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We have studied the role of one- and two-pion exchange in the neutron-proton charge exchange
cross section and spin-transfer variables. The cross section shows a scaling behavior over a wide
energy range, consistent with a one-meson-exchange amplitude, and the spin-transfer observables
are nearly invariant on a finite (but smaller) energy range. It is suggested that these data can be
understood in terms of the exchange of pions between the quark constituents of the nucleon.
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I. INTRODUCTION

The investigation of the nucleon-nucleon interaction
has traditionally been approached by comparing the cross
section, scattering lengths, deuteron binding energy, etc.,
with a theory expressed in terms of a potential. There
are normally a certain number of parameters representing
the fundamental coupling constants and vertex ranges of
a number of exchanged particles with either a definite
or distributed mass. Values of all of the parameters are
needed before any results of the theory can be calculated.
One might imagine that a laboratory can be found, in the
form of a subset of the data, permitting a test of part of
the theory without the necessity of fitting all of the pa-
rameters.

While it is not obvious a priori that such a proce-
dure is possible, the region of neutron-proton charge ex-
change, at moderate to high energies and small momen-
tum transfer, might well satisfy the conditions for such
a separation. The small momentum transfer would seem
to imply large distances and high partial waves. In fact,
surprisingly, this is not quite the case as we shall see.
It has been recognized for some time that the shape of
the differential cross section, as a function of momen-
tum transfer, is invariant over a very large energy range
[1,2]. We shall see below that its magnitude scales with
the center-of-mass energy, the factor to be expected from
an amplitude arising from particle exchange. The fact
that an additional energy dependence does not enter can
be taken as an indication that the iteration of the one-
meson-exchange amplitude (such as that performed by
the solution of the Schrodinger equation) is not very im-
portant since Green’s function depends explicitly on the
energy. This invariance in shape has sometimes been
considered as accidental with no fundamental physical
significance. We find this difficult to believe, given the
very large energy range over which the scaling occurs.

In terms of a potential, a simple way to explain this
behavior is to suppose that the Born approximation is,
at least qualitatively, valid and that there is a local (en-
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ergy independent) potential responsible for the reaction.
A natural way to obtain a local potential is by particle
exchange and we will regard the problem from this point
of view. Note that the validity of the Born approxima-
tion requires a potential which is not too strong although
the volume integral can be large provided that the form
is dispersed in space. Hard cores are to be avoided.

The data [3-5] on the spin-transfer observables are also
very interesting. The measured values of the polariza-
tion and asymmetry observables are very small in this
region, as in fact they must be, since there is always an
explicit factor of sin6 in their mathematical expression
which vanishes for fixed momentum transfer as the en-
ergy increases. In a more general statement, the polar-
ization and asymmetry observables are defined relative
to the scattering plane which becomes poorly defined for
moderate momentum transfer and high energy while the
spin transfer variables do not depend on a definition of
the scattering plane.

The transfer of spin can be measured in three direc-
tions and the values of the spin-transfer observables are
not small. Recent measurements of these three quan-
tities show that they remain very nearly invariant as a
function of momentum transfer, at least for the range of
energies measured (laboratory kinetic energy from 485
to 788 MeV). Gersten [6] has pointed out a similar scal-
ing phenomenon in the helicity amplitudes as calculated
from phase shifts. Thus there are four observables which
show an invariant behavior, making the hypothesis of a
coincidence even more difficult to support.

The nucleon-nucleon interaction is treated in this pa-
per taking into account the finite extension of the nucle-
ons. We will consider only that part of the interaction
which would arise from the exchange of (possibly inter-
acting) pions between quarks. We consider the pion to
have a finite but small radius and take, as an approxi-
mation, the limit of this radius going to zero. Thus our
degrees of freedom are the quarks and pions with the
quarks being limited to the role of a source of pions.

The treatment of the nucleons as objects with finite
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extent leads to potentials which are finite, even when the
nucleons are completely overlapping. This has the fea-
ture that the Born approximation will tend to be valid.
However, partly because we do not seek a complete the-
ory at this point, we do not attempt a derivation from a
fundamental Lagrangian formalism as has been done re-
cently (7, 8]. Since the overall form of pion-nucleon cou-
pling is given by invariance principles there is no freedom
in the long-range part of the interaction. That is to say,
pion emission by the quarks becomes pion emission by
the nucleon since the nucleon has the same spin as the
quarks. We discuss and illustrate the method with va-
lence quarks only. For short range, when the nucleons
overlap, we consider a modified form of pion exchange
nucleon-nucleon interaction with a radial form which de-
pends on the distribution of quarks in the nucleon.

Our principal result is that for one-pion exchange
(OPE). While one might have thought that this aspect
of the nucleon-nucleon interaction had been completely
explored, recent results have been somewhat surprising.
With a “form factor” an OPE potential alone is capable
of explaining the “external” properties of the deuteron
[9-11]. Since the tensor force dominates the deuteron
binding, the spin-spin part of the OPE interaction is rel-
atively unimportant in the studies just mentioned. In
the present work we shall see that the spin-spin compo-
nent plays a very important role. It is in this part of the
interaction that there may be some indication of pion ex-
change between quarks, at least the assumption provides
a natural basis for the suppression of the § function which
would be present in the exchange of a “field-theory” pion.

This paper is organized as follows. In Sec. II we illus-
trate the scaling of the neutron-proton charge exchange
cross section over a wide energy range. Section III is de-
voted to a new insight into one-pion-exchange amplitude.
The contribution of the exchange of two pions is consid-
ered in Sec. IV and conclusions are given in Sec. V.
Appendix A gives the Born approximation to the ampli-
tudes in terms of different components of meson-exchange
potentials and Appendix B, formulas to calculate the -
space two-pion exchange potentials.

