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We derive the dynamical equations which couple the four-body (mNNN) system to the underlying
three-nucleon system. Our treatment can be considered the proper generalization of the Afnan-
Blankleider equations for the coupled NN-7rNN system. The resulting connected-kernel equations
resemble in structure the Yakubovskii-Grassberger-Sandhas equations for the standard four-body
problem, but involve 24 chain-labeled components (rather than the usual 18 ones) and, within the
scheme where the Hilbert space is truncated to states with at most one pion, allow for a consistent
evaluation of reaction amplitudes involving m absorption/production.
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Consider a picture where three nucleons interact
among themselves through two-body (NN) potentials
and with the additional pion through another two-body
(mN) potential; then the problem involves (only) the
complexities of a conventional four-body problem. It
can be completely (and, unambiguously) solved by con-
sidering connected-kernel equations such as those aris-
ing from the Grassberger-Sandhas- Yakubovskil formal-
ism [1]. However, even if this solution had been pursued
thoroughly (and with the related outstanding numerical
efForts) our understanding of the system and related pro-
cesses would be rather limited. This is because a funda-
mental aspect —the absorption process —is still missing
in the theory. This channel couples the original four-
body system with the corresponding three-nucleon sys-
tem. Clearly, the argument applies as well if we start
with a pure three-nucleon system because, above the pion
threshold, the (inverse) pion production process couples
the three-nucleon space to the one with the additional
plOD.

In the past decades, much attention has been devoted
to the treatment of the xNN system [2). In fact, there
have been a few difFerent diagrammatic formulations of
the coupled vrNN problem by Thomas, Rinat, Afnan,
and Blankleider [3, 4], and by Avishai and Mizutani [5].
The situation has been recently reviewed in Ref. [6]. In
spite of the specific difFerences among the various for-
mulations, these approaches have in common the reduc-
tion of the original field-theoretic problem to an efFective
three-body problem. This is obtained through a trun-
cation of the original space (with an infinite number of
pions) to states with at most one pion only. By now it is
well understood [7] that such a truncation introduces in-
consistencies in the nucleon dressings. Two nucleon lines
cannot be renormalized in the same way one single nu-
cleon is, because simultaneous dressing is prohibited by
the truncation. Moreover, one is compelled to a difFerent
treatment of the nucleon renormalization in the NN and
vrNN sectors, since one-pion truncation does not allow
nucleon dressing in the presence of another pion. One
practical consequence is that the efFective mNN coupling
constant is modified (weakened) by the presence of a sec-

ond nucleon, and this makes it diKcult to define unam-
biguously the xN input starting &om the sub-system dy-
namics.

Besides the difficulties with the nucleon renormaliza-
tion, the above-mentioned truncation of the Hilbert space
to states with at most one pion seems inadequate for an
accurate description of the xNN reactions also because
important mechanisms (such as the Jennings mechanism

[8]) require the inclusion of states with at least two pions.
Very recently, in the description of the mNN dynamics,

important progress has been made. In fact, by resorting
to a Green's function convolution technique, Kvinikhidze
and Blankleider [9] overcame the nucleon renormalization
problem, which was plaguing earlier ~NN theories. The
same authors, by resorting to a connected kernel formu-
lation similar in structure to the one originally proposed
by Stingl and Stelbovics [10], included in the m NN dy-
namics certain intermediate states with more than one
pion, as these are known to give important contributions
for an accurate description of the vrNN processes. Al-

ternatively, other authors [11]have suggested to circum-
vent the above-mentioned inconsistencies by abandoning
the nonrelativistic time-ordered formulation in favor of
a four-dimensional approach based on covariant pertur-
bation theory. With reference to this point, a covariant
set of three-body equations has been recently derived in
Ref. [12] for @s field theory.

