 COS ld t Q2 = Q2~ S1I1 td t 'fPI = 'I/I SlI1 hd

In terms of the quantities C = ts/mob&, B = 3tp/mpb3+
hsbp/bs2, and K2 = k2bs/ts, the local equations of motion
get the form

1 (pi+ Vyi+
l

., —
i

mpp

mpbp)
(48)

(u„
l
2/I„+ F2„

l

=——C —iC g2„—2FI„ l, (56)
bp ) (bp

~ 1 (02+ V42 —
I

~s-
mp mobo)

(49)
sr~

l
2FI„——K $2„

l

= 2K CPI~ —(4es —iC B)F2„,
( bp

( t l (t, esb')b+ l4+l +
bmp) (mp bs

+ &p(ci-&2p+ ~p&2-) = o (»)tp

mp

(57)

~~
l

2F2~+ —K 4'I~
l

= —2K C4'2 —(4&s —K B)FI~.
b, ")

(58)

ts l ( tp esbp2&—
l

&sbp+ 142+ I
+

m, ) (m,

+ xp(ci pip+Op/i ) = 0. (51)
mp

In the erst step we disregard the boundary conditions
and concentrate on obtaining a complete set of local so-
lutions of the Euler-Lagrange equations. In the second
step we construct, with the help of the boundary condi-
tions, the correct linear combinations of the previously
obtained local solutions. The Euler-Lagrange equations
admit two types of solutions: longitudinal and transverse
modes. We observe that these words are here used with a
diferent meaning than in Sec. II, where they describe di-
rections in isospace. Here, they specify directions in con-
figuration space. Thus "longitudinal" means along the
direction of propagation and "transverse" means perpen-
dicularly to that direction. The transverse modes (such
that V.QI ——PI ——V Q2 = P2 ——0) may be expressed in
terms of the quantities AI ——V x QI and Oz ——V x Q2.
Then, A~ and A2 obey the equations

Assuming PI„——$2„and Fi„—— F2„, one solu—tion of
these equations is obtained. The dispersion relation is

K
I

~ +2Cl2 (bo

)

+ —CK'
l

(2a —4es+ K'B) (59)

For small K, one of the solutions behaves like ~ = o.K,
n = —C /2es —bpC/2bs (recall that es and bs are both
negative). This result is in agreement with the "isospin"
effective mass (15). This is the Goldstone mode.

Assuming PI~ ———P2~ and Fi ——Fi, another solu-
tion to these equations is obtained. The dispersion rela-
tion, in this case, is equivalent to changing cu into —~„
in the previous expression,

, (bp
K

l

—cu„—2C

l
(2~ +4es —K B) (60).bo

b,
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It may be appropriate to discuss brieHy the meaning
of the different solutions described here. Beyond the
expected Goldstone mode, the other solutions obtained
arise as a result of the polynomial structure imposed on
the generators. The replacement of the Landau damped
modes by a discrete set of modes was a consequence of
this approximation. The boundary condition mixes the
modes, so that, in the presence of the boundary, un-

damped modes may have an admixture of modes which
are damped in the absence of the boundary. We remark
that Landau damping should not be regarded as the sign
of an instability but as the result of an interference e8'ect
which is quenched by the boundary [18].

The fields p = 2(pi —b)[)2) are coupled to the fields

op+
——

2 (Qi + Q2). The fields p+ ——
2 (pi + p2) are cou-

pled to the fields Q = 2(gi —Q2). The global normal
modes are linear combinations of local modes determined
by the boundary equations. In Table I, the energy levels
of Pb associated with normal modes described by the
fields g and Q+ are shown. These correspond to modes
excited by a generator which increases the Z number

(v+). The particle-hole force (17) with c' = 380 x 0.0685
MeVfm and d' = 380 x 0.3315 MeVfm, taken from
Ref. [19], was used. We wish to point out that the low-

lying levels for I, = 1, 2, 3, 4 (shown in parentheses in Ta-
ble I) are very unstable with respect to small changes of
the parameter d'. They Huctuate strongly and may even
disappear. The remaining levels are quite stable. Only
the stable modes should be interpreted as true collective
modes.