II. DISCUSSION OF THE
CROSS-SECTION DATA

We first examine the data set for the cross section.
For neutron-proton scattering, ignoring the production
channels, there is only elastic scattering hence there is
no experimental distinction between the scattering of
a neutron from a proton and the exchange of the two
particles. For moderately high energies, however, there
are two strong peaks in the angular distribution, one for
small angles for the emerging neutron (which defines the
elastic scattering region) and one for small angles for the
emerging proton (which defines the charge exchange re-
gion). The cross section becomes very small at intermedi-
ate angles. While at low energies it is difficult to separate
the two contributions, above 400 MeV kinetic energy the
distinction is clear. In practical cases there will always
be some contamination between the two regions.

An excellent data set was obtained at 800 MeV [12,
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13], an energy which is high enough that the contamina-
tion from the elastic region is small. In data taken over a
range of kinetic energies from 200 MeV to 800 MeV (Fig.
1, top) the same charge-exchange peak is seen to the ex-
tent that it can be separated from the elastic scattering at
the lowest energies. Note that, even though the energies
of these data cross the pion production threshold, there
is no visible change in the form of the angular distribu-
tion as might be expected to occur if the peaking were
due to absorption in the nucleon-nucleon channel. At
the top of Fig. 1 these data are multiplied by the factor
s(E)/s(800), where s is the square of the total center-of-
mass energy of the two nucleons at a kinetic energy E.
We will discuss the basis for this choice of scaling factor
in Sec. IITA. The solid points represent the 800 MeV
data.

There are also data from 600 to 2000 MeV /c by Shep-
ard et al. [14] which show the same effect of invariance
with respect to the shape of the peak in the charge-
exchange region. The data of Miller et al. [15] span the
region of 4-11.75 GeV /¢, those of Stone et al. [16] from
5 to 12 GeV/c, those of Engler et al. [17] from 8 to 22.5
GeV/c, those of Kreisler et al. [18] from 9.8 to 23 GeV/c,
and Manning et al. [19] give an angular distribution at 8
GeV/c. All of these data show the same effect, a strong
peak in the charge exchange region with the same shape
as a function of momentum transfer.

We have plotted, as representative, the data from
Bohmer et al. [20] (10.5-22.5 GeV/c), Babaev et al. [21]
(23.5-62.5 GeV/c), and Barton et al. (75-105 GeV/c)
[22]. The last mentioned data set extends to even higher
energies but, as we shall see shortly, the scaling with the
square of the center-of-mass energy appears to end in this
region.

Figure 1 shows the data of Béhmer scaled as explained
above. Note that the data at different energies around
momentum transfers of 350-400 MeV /¢, where the errors
are the smallest, are consistent with each other to within
the stated errors (£7%). The scaling factor varies from
4.29 to 8.76 over the energy range of these data. The
scaled Béhmer data are about 20-30 % lower than those
of Jain et al. (shown as the solid dots).

The data of Babaev et al. are also shown in Fig. 1. The
scaling factor varies from 9.13 to 23.69 over the energy
range of the data. Note that the data at 23.5 GeV/c
(open stars) scale well with the data of Jain et al. while
the data of Bohmer et al. at 22.5 GeV/c are 20-30%
lower, so there are inconsistencies in normalization of the
order of 20% between the two data sets. In fact typical
normalization errors are of the order of 30%. Nonetheless
the scaling is well established between 1.4 GeV /c and 60
GeV /c since the scaling factor varies by a factor of 23 over
this range and the data are consistent with the scaling to
the same level as they are with each other (=20%).

After seeing the scaling over such a wide energy range
(and thinking of scaling as a high-energy phenomenon)
one might believe that it will continue. However, as can
be seen in Fig. 1 where the data from Barton et al. [22]
are shown, it appears to begin to break down above 60
GeV/c. The lowest energy data (open triangles over a
beam momentum range from 60 to 90 GeV/c) from this
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FIG. 1. Scaling of the differential cross section. The data of Jain et al. [12] at 800 MeV (1.4 GeV/c) is shown as solid
circles in each of the figures. Data at 211 MeV is shown as the open boxes and 451 MeV by the open circles. For the data
of Béhmer et al. [20] the beam momenta are open boxes; 10.5 GeV/c, open triangles; 13.5 GeV/c, open circles; 16.5 GeV/c,
open diamonds; 18.5 GeV/c, solid boxes; 20.5 GeV/c and solid triangles; 22.5 GeV/c. For the data of Babaev et al. [21] the
beam momenta are solid stars; 23.5 GeV/c, solid circles; 32.5 GeV/c, open circles; 42.5 GeV /c, solid triangles; 52.5 GeV/c and
open triangles; 62.5 GeV/c. For the data of Barton et al. [22] the beam momenta are open triangles; 60-90 GeV/c and solid

triangles; 90-120 GeV/c.
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FIG. 2. Scaling of the cross section at
g = 0. Note that approximate scaling with s
holds over a very wide energy range.
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set show a departure from the scaling and for the next
set (90-120 GeV/c solid triangles) the difference is even
greater. This tendency continues with the higher energy
data (not shown) departing more and more from the scal-
ing rule. Note that the (unscaled) experimental cross
section is continuing to drop in this region (the scaling
factor is about 40) so if there is a contribution to the
cross section which does not enter with this same scal-
ing factor it will become more important as the energy
is increased. Of course experimental background is also
a larger problem than at the lower energies.

Another way to display the scaling is to plot the
charge-exchange differential cross section at zero momen-
tum transfer as a function of laboratory momentum. Fig-
ure 2 shows such a plot with the line indicating the value
of the expected cross section, using the above scaling fac-
tor, based on the 800 MeV data, i.e., the line is just the
function [s(800)/3(E)]o(800). The scaling is seen to hold
approximately from very low energies to a laboratory mo-
mentum of the order of 100 GeV /c.