For the m-trinucleon system, the situation is much
more primitive, since the inclusion of an extra nucleon
greatly complicates the dynamical equations. Here, the
level of knowledge and state of art of the theory cannot
be compared with the level of sophistication achieved
in the description of the mNN problem. To illustrate
this point we recall that the Afnan-Blankleider equa-
tions, which in the xNN problem are presently consid-
ered superseded [9), have never been properly generalized
to the aNNN system. Formally, equations of the Afnan-
Blankleider type hold also for the coupled NNN-m. NNN
problem [13,14], but in this case a new difficulty arises be-
cause the disconnectedness of the associated kernel makes
the equations ill conditioned, in that unphysical (spuri-
ous) solutions join up with the correct one. Here, we have
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drawn our attention to this very problem, and obtained
a new connected-kernel formulation of the mNNN prob-
lem, by generalizing the Yakubovskis chain-of-partition
labeled formalism to include the effects of the meson-
two-nucleon vertex. The result is that our formulation
of the vrNNN problem is endowed with connectedness,
much like the Afnan-Blankleider equations are connected
for the vrNN system.

The formulation we have developed for the mNNN
system, being originated by a truncation of the under-
lying Geld theory to states with at most four particles,
leaves obviously unresolved the problem of the nucleon
renormalization, which has already plagued approaches
of the Afnan-Blankleider type in the ~NN case. In ad-
dition, &om the experience gained in the mNN problem,
it is clear that the inclusion of diagrams with more than
one intermediate pion (i.e. , at least five particles) is de-
sirable, but also extremely difficult. Therefore, the re-
sults herein contained have not to be considered as Gnal,
but represent in our opinion an important step toward
a comprehensive description of the dynamics ruling the
7r-trinucleon system.

To our knowledge, there has been only one previous
work [13] making substantial improvements on the con-
nectedness problem for the mNNN equations. In their
approach, the authors relied substantially on the iso-
bar picture, which allowed them to recast the original
NNN-mNNN problem into an effective multichannel
problem coupling isobars (also called, in other contexts,
correlated pairs, or "quasiparticles") with the underly-
ing three-nucleon space. Connectedness was achieved
first in the "standard" four-body sector using the con-
ventional Grassberger-Sandhas scheme, and then intro-
ducing later the additional complexities due to pion ab-
sorption/production, via a formal separation based on a
two-potential scattering formula. By the admission of the
authors themselves, their final equations are extremely
involved, and their approach in fact demands for "more
complete and aesthetic descriptions. " We think we have
fulfilled here both these requirements. In fact, we have
obtained connected-kernel equations without using the
isobar (quasiparticle) representation; rather, we used the
genuine chain-labeled formalism of the four-body theory
and generalized it to include the effects of pion absorp-
tion/production. This allowed us to treat consistently
and at the same level the diagrams involving standard
two-body potentials as well as those involving meson-
two-baryon vertices. The resulting closed set of coupled
equations yields the unique, exact, and complete solution
of the problem [15]. We begin by defining the notation.
By T~&~z~ we represent the fully unclusterized scattering
amplitude 4+—4 for the vrNKN system. In the fully un-
clusterized absorption amplitude, denoted by T~p~z~, the
initial channel is similarly made by the four unbound
particles, while in the Gnal channel there are three &ee
nucleons only (without the pion). Similarly, the quanti-
ties T~z~p~ and T~p~p~ are the corresponding amplitudes for
the fully unclusterized vr production and three-nucleon
scat tering, respectively.

It is most convenient to express these physical fully
unclusterized amplitudes in terms of the solutions of the

Afnan-Blankleider (AB) equations. To this end, one first
introduces new, auxiliary amplitudes by factoring out the
two-body t-matrices t in the channels where the pion is
actually present, namely,

T(1~1) = ) ta + ) taGOUabGotb&
a ab

T(pi, ) =) U Gpt,

T(i~o) = ) t GoU
a

T(p
i p) —U.

The auxiliary amplitudes U b, U~, U, U satisfy the AB
coupled equations [13, 14]

U b = Gp 'b
b + ) b, t,GoUcb + FagoUb,

Ut = FJ + VgpUJ+ ) FtGpt, GpU, ,

U =F +) b, t,GoU +FogoU

U = V+ VgpU+ ) Ft,Gpt, GpU,

F =) h; f(i), FJ = ) b; ft(i),

for production and absorption, respectively. Because of
their importance, the structure of these operators de-
serves further comments. By its very definition, F is

