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The inner part of the Paris nucleon-antinucleon optical potential has been reanalyzed in view

of new experimental constraints. These are mainly provided by accurate measurements of the
analyzing power in charge-exchange scattering, pp ~ nn, together with elastic pp -+ pp polarization
data, allowing a better determination of the isospin dependence of the short-range forces. The 6t
is performed with a set of 3632 data. The good quality of the St is illustrated over a large sample
of observables for laboratory momenta from 180 to 910 MeV/c. Curves of the potentials and of
the phase shifts are shown as well as the parameters of the potentials and effective range formula

coefBcients for the S and P waves. The spectrum of resonances and bound states predicted by our

potential is also displayed. In particular, a bound state having the AX(1565) quantum numbers is

found with the right mass.

PACS number(s): 13.75.Cs, 21.30.+y

I. INTRODUCTION

In 1982 we proposed an optical potential for the de-
scription of the low energy nucleon-antinucleon (NN)
interaction [1]. The real part of this optical potential
is obtained by G-parity transformation of the theoretical
long- and medium-range (LR+MR) parts of the Paris
NN potential, supplemented with a phenomenological
short-range (SR) part. Its absorptive part has a form

suggested by detailed calculations of the NN annihila-
tion diagrams into two mesons or resonances; in particu-
lar, it is of short range, energy and state dependent. The
parameters of the short-range potentials, both real and
imaginary, were determined by 6tting to the world data
set of that time, which consisted of total and elastic cross
sections [2—9], and of few elastic polarization data at two

energies [10,11]. For the charge-exchange reaction, the
only data were some total [12,13] and difFerential cross
sections [4,13,14]. The fit we performed at that time
required an isospin dependence for the SR potential, al-

though its accurate determination was not possible. It
led to a X2/data of 2.80 for 915 data points.

During the last decade, many new and accurate mea-

surements have been performed at different laborato-
ries not only on differential cross sections but also on
analyzing power for elastic and charge-exchange scat-
terings. These data provide additional constraints for
the determination of the model, which was so far es-

sentially constrained by the pp elastic data, i.e., in the
isospin (T = 1+T = 0) combination. The new charge-
exchange data provide now constraints on the orthogonal
(T = 1 —T = 0) combination, and this allows a determi-
nation of the isospin dependence.

In the present work we supersede the phenomenological
short-range part of the NN optical model considered in
Ref. [1] by readjusting the parameters to fit the existing
set of experimental results in the range of kinetic energies

17 & T&~b & 370 MeV.
This paper is organized as follows. In Sec. II we recall

the principal features of our model and we describe the
procedure for the determination of the parameters. The
results on elastic and charge-exchange scatterings and on
total and annihilation cross sections are presented and
discussed in Sec. III. In the same section the obtained
NN optical potential is displayed as well as the phase
shifts for low angular momentum (J & 2), and S- and P
wave low energy parameters are tabulated. Predictions
on NN resonances and bound states are also presented
there. A summary and conclusions are given in Sec. IV.
The detailed expressions and the parameters of our opti-
cal potential are shown in the Appendix.

II. THE MODEL

A. Basic considerations

As stated in the Introduction, the model considered in
this work is essentially based on the same theoretical and
phenomenological considerations as in Ref. [1]. The NN
interaction is described by an optical potential

Vxg = UN@ —iWwg. (2.1)

In principle, the real part U~~ can be obtained by
the G-parity transform of the NN potential if this is due
to meson exchanges. For large and medium distances
between the nucleons (r ) r, = 1 fm), it is well es-

tablished that meson exchanges provide a very good de-

scription of the NN forces. We therefore take the real
part U~g, for these distances between the nucleon and
antinucleon (r & 1 fm), as strictly given by the G-parity
transform of the theoretical Paris NN potential. This
means that it contains, besides the one-pion exchange,
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the two-pion (correlated and uncorrelated) exchange and
the ~ aad Aq meson exchanges as parts of the three-pion
exchange. For small distances (r & 1 fm), other degrees
of freedom (e.g., quarks, gluons) come into play and, at
present, there exists no reliable theoretical account for
these. Thus one is forced provisioaally to content one-
self with a phenomenological description for this region.
This is the attitude we adopted for the Paris NN poten-
tial and we do the same here. Now, one should remember
that the spin and isospin structure of the NE interac-
tion requires the presence, for each isospin state, of five