III. ONE-PION EXCHANGE

The study of the neutron-proton charge exchange,
viewed from the perspective of pion exchange, has a
long history. Chew [23] pointed out that by extrapo-
lating to the pion pole in the np charge exchange reac-
tion the residue of the pole could be found and would
supply the pion-nucleon coupling constant. A modified
version of this method, using the full form of the pion
amplitude, was applied by Ashmore et al. [24] very suc-
cessfully even though the observed charge exchange cross
section did not resemble the one-pion-exchange cross sec-
tion since the measured values showed a strong peak at
180 degrees instead of the zero expected from ordinary
OPE. Ashmore et al. simply parametrized the form of
this peak by a polynomial in cos§. Bongardt et al. [25]
studied np charge exchange with the goal of determin-
ing the pion-nucleon form factor and parametrized the
peak as a Gaussian function. Cass and McKellar [26] and

Dominguez and Verwest [27] treated the problem from
the point of view of Regge, also to extract the range of
this form factor.

We note immediately that the ordinary one-pion ex-
change, which one might think would be important at
small momentum transfer because of its small mass and
hence long range, leads us to expect a cross section which
is totally wrong for the differential cross section since it
predicts zero for the 180° elastic cross section (instead of
a maximum). Several workers have associated the peak
with the removal of the delta function of the one-pion-
exchange potential [28, 6]. It was sometimes assumed
that the absorption of the inner partial waves, because
of pion production, was the reason for the suppression of
the § function [28]. However, as we already noted, the
character of the peak does not change as the threshold
for pion production is crossed or, indeed, as the total
cross section for np scattering goes from totally elastic to
mostly inelastic.

A. One-pion-exchange amplitude

As a first orientation to the ordinary one-pion-
exchange amplitude we consider the spin-averaged case
which has the form

¢

q2 + “2 ’ (1)
where q = k — k'’ and k and k' are the NN initial and
final momenta in the center of mass. Assuming a neu-
tron beam, if k' corresponds to the outgoing neutron the
momentum transfer is appropriate to elastic scattering
while if it corresponds to the final proton then g is the
momentum transfer of the charged pion. If one makes
the partial-wave expansion of Eq. (1), the amplitudes
are seen to have the following interesting property. For
all values of £ > 0 the amplitudes are positive while the
amplitude for £ = 0 is negative. Since the point at ¢ = 0
(where the amplitude is zero) corresponds to the sum
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of all partial waves, we see that the value of the £ = 0
contribution is equal to the sum of the others. This vi-
olates the usual expectation that the high partial waves
dominate at high energy and small momentum transfer.

Since the amplitude in Eq. (1) is finite as ¢ — oo, it
leads to a potential with a é§ function in r space

€ —plri—ral

V()(’I‘) 0(].[, +6(l‘1 l'z), (2)

Ir1 —ra
where r = r; —rj.

From a strictly pragmatic point of view, this é function
can be “removed” by modifying the amplitude in two
ways which, we point out, are not equivalent. One way
is to subtract the asymptotic constant for the limit of
large ¢g. A second way is to multiply the amplitude by a
function of ¢ which tends to zero for large g. These two
prescriptions are, in general, not equivalent at ¢ = 0.

From the point of view of pion exchange between
quarks, we now argue, it should be eliminated in both
ways. Consider the exchange of a pion between two
quarks. The two quarks can only communicate at large
distances by emitting colorless mesons, the lightest be-
ing the pion. If the quarks are separated by a distance
greater than the size of the confinement region of the pion
then the (spin-averaged) potential will be given by Eq.
(2) above. If the two quarks are close together, on a scale
of the size of the pion, then the potential given by Eq.
(2) is no longer correct and will (usually) be reduced. We
can “correct” the potential between pointlike quarks by
multiplying by a function which “cuts off” the potential
at short distances, e.g.,

V(r) = Vo(r)(1 — e~ /B, (3)

where R is the scale of the pion diameter. Transforming
back to momentum space and taking the limit as R —0
we obtain

2 2
2q 2_1:_21~‘ 2" (4)
P+ p g%+ p

We have simply set the quark-quark interaction to zero
inside the range of R whereas we should have replaced it
with some other interaction. If the radius of the pion is
very small the error in neglecting this interior potential
will also be small.

The true spatial extent of the pion is not well known.
The electromagnetic form factor has a range correspond-
ing to a radius of the order of 0.6 fm [29] but it is not
clear how this is related to the size of the pion since the
photon exchange at the energies used is dominated by
vector meson exchange. It has been found [30] that the
wave function of the pion may have an extent consider-
ably smaller than the region defined by the radius of the
bag.

One way to estimate the size of the pion is to use the
exchange of soft photons, i.e., the Coulomb energy differ-
ence between the neutral and charged pions. Since this
isospin breaking is isotensor in character, the mass dif-
ference must arise entirely from electromagnetic effects.
Using the naive quark model and the pure Coulomb en-

ergy we see that the mass difference is given by (see, e.g.,
Close [31])

1.441

Mt = Mae = pg

where the factor % arises from the product of fractional
quark charges. This estimate implies that the distance
between ¢ and § must be of the order of R =~ 0.16 fm,
giving a radius of ~ 0.08 fm. If this estimate is correct
the pion is only 1/10 the size of the nucleon.

Equation (4) is the form of the amplitude to be ex-
pected between any two quarks. We now wish to take
into account the distribution of the quarks over the two
nucleons. Placing the center of mass of the two nucleons
at the origin, the centers of the two nucleons will be at
£ and —% and the coordinates of the six quarks are (see

2 2
Fig. 3)

r r r
r1:§+u1, l‘2=§+112, l‘3=§+u3,

r r r
r4=—5+u4, r5:—5+u5, Te = —5 + ug,

where the vectors u; are coordinates of the quarks rel-
ative to the center of mass of the nucleons. Taking the
expectation value over the wave function of the quarks
we have

"1'——:;-‘5 /duldu4p(u1)p(u4)e’q 1 e_“‘ T4

2
= q + 2F (Q) p(Q)s (5)

where F,,(gq) and F,(q) represent the Fourier transform
of the quark density of the neutron and proton.