Here, as usual in few-body scattering theory, indices such
as a, 6, c denote the three-cluster partitions one has in the
four-body (7r-trinucleon) sector. As a consequence, they
identify also the six pairs one can make out of four bodies.
In the present situation, it is often convenient to distin-
guish between NN and xN pairs. Let i label each one of
the three nucleons (i = 1, 2, 3); clearly, it can also be used
to denote the specific pair (7rN;). The operators t repre-
sent either NN or AN t matrices in the four-body sector.
With reference to this point, it is worth to recall that only
the nonpolar part of the vr nucleon t matrices has to be
retained, to be consistent with the explicit allowance of
the vrNN vertex in the theory [4]. The operators Gp
and gp represent the Bee propagators in the four-body
(vrNNN) and three-nucleon sectors, respectively. It is
a distinctive feature of formalisms retaining states with
at most one pion, that nucleon dressing must be treated
differently in gp and Gp [4, 5, 13,14]. In the former, equal-
time dressings have to be excluded, whereas in the latter
the nucleons ought to be (at least partially) undressed.
To avoid different nucleon masses in the two sectors of
the theory, the pion-nucleon interaction is separated into
a polar and a background term, so that one-loop self-
energy insertions cancel out on the mass shell [16]. In
the AB equations, the dressed aNN vertex referring to
the ith nucleon, f(i), has been recast into a new vertex
operator labeled by the three-cluster index a, namely,
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given by the sum of all the xNN vertices when a repre-
sents a two-nucleon pair (NN), whereas the elementary
vertex x¹¹has to be excluded in the sums for a asso-
ciated to a AN; pair (a = i). The explicit expression for
V is given, for instance, by Eq. (2.25) of Ref. [14) and
contains the sum over all the pair potentials in the three-
nucleon sector. These pair potentials include to their
lowest order the explicit one-pion exchange contribution,
namely, g. , z f (j)Gpf(i)6~; Higher-order contribu-
tions represent diagrams with more than one pion in
the intermediate states. Part of these higher-order di-
agrams can be approximately described by heavy-boson
exchange potentials. Other diagrams give rise to possible
three-body forces in the three-nucleon sector. The treat-
ment of such higher-order effects has been considered by
some authors in the literature [5, 13] while other authors
preferred to consider the lowest-order potential only [4].
We observe that the choice of including or excluding these
higher-order terms does not affect our discussion about
the connectivity of the x-trinucleon equations.

The AB equations couple together the fully unclus-
terized amplitude for the 3e—3 process urithout pion8
with all the three-cluster amplitudes U s one can have
with the pion. In other words, the set of equations for
U g, Ut, U, U couple together the amplitudes for all the
three-cluster partitions (i.e., with or without the pion)
one can have out of a system consisting of one pion and
three nucleons. The number of such partitions is 7.

For two nucleons the AB scheme is fully connected
and it is possible to evaluate all the amplitudes without
ambiguities.

With three nucleons we formally rewrite the AB equa-
tion as a 8uper-Lippmann-Schwinger equation for matri-
ces defined in all the partitions in three clusters of the
system

As a first step we decompose both the matrix potential
V

&
and the potential V into operators labeled by two-(3)

cluster-partition in'dices, namely, we write [17]

(3) (3)
(is)

=— o s=) ( o 6os6, sg )—:) (~, )s,

=) v.„
a1

(6)

(7)

a'

with the "internal vertex" operator defined as

(8)

(f ) =).6*o6'.-cof(i)

for the separated four-body and three-nucleon sectors,
respectively. Equation (6) follows at once from the fact
that there is a unique two-cluster partition a contain-
ing two different pairs a and b [18]. Here, we adhered to
few-body theory notation, namely, by 6 s~ we mean a
matrix labeled by three-cluster-partition indices, whose
elements are different &om zero only if partitions a and
b can be obtained by breaking a cluster of a' (a, b ( a').
Clearly, one has as many matrices as the two-cluster par-
titions are. In Eq. (7), on the other hand, we stressed the
fact that aq represents a two-cluster partition (namely,
an NN pair plus a spectator nucleon) in the pure three-
nucleon sector, in other words, Eq. (7) is nothing else but
the total potential (in the three-nucleon space) written
as the sum of pairwise potentials.