independent invariants with Pve radial potentials. More-
over, for the distances of interest here (r & 1 fm), these
radial potentials are expected to be nonlocal, meaning
that these 6ve radial potentials are functions of two vari-
ables. We could have transposed to the present work the
very simple procedure we used successfully in the NN
case [15]. (i) To cut off the theoretical potential at r = 1
fm and replace each radial potential by a coastant for
r ( 1 fm. This introduces five parameters representing
the heights of the radial potentials for the inner regions.
(ii) To implement nonlocality only in the central compo-
nents via a linear p2 or energy dependence. This adds
two other parameters.

Thus, even in this ultrasimple parametrizatioa, this
requires in total sevea parameters, and we believe that
this is a minimum minimorum. To facilitate the numer-
ical calculations, we are using here a slightly different
procedure. For small distances t & 1 fm, we expand the
phenomenological radial potentials in powers of r [Eqs.
(A4) and (A5)] and match them to the theoretical ones
at two points in the vicinity of 1 fm. In this way, we
also preserve entirely the theoretical potential for inter-
distances larger than 1 fm. This procedure leaves us with
nine parameters instead of seven as discussed above. The
two extra parameters arise &om the cubic expansion of
the central potentials [Eq. (A4)].

The imaginary part W~~ takes iato account the NN
annihilation into mesons and can be calculated kom an-
nihilation diagrams, as represented in Fig. 1, which re-
Hect nothing else but the unitary condition (see the Ap-
pendix). Since the nucleon and antinucleon annihilate
mostly into four or 6ve pions, the dominant diagram is
that with this number of pions in the intermediate state.
This diagram is quite dificult to calculate. However, in

the approximation [16]where the annihilation into four or
five pions proceeds through a~~ihilatioa into two mesons
(7r, e, p, or u mesons), the calculation of W~jj), still com-
plicated, becomes possible (see again the Appendix). It
can be seen &om Fig. 1 that the a~~ihilation diagrams
imply the exchange of a baryon-antibaryon pair in the t
channel. The resulting W~~ is of short range and nonlo-
cal, i.e., again with five radial potentials of two variables
for each isospin. As discussed in the Appendix, our min-
imal model contains, for each isospin, six parameters,
i.e., the strengths of the difFerent spin-dependent com-
ponents and a linear energy dependence for the central
components that accounts for a minimum nonlocality.

B. Determination of the short-range parameters

In total, the model contains, for each isospin state, 15
parameters. Because of this number, super6cial consider-
ations may lead one to conclude that the model could be
simply a "numerical recipe" [17]. From our general anal-
ysis, we believe that this is a minimal model if, in the
NN system, one wishes to take into account the simul-
taneous presence of scattering and annihilation processes
and the complex spin and isospin structure. There ex-
ists no good reason to discard a priori any of the general
features represented by this set of parameters. Only a
detailed analysis caa allow us to reduce this number of
parameters.

Of course, these 15 parameters do not play an equal
role in the 6tting procedure. Actually, we start the search
by setting, for r & r„all potentials except the central
to zero, and then introduce progressively the tensor and
spin-orbit components. In this process, we found that
the "weighty" parameters are (i) for the real part, the
six parameters giving the heights of the central triplet
and singlet, of the tensor, and of the LS components at
r = r2 ——0.6 fm; (ii) for the imaginary part, the four
couplings of the triplet and singlet central components.
The remaining five parameters allow just a 6ne tuning of
the 6t.

III. RESULTS

A. Elastic scattering: pp ~ pp

t. Differential cross sections

')) 2

FIG. 1. NN annihilation diagrams.

In general, the elastic differential cross sections
[2—6,18—24] are well reproduced as can be seen in Figs. 2
and 3. A quantitative statemeat on the fit, in terms
of a y value, is more delicate as there are, for several
energies, inconsistencies between different sets of experi-
mental data.