The level at 15.75 MeV for 1 = 0 may be identified
with the 19 MeV isospin analog resonance reported in
Ref. [20]. Further experimental results on isovector res-
onances may be found in Ref. [21]. The norinal modes
described by the fields b)))~ and Q are excited by a gener-
ator which decreases the Z number (r ). All these modes
have an excitation energy higher than 50 MeV except for
the t = 0 mode which has the energy u„= —2e3 ——0;„t.

When numerically calculating the energy spectrum of
"isospinons" in Pb the "bulk" coupling constants, c'
and d', in the Migdal interaction potential are used, and
no "surface" contribution is taken into account. It may

I

TABLE I. Energy levels of Pb associated with the nor-
mal modes.

L=0
L =1
L=2
L=3
L=4

~n, O

&n, X

&n, 2

~n, 3

~n, 4

= 15.75
= (3.49)
= (1.02)
= (6.94)
= (11.80)

35.08
11.78
22.13
34.43
44.50

36.36
32.19
34.42
47.83
63.64

MeV
MeV
MeV
MeV
MeV

VI. ORTHOGONALITY RELATIONS AND
SUM RULE

When writing for the normal modes Pi„(r, t)
Pi„(r) cosa&„t, Q2„(r, t) = Q2„(r) cos~„t, $2„(r,t)
b))2„(r) sin~„t, and Qi„(r, t) = Qi„(r) sinbd„t, the modes
may be normalized so that the following orthonormality
relations hold:

not be true in the case of light nuclei (small droplets).
As was shown earlier the developed theoretical approach
should work pretty well for heavy enough nuclei (the
larger the droplet, the better the accuracy) where the
surface-to-volume ratio is very small. For that reason
the use of the "bulk" interaction strengths seems to be a
quite reasonable approximation.

In this section we restrict ourselves to considering the
two-body nucleon-nucleon interaction only. A three-body
interaction, which is responsible for the saturation ef-
fects, can indeed be included in the developed calcula-
tion scheme. However the traditional Skyrme potential,
which is widely used in nuclear physics, does not contain
any isospin-dependent terms responsible for the isospin
dynamics. One can easily convince oneself that adding
this kind of interaction to the initial Hamiltonian does
not a8'ect the spectrum of collective isospin waves at
all. A three-body effective potential, which contains the
isospin variables, could inHuence the spectrum of trans-
verse isospin excitations. Such an interaction has, how-
ever, not been considered so far and lies far beyond the
scope of this paper.

d r[be(~a4'ltaelma a4'2mkb'ba) + 2~3(4'arbor'2bbb) + 2t3( 02bb ' 0iab)]

f d r[bo[b) b)o obo b) bo obo ) + 2b g bo„o) +o2to[ —obo . obo„)] = b „. (61)

Arbitrary fields (initial conditions) $2(r) and t'ai(r) may be expanded in normal modes

y, (r) = ) C„A„(r), @,(r) = ) C„y „(r), (62)

where

, f d'r[bo[b) do obo —b) Lobo )

+ 3(4i.A)+ 3(-02 0,)]

Similarly,
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Px(r) = ) D„gx„(r), Qz(r) = ) D„Q2„(r), (64)

where

The following sum rule holds:

D„=, d'r [bo (&~4zngzo —&~ xtxx Qxn~)
2xr 2

+ s(&2n&x) + 2 s( (65)

) (u„C„' = —,d r [(V4t2)']+ (B~gx Bpgxp+8 gxp8 exp+8 QxpBpgx )
27I' (mo mpn

2t3 e3bp—2esboV ' (PzQx) + (Qx ' Vgz —4'x2V ' IPx) —4est3(fx ' lbx) + [(V Qx) ]
mp b3

(66)

The quantities C and u~C„should be regarded as the
transition probability and the transition strength respec-
tively.
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APPENDIX

The parameter d in Eq. (17) or the parameter d' in Eq.
(32) are obtained from the potential contribution for the
total symmetry energy of the system [22],

E, =—,V = 100 MeV.
V (N —Z)2
8

In the model presented in Sec. IV this contribution is
given by

d'
E,r = —tr x tr2 dI'x dl'2b (r x

—r2) T (I) w(2) xxxn2

d' 3 (N —Z)z

8 Kr03A
For rp ——1.2 fm we get

d' = 181 MeV and d = — = —0.35 fm.
mpd
4~h2
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