It is an important observation to realize that a simi-
lar two-cluster sum rule holds also for the corresponding
vertices:

T( ) V( ) + V( )G

with the definitions

G (3) | (3)
(s) pIaIb) pIaIO)

(oI&) (oIo)

V(3) V(3)
V(3) — (al&) (alo)

V(3) V(3)
V( l$) V(

l )

Gpt Gpb b 0
0 go

Gp '6s F
vb

(3)

(4)

T(3) =
(3) (3)
( t&) ( lo)

g(3) T(3) U t U
(Ol~) (oIo) 6

In the above equations, the superscript (3) reminds us
that they refer to transitions between three-cluster chan-
nels.

Then, we introduce partitions of the system into Auo

clusters. In the four-body sector we denote these parti-
tions by a', while in the three-nucleon sector we use the
label aq. For a' we distinguish three classes. Type I de-
notes the cluster partitions (7rNN)N Type II denotes.
the two pairs (7rN)(NN). Type III represents the single
(NNN)~ partition.

and similarly for (j,) . This is proved very easily once
it has been observed again that two different pairs (a, i)
unambiguously identify one single partition a' into two
clusters that contains both of them.

We may also add that, if the pairs (a, i) have one par-
ticle in common (including the pion) then a' is of type
I, while it is of type II otherwise. Therefore there is an
internal vertex, and hence a coupling to the absorption
channel, only for partitions of types I and II. This has
very important consequences because only such two types
of partitions unambiguously identify one single nucleon-
nucleon pair aq in the three-nucleon sector.

For each of the two-cluster partitions we have to intro-
duce the corresponding subamplitudes.

Type III. Here, since the vertex operators are not ef-
fective, we have standard four-body-like subamplitudes.
The III-type subamplitudes are well defined through
the AGS (Alt-Grassberger-Sandhas) equations, describ-
ing the multiple scattering among the three nucleons in
the presence of a spectator pion

(u ) g ——Go '6
g + ) 6,t,Gp(u ),g,

with a, b, c C a'.
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Type I. Because of the coupling with three-nucleon
space, here we do not have a standard AGS equation.
Rather, we have an AB set of equations with correspond-
ing subamplitudes (ua ) b, (u, ) and (u ~ ), (u i ) . These
equations describe a xNN-NN system in the presence
of a spectator nucleon, and couple together all the sub-
amplitudes for the three-cluster partitions including the
absorption sector, when partitioned in three single nu-
cleons. The pair ai is unambiguously determined, since
it corresponds to the unique nucleon-nucleon pair inter-
nal to the given I-type partition a'. Thus, we get the
I-type subamplitudes &om the connected-kernel coupled
equations

(u ) b = Gp bah+ ) b,t,GP(u a)ab+ (fa )agP(u )b~

(u.' )- = (f.' )- + V-, g (u.' )- + ).(f.' ) G t G (&- )-
C

(u- )- = (f- ) + ) :~-t.G (u- ).+ (fo )ogo(u )

(u ) = V„+V, gp(u ) + ) (ft, ),Gpt, Gp(u )„

with a, b, c, a~ C a'.
Type II. Like the I-type ones, these subamplitudes

couple the four-body sector with the three-nucleon one.
Differently &om standard four-body theory, however,
where the 3 + 1 and 2 + 2 subamplitudes can be treated
on equal footing [1, 17], here the equations for the 2 + 2

subamplitudes have to be modified in a nontrivial way
with respect to the above I-type equations. This is due
to a delicate double-counting problem, which can be most
easily recognized by observing the sum rule Eq. (7) for
the three-nucleon sector. This sum rule has been com-
pletely exhausted since it has been already used for the
AB equations for the I-type subamplitudes, and hence,
the equations for the II-type subamplitudes must take
into account this fact:

(u- )-b = G. '~-b+) ~-.t«.(u- ). + (f- )-g.(u.')»
C

( .')-=(f.')-+).(f.')«.t.G.( .)...