For example, around Tj b = 225 MeV (Pj b = 688
MeV/c), there are three recent sets of data, of Kunne et
aL [22] (at 220 MeV, 60' & e & 120'), of Bertini et al.
[23] (at 230.6 MeV, 36' & e & 163'), and of Kageyama
et aL [24] (at 225.8 MeV, 22 & 8 & 167') along with
three earlier sets of Iwasaki et al [25] (at 224.1 M. eV,
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3' & 8 & 20'), of Eisenhandler et aL [5] (at 226.4 MeV,
22' & 8 & 162'), and of Kaseno et at [2. 6] (at 230.5 MeV,
8' & 8 & 31'). Disagreement between Kageyama et aL
and Eisenhandler et aL data for small angles (20' —40')
has been noticed long ago [24]. Those of Kageyama et

al. are lower and compatible with the results of Bertini
et al. in this region but they are signi6cantly higher than
the data of Bertini et al. and Kunne et al. for large an-
gles (80' —120') with a maximum discrepancy around
95 —100 . Beyond 120, they are signi6cantly lower
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FIG. 2. Elastic differential cross sections for different values of Tr, (= Ti b). Curves labeled 1982 and 1991 are from our

works of Refs. [1] and [17], respectively. Data are from Conforto et al. [2], Eisenhandler et aL [5], Linssen et al. [18], Schiavon

et al. [19], Briickner et al. [20], Perrot-Kunne et aL [21], Kunne et al. [22], Bertini et al. [23], Kageyama et aL [24], Iwasaki et

al. [25], Kaseno et al. [26], and Sakamoto et al. [27].
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FIG. 2. (Continued).

than those of Bertini et al. The two sets converge, how-
ever, near 170' towards the results of Alston-Garnjost
et al. [6]. The Kunne et aL data, except the two last
points, can be reconciled with those of Bertini et aL by
a slight renormalization. The Eisenhandler et al. data
with larger errors bars can also be reconciled with the
other sets except with those of Kageyarna et al. near
the forward angles. All these features are summarized in
Fig. 2. Note that in all the figures no renormalization
factor has been used. Finally, the data of Kaseno et al.
and of Iwasala. et al. , at small angles, are compatible with
those of Eisenhandler et al. because of their large error
bars but they are higher than those of Kageyama et al.
Such a situation requires a selection of the data for the
determination of the model parameters. We decided not
to retain those of Kageyama et al. In these conditions, it
is not surprising that they will contribute a large amount
to the y2 for the total data set.

In the energy domain around 225 MeV, the results
are as follows. For the set of Kunne et al. , we get
y /data=9. 2 (for 21 data) with, however, a sizable renor-
malization (1.48); this value was obtained without tak-

FIG. 3. Backward elastic differential cross sections for dif-
ferent values of Tg. Curves are as in Fig. 2. Data are from
Alston-Garnjost et al [6]. .

ing into account the two first values and the two last
ones which are obviously spurious. In general, the data
of Kunne et aL require a rather large renormalization.
It is 1.30 at 283.9 MeV and 1.20 at 352.3 MeV. For the
set of Bertini et aL, we obtain a y2/data = 16 (for 23
data) with, however, a significantly weaker renormaliza-
tion (1.13). For the set of Kageyama et aL, y2/data =
18.3 (for 38 data) with a renormalization of 1.17. Fi-
nally, for the sets of Iwasaki et al. , Eisenhandler et al. ,
and Kaseno et al. , the y /data values are 1.02 (for eight
data), 2.49 (for 88 data), and 1.1 (for 15 data), respec-
tively, with the corresponding normalization of 0.95, 1.03,
and 0.95.

At other energies, the largest contributions to y /data
come &om the data of Kageyama et al. The most unfa-
vorable case is for 120.24 MeV where the fit is good for
small angles (30' —60') but not so good for angles be-
tween 80' and 130'. In this case, normalization cannot
help. The data of Perrot-Kunne et al. [21] at 97.62 MeV
give rise to a significant y2/data. They appear to be too

TABLE I. X /data on difFerential elastic cross sections.