Thus we see that the finite size of the pion leads to
a subtraction of the § function while the finite size of
the nucleon results in a multiplication by a form factor
(which would smear the § function over the size of the
nucleon).

We assume, for simplicity, a density of the form

(6)

uy u,

|
win
o
o

FIG. 3. Position of quarks and the pion in r space.
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so that each integral contributes a factor X’%T' This

density has an rms radius given by (r?) = . Thus fora
quark density with an rms radius of 0.86 fm (the charge
radius of the proton) we expect a value of A of order of
560 MeV/c. Since the quarks in the pion cloud do not
constitute a source of pions (to the extent that they are
contained as ¢g pairs in true pions), one might expect a
smaller radius and hence a larger value of A. For a radius
of 0.6 fm we have 806 MeV/c and 0.5 fm corresponds to
967 MeV /c. Recently Coon and Scadron [32] have stud-
ied the value of A in relation to the Goldberger-Treiman
discrepancy and conclude that A most likely lies near 800
MeV/ec.

Note that we have assumed that the quark density in
each nucleon is unchanged from its noninteracting value.
The two nucleons overlap for only a very short time and
presumably do not have the time to rearrange their dis-
tributions.

There is an important point with respect to spin. The
spin structure of the pion amplitude for charge exchange
leads to only two nonzero helicity amplitudes ¢2 and ¢3
(see Appendix A). The first of these represents an am-
plitude with no helicity flip while the second has helicity
flip. Writing the general expansion of these amplitudes in
terms of Legendre functions, the first is expressed in ordi-
nary Legendre polynomials, Pr(cos#), while the second
is expressed in terms of associated Legendre functions
which vanish at 0°. This means that no matter what po-
tential is used ¢3 must vanish at 0° while ¢ may have
a finite value at zero g, such as that given by Eq. (4).
Hence a first inclination is to convert ¢, to the form of
Eq. (4) and leave ¢3 as it was. In this case one would
have the incoherent sum of squares of two amplitudes,
one of which vanishes at zero momentum transfer and
one of which has a peak at this same point. As we shall
see this is not quite the correct procedure but it is close
to the truth.

We now return to a treatment of the one-pion-exchange
amplitude with a full consideration of the spin degree of
freedom. Whether one starts with pseudoscalar or pseu-
dovector coupling, when the amplitude is evaluated in
terms of nonrelativistic invariants the expression for the
OPE amplitude is the same on shell. It is only when
the amplitude is extended to off-shell nucleons that it is
necessary to make a choice. Thus when discussing the
OPE amplitude (the Born approximation) or iterating
this potential in the Schrodinger equation the choice of
coupling is irrelevant. When (later) we calculate a poten-
tial from the exchange of two pions it is the pseudoscalar
form which is used.

Considering the spin dependent amplitude, we see that
we must remove the § function from the s-wave portion
of the amplitude only. Since the s wave is given by the
angle average

1 01-q02-q _ 14¢°01 -0y
4m @+p 3 +u?’

(7)

we see that the spin-dependent normalization of the sub-
traction is 301 - 02. Using the tensor form
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we can separate the amplitude into s-wave (spin-spin)
and tensor parts

01-992-9q 01'Q°’2'<l_101_02
C+ 2 @ + 2 3
1 ¢*S1z loy-oqu®

_3‘12'*'#2 3q2+u2' (9)
We see that it is only the spin-spin part of the amplitude
(and potential) which is modified. Note that the residue
at the nucleon pole has not been altered by this proce-
dure since it has resulted in the replacement of ¢2 in the
numerator of the spin-spin term by —pu?2, its value at the
pole.

We shall use isospin invariance to include the neutral
pion exchange. To separate the contributions of the ex-
change of charged and neutral pions in the expressions
it is convenient to write the two momentum transfers in-
volved as

p? = 2k%(1 — cos 8) (10)
for the elastic channel (7% exchange) and
¢® = 2k%(1 + cos ) (11)

for the charge-exchange channel (7* exchange) where
is the angle for elastic scattering.

For the amplitudes of Bystricky et al. [33] with the ¢
function removed we find

a=§wwnﬁam, (12)
N
b= [-9(p) - 6f(a)9(a) +49(a)], (13)
N
c= 5 [-3f(p)g(p) + 2g9(p) - 29(9)], (14)
d = N[-f(p)g(p) + 2f(9)9(9)], (15)
e=0, (16)
where we have used the notation
2 2 z2
0= (F5g) . f@=gm D

and the normalization is given by

2 2 2,2\ 2
N= (M) 2 fr (AT w7\ (18)
my ) /s4rw A2
The factor of —1; is the source of the energy dependence

which provided the scaling assumed above. These equa-
tions reduce to those of Bystricky et al. [34], with the
é function included and no form factor, if we make the

replacements f(q)g(q) — f(q), f(p)g(p) — f(p), and
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g(p) = g(q) — 0 when g(p) or g(q) is alone. The ampli-
tudes in Egs. (12)—(16) are also given in Appendix A in
terms of OPE potentials in momentum space.

In this notation, when the amplitudes are real, we can
write

a®+ b2+ +d?