propagation and pairwise rescattering followed by a fi-

nal absorption process [g,(ft, ),Gpt, Gp(u ), ]. In the
3 + 1 case, moreover, one can have also any absorp-
tion graph, followed by pure nucleon propagation and
a last rescattering between the two nucleons which be-
longed to the vrNN system identified by a'. This pos-
sibility [described in Eqs. (11) by the term V,gp(u, ) ]
is clearly missing in the 2 + 2 case. Similar considera-
tions apply to the equations for the subamplitudes (u )
in Eqs. (11) and (12). We 6nally observe that, if the cou-

pling between the xNNN and NNN spaces is switched
off [f(i) = ft(i) = 0], both Eqs. (11) and (12) reduce
themselves to standard AGS equations of the form 10, for
subamplitudes associated to two-cluster partitions. The
pure nucleon-nucleon scattering in the three-nucleon sec-
tor is then described by the Lippmann-Schwinger equa-
tion

(u-) = V-, +V-, gp(u-) (is)

t{) {)+ {)G{)t{)t, =v, +v, 0 t, , (14)

with Gp(
) defined in Eq. (S).

Since the new T-matrices t, are defined in the space
of all the three-cluster partitions, their definitions depend
on whether a' is of type I and II, or III. In fact, we have

namely, by the surviving term in the last of Eqs. (11).
Had we retained this term in Eqs. (12) also, nucleon-
nucleon scattering in the (decoupled) three-nucleon sec-
tor would have been counted twice.

We observe that Eqs. (10)—(12) provide the dynami-
cal input to our full four-body equation. We use AB- (or
Faddeev-) like schemes to define these subamplitudes (and
subsequent off-shell extensions) because the correspond-
ing equations, having a connected kernel within the two-
cluster partitions, yield a well-defined and unique solu-
tion for the subsystem dynamics. The main point is that
by using such subamplitudes as input, we can prove that
the full four-body equation is connected and provides the
physical solution to the vrNNN-NNN problem.

For any type (I, II, and III) of two-cluster partitions of
the four-body sector, the above equations can be for-
mally recast into a Super-Lippmann-Schwinger matrix
equation, namely,

( -)-=(f-)-+) .~-t.G.( .).+(f. ).g. ( .),
C

( -) =).(f'. )-G.t.G.(.)' (12)

t , (3) =
(3)

g
(3)

(aib) a (aiP) ('+ ) ba(&aa')a

(ol&) (oIo)

Obviously, a, b, c C a'.
The difFerent structure between Eqs. (11) and (12) can

be understood on physical grounds. Whereas the former
set describes the "standard" dynamics of a vrNN sys-
tem in the presence of a spectator nucleon, the latter is
associated to the less familiar situation of two noninter-
acting pairs, namely, an NN subsystem plus a 7rN pair,
which can undergo emission/absorption processes. Thus,
in Eqs. (11) and (12) for (u, ), absorption can take
place through the "internal vertex" (f, )a, or through a
coupling with the full four-body sector, plus four-body

(3) — (&)

for partitions of type (I, II) or (III), respectively.

For III-type partitions the identification of v, corre-
sponds to the standard four-body choice in the four-body
sector,

, (3) (3) —1—
'

( (g) ~0 +ah~a, bca'

because there is no coupling with the three-nucleon sec-

tor. For I-type partitions, v, has 4 non-null sectors
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, (3) „ , (~) —1a' ~ s) a' a p) Gp &asba, spa' (fa')a
" '(ol&) " '(olo)

„ , (3)— , (3) (3) —1s)"'oo) Go

bshe,

s~ (f )

(pl~) (pip)

and for II-type partitions, v, is defined according to
Eq. (12),

To get the new equation, s for U, &„we substitute(3)

Eq. (16) into the original AB equation Eq. (2), and use
for V( ) the sum rule Eq. (15). Then, we take into ac-
count Eq. (14) for all the various types of subamplitudes.

In so doing, we get an equation for U, &, involving sums
over all the two-cluster partitions a', O'. If we make an
identification term by term of the resulting equation we

obtain

Thus, all the previous sum rules [Eqs. (6)—(8)] can be
formally replaced by one single super sum rule

(3) (3) (3) (3) (3)
U, ,s, =bsG'o +) h, t,, Gp U, , s, . (17)

V(}=y v

Equations (2), (14), and (15) are all the basic ingredi-
ents we need to derive a new set of connected-kernel equa-
tions. The solution of these equations is then used to cal-
culate the amplitudes T( ). On the contrary, a straight-
forward solution of the original AB equations would lead
to nonunique results since that kernel is not connected.