Elastic do'/dA

Pre-LEAR [2—5,25—29]
LEAR at forward angles [18,19]
LEAR at non forward angles [20—23]
KEK [24] (not used in the St)
Complete set of data

Number of
data points

2414
237
337
168

3156

g /data

1.64
1.75
17.74
25.21
4.63
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low and, despite a normalization factor of 1.5, the value
for y2/data is still as high as 68 (for 26 data). How-
ever, their four data from 105 to 117 are outside the
uncertainties of Conforto et al. [2] and Sakamoto et al.
[27]. If these points are removed, the y2/data drops to
22. Moreover, the last three points from 156 to 163' are

hardly compatible with the results of Alston-Garnjost et
aL [6] at 173' and with those of Conforto et aL and
Sakamoto et aL H, in addition, we eliminate these three
points, we get y /data = 14. It should be noted that
at 146.3 MeV and 105 & 8 & 116, there is no such
disagreement between Perrot-Kunne et at. and Conforto

Perrot —Kunne et al.
1982
1991
Present Work

Kunne et al.
1982
1991
Present Work

0.5 0.5

;44kI.
~1i

~ I
; ~

0 0

PP PP
Tg= 97.62 MeV

Pl = 439.00 MeV/c

—05 I I I I I I I ~ I I I I I I I I I

0 30 60 90 120 150

9, (deg)

180

' '
~

PP PP
TL= 123.50 MeV

PL= 497.00 Mev/c

—05 I, , I . i I « I s

0 30 60 90 120

8 (deg)

150 180

Kunne et al.
1982
1991
Present Work

Perrot —Kunne et al.
1982
1991
Present Work

{d)

0.5 0.5

0 0

PP PP
TL——136.00 MeV

PL
——523.17 MeV/c

.5—0. I, I I i I

0 30 60 90 120

8 (deg)

150 180
—0.5

0

PP PP
TL= 146.30 MeV

PL——544.01 MeV/c

I i i I I, I

30 60 90 120

(«g)
150 180

FIG. 4. Elastic polarisations for different values of Tr, . Curves are as in Fig. 2. Data are Irom Oshugi et aL [10],Perrot-Kunne
et aL [21], Kunne et aL [22], and Bertini et al. [23].
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et al. and Sakamoto et al. The fit is then automatically
better, 43 (for 32 data) against 68. Finally, the back-
ward difFerential cross-section measurements of Alston-
Garnjost et aL [6] which were, in 1982, among the most
constraining and useful data, due to their high precision,
are still well reproduced (Fig. 3). The present y2/data
on elastic difFerential cross sections are summarized in
Table I. The high values obtained with the LEAR and
KEK difFerential cross sections reflect inconsistencies in

these data and disagreements with the pre-LEAR mea-
surements [2—5,25—29].

K I+levitation

In 1982, below 350 MeV the set of experimental data
on polarization was very scarce. There were only four
points at 220 and 232 MeV [10,11] at forward angles.
During the period 1988—1991, many more accurate mea-
surements for various angles in the range of 20 to 170'
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FIG. 4. (Continued).
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were performed at LEAR [21—23]. In Fig. 4, we give the
results obtained with the present model and comparison
is made with those of Refs. [1] and [30]. The angular
dependence of the polarization is well reproduced by our
model but, in order to achieve a good fit, some renor-
malization of the data is required, especially for those
of Perrot-Knnne et al. [21]. As no definite number was

stated in these references, we assumed a normalization
error of 5'%%uo and then obtain, for the whole set of data,
yz/data of 6.25 for 219 data.

B. Charge-exchange reaction pp —+ nn

In 1984, new measurements of charge-exchange (CEX)
differential cross sections [31,32] showed that the model
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FIG. 5. Chbarge-exchange differential cross sections for different values of Tl. . Curves are as in Fig. 2. Data are from Kohno

et aL [4], Tsuboyama et aL [13], Bizzari et al. [14], Nakamura et aL [31],Briickner et aL [32], and Birsa et aL [33].
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of Ref. [1] predicts a too pronounced dip in the forward
direction (see Fig. 5). In Ref. [30] it is shown that the dis-
crepancies for the CEX difFerential cross sections in the
forward directions can be eliminated and, at the same
time, the fit to elastic scattering observables (differential
cross sections and analyzing power) improved by read-
justing only the SR parameters. However, in 1990, pre-
liminary results [33] on a new observable, namely, the
CEX analyzing power at Tl b = 206.6 MeV (Pl b = 656
MeV/c), show again a disagreement between the data
and the predictions of Ref. [30]. This disagreement was
confirmed by subsequent measurements at difFerent en-
ergies [34], (see Fig. 6). At this point, the important
question was whether or not one can amend the situa-
tion by acting once more on the SR part of the potential.

cuay,The following results show a positive answer. Actuall
we realized quickly that the CEX analyzing power is very
sensitive to the SR potential. We first try to get a good fit
of this observable even at the expense of spoiling the good
agreement for CEX cross sections and elastic scattering
data. Then we make a fine tuning on the SR parameters
to restore this good agreement. The results are shown in
Fig. 6.