— bd
Kss(0) = 2= —, (20)
+ bd
Krr(0) = d P (21)
and
2 12, .2 g2
KNN(9)=a b2 +c®—d . (22)

20

The experimental definition of the spin variables are
given several places (for example, see Ref. [3]). If the
energy is very high we may neglect the contribution from
the neutral pion exchange in the charge-exchange region
so that the expressions for the amplitudes simplify. In
this limit

a(0) = $N*¢*(q) [1+3f%(9) — 2f(9)] (23)
=3 +3f%(9) —2f(9)
KssO = 753500 ~240) .
=3 —3f%(q) +2f(9)
Kuel) = 53700 —27t0) (#5)
and
Knn(0) = K1 (6). (26)

Thus we see, in this simple limit, that all three spin
observables start at ¢ = 0 with a value of —% and, for
large q, Kss — :,15-, Ky, = Knn — —%. Kss obtains
its negative limit of -1 at ¢% = “72 where f(q) = %, while
K1 has a maximum (with a value of zero) at this same
point. The cross section is no longer zero at ¢ = 0 but
has the value %N 2,

B. One-pion-exchange potential

While we have supposed that the Born approximation
is qualitatively reasonable, the potential corresponding
the amplitudes considered above is needed for the itera-
tion of the OPE, by insertion in the Schrédinger equation,
for example. The spin-spin component has the form

f‘z e~ KT _ e—Ar A2 _ HZ Ar
‘/65(7‘) = 4_71— - —_ 2A e A . (27)

We have taken the coupling constant to be normalized
at the pion pole (and not at ¢ = 0). Note that the poten-

tial with the 6 function (the original one-pion-exchange
distributed over the quark density in the nucleon, or sim-
ply multiplied by a form factor for whatever reason) is
given by

2 —pr _ —Ar 2_,,2
‘/363(7‘) — 4f_;rr € € _ A(A [ad )e—Ar

- o (28)
so that the large difference seen in the cross section and
spin-transfer observables is not obvious in the form of the
potential. The difference is a little clearer when one ob-
serves that the coefficient of the last term has the proper
normalization for a § function (proportional to A3 in the
limit of large A) in the second case and not in the first.

The tensor potential remains unchanged by the sub-
traction of the § function:

_ PPl (1 3 3
Vr(r) = an |€ i + p2r? + 11373
1 3 3
_A3 —Ar | & v v
€ (Ar + A2r2 + A3T3)

2,2
—A(A2—us”—)e—“’ (1 + Xlr')} . (29)

With the potential given by Egs. (27) and (29), the
binding energy and external observables of the deuteron
(including the form factor “A” [35]) are correctly given

with A = 748 MeV/c and % = 0.079 or % = 4—%3% =
14.4. A similar potential was also used in Ref. [36] in the

study of relativistic two-body equations.

C. Comparison with observables

Even more spectacular than the cross section scaling
noted above is the invariance in the new data in the spin
variables over the energy range from 485 to 788 MeV. All
spin observables are very small in the region of momen-
tum transfer from zero to 500 MeV /¢ except for the spin-
transfer variables K15, Knyn, and Kss. As can be seen
in Fig. 4 these quantities change very little when plotted
as a function of momentum transfer for a charged parti-
cle, Ky more than the others. The values of the spin
observables for pure OPE (with the § function included)
are Kyy = —1, Kss = +1 and Ky, = —1 (except very
close to zero momentum transfer in the charge-exchange
channel). These values are seen to have no relationship
to the data.

Figure 4 also shows a calculation of the four observ-
ables for the full one-pion-exchange amplitude (i.e., with
the neutral pion contribution included) with the § func-
tion removed. It may be seen that there is a considerable
improvement over the result with the § function included.

The spin observables are calculated with a value of A of
600 MeV/c and at an energy of 800 MeV. The separation
of the two curves in Fig. 4 between K17, and Ky is due
to the presence of the neutral pion exchange and is energy
dependent. This splitting suggests that measurements of
these two quantities at higher energies could be useiul to
determine whether, as the importance of the neutral pion
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FIG. 4. Comparison of the OPE amplitudes with the four observables. In the figure for the cross section, calculations with
the one-pion-exchange amplitude are shown with the d function included (dashed curve) removed (dashed-dotted curve). The
neutral pion is included in both cases. For the spin observables the curves show the calculation with (dash-dotted) and without
(dashed) the exchange of the neutral pion with the § function removed. In all four figures the solid curve shows the result
of using the potentials corresponding to the dash-dotted curve in the Schrodinger equation. The energies of the spin-transfer
variables are Krr; 485 MeV open triangles, 635 MeV solid triangles, 788 MeV solid circles, 790 MeV open stars. Knn; 425
MeV open triangles, 485 MeV solid triangles, 495 MeV solid circles, 788 MeV open stars, 790 MeV solid stars. Kss; 485 MeV
open squares, 506 MeV open diamonds, 635 open triangles, 788 MeV open circles.
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exchange diminishes, the two observables become closer.

We see that reasonable (at least qualitative) agreement
with the spin observables is realized in spite of the fact
that there are (essentially) no parameters involved, the
value of A being of minor importance. Except for the
exchange of the neutral pion, the spin variables are inde-
pendent of A as can be seen from Egs. (24)-(26).

Also in Fig. 4 the values of Kgg are compared with the
same calculation. It is seen that the data have a mini-
mum in the region expected from pion exchange but the
value of the function at the minimum is not —1. This can
be taken as an indication of the degree of importance of
the iteration of the potential to higher orders or of the ex-
change of other mesons since, for the one-pion exchange
alone there is always a minimum value of —1. Note that
the minima and maxima of the data do indeed fall near
q = p/V/2 providing a definite signal of pion exchange.

Iteration of the OPE potential [Egs. (27) and (29))], in
the Schédinger equation, increases do /dS2 of the Born cal-
culation leaving it still below experiment at low ¢ (Fig. 4).
The result for the spin-transfer parameter, Ky, is not
very different from the Born OPE. Its slightly lower max-
imum does not get closer to experiment. K is shifted
toward positive values away from experiment. Kgg is
close to the Born result, however, with the value at its
minimum increased from —1.0 to —0.8 in better agreement
with data.