The fundamental ansatz

T(s) -t(s) + -t(s)G (&)U(s) G (s)t(s)

a'b'
(16)

allows one to write the AB amplitudes in terms of new

unknowns U, t, . Clearly, Eq. (16) is an implicit definition
of the new unknowns.

For each pair (a' 6'), U(, )s, is a matrix spanning the
three-cluster partitions, and thus the number of such ma-
trices is as large as the square of 7. However, we can also

view the set of unknowns U(, &~, as one single matrix de-
fined in the chain space labeled by one partition in two
clusters and one three-cluster partition internal to the
given two-cluster partition. Contrary to what happens
in standard four-body theory, however, here the absorp-
tion channel has been explicitly included. Thus, there
are here 24 components rather than the 18 Yakubovskii
ones of the standard four-body problem. The occurrence
of six extra components is explained by the fact that six
difFerent two-cluster partitions (namely, all the I- and II-
type partitions) have one additional component for the
absorption channel.

The strategy is to find new equations for the unknowns

U, &, and then use the ansatz Eq. (16) to obtain the AB(3)

amplitudes T( ).

These equations represent our final result, and it
is important to observe that they have formally the
same structure as standard four-body equations, writ-
ten in the Yakubovskii-Grassberger-Sandhas formula-
tion. However, the nature of these equations is difFerent,
in that they have six extra components (24 instead of 18)
and couple together two sectors with different numbers
of particles. We have verified that the kernel of such a set
is connected. More precisely, we have verified that one
sector of the kernel (the pure NNN space) is already con-
nected after one iteration, whereas to achieve connected-
ness also in the remaining three sectors (namely, z' scat-
tering, production, and absorption) three iterations are
required. The corresponding proof is somewhat lengthy,
and requires the methods of few-body scattering theory.
We briefly summarize the proof in the Appendix. For
more details we refer to a more specialized paper [19],
where these results have been resumed and extended to
the more general framework of z-multinucleon dynamics.

The above equations can also be recast into a formal
LS equation:

T('} = V('}+V('}G ' T('}

This LS equation operates at a higher hierarchic level,
namely, in the standard chain-labeled space for the four-
body sector, and in a new space labeled by hybrid chains
for the three-nucleon sector. The two spaces are spanned
by the chain indices (a'a) [a C a'], and (a'ai) [ai C a'],
respectively. The hybrid nature of the second chain is
obvious, since a' is a two-cluster partition in the four-
body sector, and aq is another two-cluster partition in
the three-nucleon sector.

At this level of the hierarchy, "Green's functions, " "po-
tentials, " and "T matrices" are defined as

g (2) G (&)

G (2) P(a'alt'S) P(a'alt'S, }

(a'a& lb'b) P(a'a& lb'5&)

Gpt Gp(u ) sGptgGpb g Gpt Gp(u ) g b.qp.

go(u, )aGo4Goh s go(u )go~ v

V(2)—
V(2)

~ V,
(2)

a'a)VS) (a'a(S'S, )

(a'a& (&'&) (a ay l& &1)

(Gpt Gp) 'h sb i,

0
0

—1 7

gp ga I Ql

T(2) =
T(') T(')

a'al&'6) (a'alb'by)

T 2) g(2)
I&'~) ( ' l~'~ }

Ua'ag s U
rrt

a'a~ 6'6
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It must be clearly understood that the hybrid-chain com-
ponents occur only when a', 6' are of types I and II. As
stated before, for any given I- or II-type partition a',
there is one and only one a~ partition in the three-nucleon
sector; hence, ba t, ~ ba, g, , as well as ba, g, ~ b g . An-

other useful identity is b g
——b ~ b, g, + b, ~, .

By application of the residue method, it is possible
to obtain amplitudes referring to more clusterized pro-
cesses. For instance, the amplitude for the reaction
sHe(~, NN)N is given by the expression

) (y ~t( )( ( )U( ) ~@,)
a'

= ). (4'0)(&a )a&0& &0U 'ab'b[~b';b)
a', a,b

+).(&pl( -)» .'.,bblc'b;b)
a', b

cleon renormalization problem, and the associated ques-
tion of the inclusion of intermediate multipion states are
left unresolved by the present investigation. Neverthe-
less, the development herein illustrated represents an im-

portant step forward, since for the first time it reconciles
in a simple way the requirements of connectedness with
the effects due to the presence of an absorption/emission
vertex in a four-body system. Under this point of view,
the present approach may have for the vr-trinucleon prob-
lem the same stimulating role played by the AB approach
in the lrNN case; any future (and more comprehensive)
theory of the ~NNN system is bound to contain a con-
nected structure such as the one here depicted. Needless
to say, the inclusion of more complex intermediate states
and of the proper nucleon renormalization requires fur-

ther theoretical e6'orts, in the quest for a satisfactory ap-
proximation to the underlying field-theoretic many-body
problem.