1. Digererateol cross section

be easily solved by a renormalization of the data. This is
true at backward angles for Tl b = 124.4 MeV [Fig. 5(b)]
and Tl b = 170.7 MeV [Fig. 5(d)]. Anyway, despite an
improvement with respect to the previous solution, it re-
mains difBcult to fit the data below Tl b = 50 MeV. For
the whole set of 331 data with 17.3 & Tl b & 282.2 MeV
we obtain y /data of 6.13. If we exclude the 71 data
below 50 MeV, it drops to 3.56.

K Polarization

Here also the improvement with respect to previous
solutions is noticeable, especially at angles less than 90'
(Fig. 6). The present model, for 85 data (147.2 & Tl b &
344.5 MeV) [34], gives y /data of 3.62. When we try to
obtain a best fit to these polarizations alone, the other
data are still correctly reproduced, except for the CEX
differential cross sections which come out too large even
though their shapes are correct. This indicates either
inconsistencies between these data or underestimated er-
rors for some of them. Incidently, the new LEAR exper-
iment (PS206) planned for further studies of the CEX
reaction is very welcome.

In trus case, even for the very low energies, the im-
provement of the fit with respect to the original solu-
tion of Ref. [1] is quite significant at forward angles,
8 & 90 (see Fig. 5). Here again, when the compari-
son between the results of difFerent experiments [4,13—33]
can be done, we note some disagreements which cannot

3. DepelaÃsation

This parameter has been measured for the first time
at LEAR at Tlab = 344.7 MeV (Pleb = 875 MeV/c) [35].
Thee components of the scattering amplitude, appearing
in the expression for the depolarization, are complemen-
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tary to those of the analyzing power. Moreover, these
components are linked, at least in the Born approxima-
tion, to the spin-spin and tensor. This implies a par-
ticular sensitivity to the LR and MR parts of the inter-
action. Thus, although the error bars remain large, the
remarkable agreement between data and predictions of
our model confirms the validity of the LR and MR me-
son exchange forces for the NN system (Fig. 7).

C. Total and annihilation cross sections

The total and annihilation cross sections predicted by
our model are shown in Figs. 8(a) and 8(b). The pp
total cross sections [7,36—38] are well reproduced. For
the annihilation process [39—41], our results are too low.
The np system, which is pure T = 1, is interesting for
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FIG. 6. Charge-exchange polarizations for different values of Tr, Curves are as in Fig. 2. . Data are from Birsa et el. [34].
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TABLE II. Heights of the different components of the real
potential at r3 ——0.20 fm and rz ——0.60 fm determined by
the St to observables. All values are in MeV but the U0

components which are dimensionless.
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results agree with data but at low energies, as in other
potential models, we are unable to reproduce the positive
values obtained by Bruckner et al. [41] and Linssen et al.

D. The optical NN potential

FIG. 7. Charge-exchange depolarization for Tg ——344.7
MeV. Curves are as in Fig. 2. Data are &om Birsa et aL

the test of isospin dependence. Our model agrees with
experiments for the total as well as for the annihilation
cross sections [42,43] (Fig. 9).

The results for the p parameter [18,28,41,44,45], the
ratio of the real to imaginary parts of the forward scat-
tering amplitude, are presented in Fig. 10. As before, our

The difFerent components of the real and imaginary
parts of our NN optical potential [Eqs. (2.1) and (Al)—
(A18) and Tables II and III] are plotted in Figs. 11 and
12. It is interesting to observe the in6uence of the con-
straints given by the new and more accurate data on the
SR behavior of the optical potential.