Even though the OPE Born term with the § function
subtracted and its Schodinger iteration are much closer to
data than the OPE with the § function included, some
additional shorter-range contributions are necessary to
have a more realistic model. The next medium-range
meson which can carry charge is the p with a mass of
770 MeV. One should take into account its relatively
large width of 150 MeV. An approach consistent with
the present view of pion exchange, developed by the Paris
Group (37, 38], is to consider the p exchange as that of two
correlated pions in the 7w P wave. In the next section we
study the correction to OPE, arising from two-pion ex-
change, calculated via dispersion relations following Ref.
[37] modified in a schematic manner by considering pion
exchange between quarks.

IV. EXCHANGE OF TWO PIONS

We treat the exchange of heavier mesons from the point
of view of the exchange of interacting pions, as was done

J
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for the o and p mesons in the Paris potential [37]. Note
that we wish to obtain the dependence on the radial vari-
able, r, of the potential for short range. We will always
assume that the asymptotic part of the interaction is as
given by the Paris Group [37]. In order to make this re-
duction it will be necessary to write the same dispersion
relation as was used in this case. We put the nucleons
in the intermediate state on shell and hence the fourth
components of the momenta of the exchanged pions do
not enter.

For the exchange of a single pion between quarks there
are only two quarks involved in the process, one in each
nucleon. For the exchange of two pions three cases are
possible: (1) Both pions are emitted by a single quark in
one nucleon and both absorbed on one quark in the other
nucleon. (2) Both pions are emitted by (absorbed on)
one quark in one nucleon and absorbed on (emitted by)
two different quarks in the other nucleon. (3) The pions
are emitted by two different quarks in one nucleon and
absorbed on two different quarks in the other nucleon. In
the first case the full momentum transfer must be found
on a single quark and the expression is simple. For the
other cases the situation is more complicated.

Consider, as an example, the case in which both pions
are emitted from quark 1 and are absorbed by quarks 4
and 5. Assuming an uncorrelated quark density in the
nucleon we have for the nontrivial part of the expectation
value on the quark wave functions:

/duldu4du5p(u1)p(u4)p(u5)eis-r1e—is-neis'.rle—is'-rs,

(30)

where s and s’ are the momenta of the two pions being
exchanged. After the change of variables

q=s+s and t=s-¢,
we have
2 2 2
eiq'r( 2A 2) A Tt A % .
A% +gq Az + (93=2)2 A2+ (937)2

Thus for all three cases averaging over the quark densities
leads to

1( A2 )2+4( A ) A? A? L4 [ N AN I S
9\ A2 4+ 42 9 \ A% + ¢2 A2 4 (2ft)2 AZ 4 (95%)2 9 \ A2 4 (3f)2 AZ4 (542 ) 7 (32)

where for the weights we have simply taken the number of possible cases without reference to the spin-isospin factors
which surely enter. Thus we consider this derivation as a rough evaluation of two-pion exchange between the quarks

in the nucleons.

The first term simply multiplies the result obtained for the exchange of a particle between two nucleons as was
the case for the pion. The other two terms show a difference, however, due to the structure of the particle being
exchanged. Even if the width of the p is taken as zero the structure of the particle, considered as a m—m resonance,

manifests itself.

In order to include these terms in the modified dispersion relation we must calculate [e.g., for the second term in

Eq. (32)] the discontinuity of the integral
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gt 1 1 1 1

/ (SF)2 42 (355)2 + p2 (3E5)7 + A2 (55)2 4 A2 F(t), (33)
where F(t) depends on the particular invariant amplitude being evaluated. The first two factors are from the pion
propagators and the second two are the last two factors in Eq. (31). The function F'(t) is a generic notation for several
spectral functions used in the dispersion relations in the Paris potential. In the present case it represents one of the
invariant amplitudes of the exchange of two pions, either uncorrelated or interacting in the s or p wave. We assume
that there is no dependence of F(t) on q so the expression that we will obtain is, strictly speaking, only applicable
to the spin-independent term. The effect on the spin observables of the exchange of two pions between quarks may
be very important but is beyond the scope of the present work. We note, however, that the dependence on spin of
the long-range part of the two-pion potential is the same as that given by the Paris potential. Using Cutkosky’s rules

(39] we obtain

A4 *® 1 1 1
— 57 tdt —
‘I(Az—ﬂz)/o 2A2 + 2u% 1 ¢ + 12 [4ﬂ2+92+t2 4A2+q2+t2} F(t) (34)

or, making the change of variable

tl = t2 +4u2,

the discontinuity of the second term of Eq. (32) becomes

A? A* °° 1
T = dt/
P AT+ g2 q(AT - 42)? [;,,z [t’ o

2
A -+t + @ 2N —pR) +t 4+ q2] Fe) (35)

The discontinuity of the third term in Eq. (32) can be found in a similar manner:

T3 =

2

4 4

A8 oo 1 1
2 24/ dt’ ’ 2t 2 2 -
(A% — p?)% [y t'4+q2  4(AZ—p?)+t' +¢?

2(A2 _ﬂz) + ¢ _+_q2

8
* [4(AZ — p2) + 1 + g2 [2(A% = p2) + ¢/ + g7 * [4(A2 — p2) + ' + @2 }F(t)-

In order to have the same two-pion-exchange discon-
tinuity across the cut [the same residue for p(t') at the
pole t' = —g?], and hence the same asymptotic behavior
for large r, as the dispersion relation used in the Paris
potential [37] we identify

O

F(t) A2 0
(A% — p2)2

9 A2+q2+

PParis (t’) = (37)

All formulas necessary to calculate the potentials cor-
responding to the three different cases are given in Ap-
pendix B. For the two-pion exchange considered here we
shall, in a first step, include the contribution from the
uncorrelated box diagram with two-nucleon intermediate
states (QTH) and the correlated two-pion exchange in the
S and P waves used by the Paris Group [40]. We leave
the rescattering contribution, e.g., the two-pion exchange
with a nucleon and a A (1232) and two A intermediate
states for a later study. These diagrams will also gen-
erate a two-pion range imaginary potential. The latter
can be used to take into account, in an optical model ap-
proach, the nucleon-nucleon inelasticities present above
the pion production threshold. As expected, the QTH
and the S wave add little to OPE at small ¢ but they
increase do/dS? at forward angles. The P wave gives a
do /d? which is too large, not only at small g but also
in the forward region at small p. Since a short-range

(36)

repulsive contribution is needed, we introduce the three-
pion-exchange contribution due to the w exchange.