APPENDIX

Here, we briefly outline the proof of connectedness for
the kernel of the basic equation (18), referring the inter-
ested reader to Ref. [19j for the details.

As is usual in few-body literature we limit ourselves
to the lowest-order approximation K to the full 7t NNN-
NNN kernel, namely, we approximate the subampli-

tudes appearing in the "Green's function" Go with the
driving terms of the corresponding dynamical equations
(10)—(12). If K can be shown to be connected, then the

same is true for the full kernel V Gp . One has

— K(~l~) K(~lp)
K(pl i) K(olp)

(A1)

Here, the sum over a' ranges only over types I and II,
while b' is of type III, and ~4b ) is the column vector de-
noting the channel state with the three-nucleon bound
state. With varying b, ~Ob, b) are the Faddeev compo-
nents of the target bound state, while ($0~ is the three-
nucleon plane-wave state.

In conclusion, we have obtained a connected-kernel
scheme for the coupled NNN-xNNN problem. Our
equations are formally similar to the Yakubovskii-
Grassberger-Sandhas equations for the standard four-
body problem. However, our equations couple the four-
body (mNNN) sector to the underlying three-nucleon
system, thereby allowing a consistent evaluation of pion
production/absorption amplitudes. Admittedly, the nu-

I

K(a&afb&b) K(a, afb bz ) t)a'b'~ab~aCb'tbcp ~a'b' (fb')agp
K(a'a, [b'b) K(a'a, [b b~) ~a bi(fb')bGptbGp ~ b'aVb'pp

Here, to make the discussion of the various iterations
of K easier, we have resorted to the simplified notation
introduced for the transition amplitudes at the beginning
of this paper. This notation emphasizes the presence or
absence of the pion, independently from the nature of the
operator.

Connectedness is proved through a stepwise procedure,

namely, the connected terms of K are isolated first, then
the connected pieces of K are identified, and so on, until
full connectedness is exhibited for K . In so doing, a
crucial role is played by the classification of two-cluster
partitions into I-, II-, and III-types, as well as by the
topological structure of the "internal vertices" (f ) and

(ft, ), as defined by Eq. (9). After one iteration one has

K

where the explicit dependence upon the chain labels can
be easily restored, when necessary, owing to Eq. (Al).

The analysis of the topological structure of the various
graphs associated to K shows that the term K(olp) is al-

ready connected; actually, it gives rise to three-nucleon
forces in the NNN space, due to intermediate vr exchange
in the four-body sector. Also the term K(pl i)K(i

l z) can
be shown to be connected by direct inspection, all other
terms in K containing dangerous, disconnected graphs.
One is forced therefore to go up to the next iteration K

of the kernel K. Most of the contributions to this opera-
tor can be shown to be connected by resorting to results

(1(1) (1[1)+ K(1(0) (0[1) K(lf1)K(1(0) + K(1)0)K(0(0) glfl) gl)0)

K(ply) K(&
I &) + K(pip) K(ply) K(ply) K(alp) + K(olo) K(olo) K(ol x) K(olo)

I

obtained in the first step of the proof. The only discon-
nected terms one Ands in K are K(pip)K(pip)K(ply) And

K(ply) K(halo)K(pip). The former expresses scattering in the
full four-body space, passing through pure three-nucleon
propagation, the latter represents a higher-order produc-
tion process. Here, disconnected graphs occur, describ-
ing multiple rescatterings inside a nucleon pair, while the
pion is produced or absorbed by the third nucleon (a typ-
ical 2+ 2 situation). One can directly verify that both
these terms give rise to connected contributions a,fter a
third iteration (i.e. , when K is considered).
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