We should, as for the two-pion exchange, study the
different possibilities for the exchange of three pions
between the three quarks of each nucleon. This pro-
vides the nucleon size regularization, in terms of A,
of the short-range part of the w exchange. Going
from one-pion to two-pion exchange the mass of the
regularization increases from A to a value > b =
{AZ + [(A2 — pu2)/A)?/2}*/2 ~ 3A/2 (see Appendix B).
We expect a similar increase from two- to three-pion
exchange and we shall choose a regularization mass of
7A/3. With an w coupling similar to that used in [38],
viz., 11.75, the forward peak comes out with a reason-
able value ~ 13 mb but do/dQ at ¢ = 0 is around 17
mb, still too high. If we decrease the helicity amplitudes
fL(t) of the P wave by 15%, do/dS?, at ¢ = 0, drops
to 12 mb. A reduction of 30% of f1(t) amplitude gives
8.12 mb. The spin-transfer observables are not very sen-
sitive to these modifications. The results of calculations
with this potential are shown in Fig. 5. The agreement
with experiment becomes better for Ky at low g. The
spin-transfer observables K15 and Kgs are also in bet-
ter agreement with experiment at low ¢ (< 250 MeV/c).
Similar results are obtained if one uses the P-wave helic-
ity amplitudes of Ref. [41] where an uncertainty of 15%
at the p peak is quoted. Since the np charge exchange
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differential cross section at low g is very sensitive to the
inclusion of the p it can constrain the strength of the
pN Ncoupling.

It is important to note that the Born approximation
for the full potential which gives a quantitative agree-
ment with the data is good to the order of 20% (Fig. 5).
Thus one should expect corrections only of this order as
the energy is increased. In the present calculation there
is a small energy dependence of the two-pion potential
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FIG. 5. Comparison of the data with calculations includ-
ing the two-pion exchange. In each case the dash-dotted curve
shows the Born approximation for the full OPE (same as Fig.
4), the dashed curve shows the Born approximation for the
full multiple pion exchange potential discussed in the text
and the solid curve shows the result of the solution of the
Schrédinger equation with the full potential.
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itself which could also give some deviation from the pure
scaling with s.

V. CONCLUSIONS

We have investigated the neutron-proton charge ex-
change reaction and find a number of simplicities which
can be understood in a semiquantitative manner. First,
the differential cross section scales over a very large en-
ergy range with a factor which arises naturally from first
order particle exchange. Second, the spin transfer vari-
ables are very nearly invariant (viewed as a function of
momentum transfer) over the (much narrower but signif-
icant) energy range where they have been measured.

A natural understanding of these data is possible in
terms of the exchange of pions between point constituents
making up the nucleons. For the one-pion-exchange
mechanism considered we do not need a detailed model
of the source of the interaction because the interaction
is normalized at large distances to a field theory which
treats the nucleon as a point particle. Thus we can use
the pion-nucleon coupling constant obtained from “stan-
dard” analyses.

We note that the subtraction of the § function is neces-
sary, as opposed to its distribution over the nucleon size
by the multiplication by a form factor. The assumption
of the underlying quark structure, with the subtraction
arising from a correction due to the finite size of the pion
provides a natural reason for the removal in this way. It
is possible that other arguments can be found for its sup-
pression in this form. In fact Refs. [9,10] used a similar
potential in their calculations of the deuteron properties.
In that case the result is insensitive to the exact form of
the spin-spin part of the interaction since the potential
that binds the deuteron is dominated by the tensor com-
ponent which is not affected by this subtraction. In the
present case the removal of the § function in this man-
ner appears essential to obtain a nonzero cross section
at 180° and values of the spin-transfer observables which
correspond to the data rather than the trivial values of
+1.

Note that the one-pion-exchange interaction obtained
in this manner is “almost” equally valid for all relative
distances of the two nucleons, including complete over-
lap. This is in contrast to the usual approach in which
the lower partial waves in the nucleon-nucleon interaction
are treated phenomenologically by replacing the OPE in
these waves. In the present approach it would appear to
be more appropriate to add some needed supplemental
contributions (phenomenological or fundamental) to the
OPE already present. The “almost” could be removed in
the sentence above if the size of the pion could be reduced
to zero. Since there is some contribution to the potential
between quarks when they are closer than the diameter
of the pion and, since the probability of two quarks being
close is greater if the two nucleons are close, the approx-
imation is not independent of internucleon distances.

A common technique for transposing a field theory to
finite sized objects is to multiply each vertex by a form
factor. The present work seems to indicate that this may
not be the proper procedure in the case of the exchange
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of finite sized particles.

For two-pion exchange only a part of the interaction
can be expressed in a form resembling the exchange of
a 7-m resonance (dispersed in mass). Other parts of the
interaction contain explicit dependences on the momen-
tum variables which occur because more than one quark
in each nucleon may participate in this more complex
process. We have again used the principle that at large
internucleon distances the neutron and proton can be
treated as point particles to obtain the normalization of
the potential.

While it would be difficult to consider that the data
and its analysis provides the definitive signal for the
quark degrees of freedom long searched for in low-energy
hadronic physics, the assumption of an underlying quark
structure certainly does provide a simple and logical ba-
sis for the understanding of the cross section and spin-
transfer variables.
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APPENDIX A: RELATIONS AMONG
AMPLITUDES

In the Born approximation we can write the ampli-
tudes a, b, ¢, d, and e in terms of nonantisymmetrized
central, spin-spin, tensor, spin-orbit, and quadratic spin-
orbit potentials arising from any meson exchange as fol-
lows.

We define the momentum-space potentials by

V = Vo +Vsso1-02+ VrSi2+ VisQrs + Vso2Qs02,

(A1)
where the last two invariants are defined by
Qs = %(01 +02) - kxk (A2)
and
Qs02 =0y -k x k' o2 -k xk. (A3)

One can show that the neutron-proton amplitudes are

a=3{Wec+Wss —Wr —Vo —Vss+ Vp
+(Wso2 — Vsoz)k* sin? 6]

—Uc — Uss + Ur — V502k4 sin? 0, (A4)

b=3[We —Wss+Wr — Vo +Vss — Vp

—-(Wsoz - Vsoz)k4 Sil:l2 0] - 2Uss - UT, (A5)
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c= % [ZWss + Wp — 2Vsg — VT] —Uc + Ugs
—Ur + Usozk*sin? 6, (AS)
d= 3 [Wr - Vr +2Ur], (A7)
kz
ie = —-Z(WLS —Vis + 2UL5) sin 6. (AS)

In Eqs. (A4)-(A8) W represents the contribution of
the exchange of an isospin zero particle, V the exchange
of a particle with isospin T' =1, T, = 0 and U the ex-
change of a T =1, T, # 0 particle. Isospin conservation
requires U(6) = V(r — ).

For one-pion exchange Eqs. (A4)—(A8) reduce to

a=—3(Vss - Vr) — Uss + Ur, (A9)
b= 3(Vss — Vr) — 2Uss — Ur, (A10)
c= —;-(—2Vss —Vr) +Uss — Ur, (A11)
d=—-3Vr +3Ur, (A12)
e=0. (A13)

Here V represents the contribution of the #° and U that
of the charged pions and

Vss(p) = 20 [)a(p) — 9(o)], (A19)

Vr(p) = (p)g(p), (A15)

where Ugs and Ur have the same definition with argu-
ment ¢q. It can be verified that, with these substitutions,
Egs. (A9)—(A12) reduce to Egs. (12)—(16).

We have for the neutron-proton OPE helicity ampli-
tudes:

2N
=3/

¢ = %{[g(p) +29(g)] cos 8 — 3g(p) + 69(q)}, (Al6)
N

¢2 = 5 {[9(p) + 29(q)] cos & + 39(p) — 69(q)
—6f(p)g(p) + 12£(9)9(9)}, (A17)

#s = TH13(p) +20(@))(1 +cos6) - 12/(@)o(@)}, (A18)

b= G Alo(p) +20(@))(1 — c050) ~ 65 (D)g(s)},  (A19)

N .
¢s = =5 [9(p) +29(g)] sin 6.
For charged pion exchange only and with the é function
included, these amplitudes reduce to

b1 =¢s=¢5 =0,
2 = —¢3 = 2N f(q).

(A20)

(A21)
(A22)
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TABLE 1. Basic functions for the different components of the potential in configuration space.
Potential Central and spin-spin Spin-orbit Tensor and (spin-orbit)?
) —tet (14 &) B (142 + o)
FO ) et _en (1 +br)

@) g (1 + br) - e

APPENDIX B: POTENTIALS
IN CONFIGURATION SPACE

In this section we give all formulas necessary to build
up, in configuration space, the regularized two-pion-
exchange potential considered here and calculated via

the first, second, and third terms arising from Eq. (32).

With the auxiliary definitions, A2 = A2 — 42 and b2 =
4

A+ %\7 we have

A8 1 1

ro2y oA~ 4 b
dispersion relations following the derivation of the Paris Vit a) = 4A% ' + g2 (b2 + q2)° (B2)
Group [37].
From Egs. (32), (35), (36), and (37), a given compo-
nent (‘)f the two-pion exchange in momentum space can Va(t',q?) = % 1 N A2 — b2 1
be written as _ 20,9 ) = AZ | b2 1 g2 (b2+q2)2 + g2
V(qz) = L ) dt,nParis(t,)[Vl (tlv qz) + Va(t, qz) + 1 2 (B3)
" 2 ! 2 9)\2 ’ 2
U q)), (B1) WAt At
where Vi (t',q?), Va(t',¢?), and V3(t',q?) correspond to  and
|
A2 =5 (M-8 1 1
Va(t',q%) = |1+2
2(thq) [ * b% +¢2 * (b2 + ¢2)% | |t' + ¢? * 422+t +¢2
2 422 4X? %
_2A2 ! 2 + 2 2 + 3 (B4)
Tt +q% (A2 4+t + 42" 2N+t +q2)° (AN 4+t +¢?)
[
As can be seen from Egs. (B2)-(B4), in order to ob- [bico) = f(o)(b) , (B7)
tain the potential in configuration space, one has to take
the Fourier transform of the products of poles and multi- then
poles. Systematic formulas can be derived for doing these 1 d
integrals. Let us define [baco] = FM(b) = ‘——z—bﬁf(o) () (B8)
1 . 1 1
bmcn] = — | dqe*dT . B5 and
[ mC ] 27‘_2/ qe (b2 +q2)m (02 +q2)n ( ) 1 d
bsco) = fA () = —~—F1(b) . B9
One can show that for m,n > 1, [bsco] = £7(8) 4b dbf (®) (BY)
1 The basic functions, entering into play, see, e.g., Eq.
= _ — ' B6 ’ ; )y O ’
[brmen] b2 — 2 {lbm—1¢n] = bmen-]} (B6) (4.20) of [37], are given in Table I for the different com-
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