It is for distances below 0.7 fm that our real potential
starts to deviate strongly from that of Ref. [1]. Singlet
and triplet central potentials of both isospins are all at-
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FIG 8 T l. Total and annihilation cross sections for the pp system. Curves are as in Fig.
Nakamura et aL [36], Clough et al. [37], Bugg et al. [38], and Briickner et al. [39—41].
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tractive for 0.7 ( r ( 1 fm. Here, in contrast to Ref. [1],
the isoscalar singlet and isovector triplet central poten-
tials become repulsive for r & 0.5 fm and the isovector
central singlet stays attractive for r & 0.7 fm. The T = 0
LS component is more repulsive and the T = 1 less at-
tractive. The tensor T = 0 potentials are repulsive and

similar, while the T = 1 potential is now repulsive.
The isospin 0 and 1 singlet central imaginary poten-

tials are much weaker than those of the 1982 solution
[Fig. 12(a)]. This follows from the corresponding values
of the g; parameters given in Ref. [1] and in Table III.
The isospin 0 and 1 triplet central components are similar
[Fig. 12(b)]. The energy dependences are comparable, ex-
cept for the isospin-1 triplet central imaginary potential.
They are negligible in the 1982 version, but presently as
strong as for the isospin-0 case. The spin-orbit compo-
nents are much weaker and, as in 1982, very little isospin
dependent [Fig. 12(c)]. The tensor potentials are also
weaker with, however, a strong isospin dependence, as
the T = 0 and T = 1 potentials have opposite signs.
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E. Phase shifa;s

1. Phasee

For completeness, in the Appendix, we recall the def-

inition of the different phase parameters, gl. , bL„

—0.3

TABLE III. The parameters of the imaginary part W~~
of the absorptive potential.
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FIG. 10. Real to imaginary ratio p of the forward scattering
amplitude for the pp system. Curves are as in Fig. 2. Data
are &om Linssen et al. [18], Cresti, Peruzzi, and Sartori [28],
Briickner et aL [41],Iwasaki et aL [44], and Ashford et aL [45].
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and o.g, expressing eth 8-matrix elements in the Liver-
y ~t' [46]. The phases are displayed inmore parametriza ion

. WF' 13—17 for total angular moment y)m J (2. e useigs.
2T+1 2S+1Lth t dard spectroscopic notatione san

s inT Oorl,given par ia wat 1 wave characterized by its isospin
total an ularspin S (0 or 1), angular momentum L, and tota ang ar

momentum J.
In general one can see an pim ortant isospin depen-

phase is posi ive ah
' 't've at low energy and exhibits a quic rise

d 25 MeV and then becomes nega-to its maximum aroun
ter thattive above 100 MeV [Fig. 13(a)]. We shall find later a

led Si phases are all negative and strongly absorbedpe ip
Fig. 16). In comparison with the p as~ ~

ases obtained with
the previous mo e sd 1 ~1 30) the Pp phases are very sim-

ss artilar and, as expec e, ast d as soon as the SR potentials s ar
to act i.e., above 50 MeV, the present D phases begin) ' ')
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TABLE IV. The low enere ow energy parameters of the present work.

50

Wave
lip
31'0
13'1
33+1
13P0
33P0
11P1
31P1
13P1
33p1
13P

2
33P

2

GL

0.565 04 —i0.184 73
0.836 35 —i0.906 54
1.1878 —i0.602 56

—0.224 15 —i0.540 69
—9.3315 —i4.5894
2.7654 —i0.007 73
—3.8478 —i1.8270

0.852 39 —i0.565 66
5.1377 —i0.041 09

—0.782 53 —i0.381 65
—0.088 51 —i1.4724

—0.122 07 —i0.085 03

~OL

20.037+ i13.854
1.5463 + i0.238 16
0.79781 —i1.5686
—19.580 —i10.804

0.291 15 —i0.946 97
—4.9876 —i0.037 36

2.0853 —i2.5431
—9.1362 —i15.996

—3.2986 —i0.043 07
19.763 —i20.259

1.0360 —i0.746 58
0.781 25 —i107.71

PL
0.003 29 —i0.006 25
1.0510 —i0.352 39

0.11165 + i0.501 31
0.005 82 —i0.001 35
0.978 83 —i0.847 13
0.001 30 —i0.000 92

—0.056 83 —i0.089 23
—0.006 76 + i0.004 31
—0.01124 —i0.002 14
—0.007 76 —i0.002 84

—1.4772 + i2.7843
—0.000 23 —i0.000 27

Qz,
—0.000 03 —i0.000 03

0.789 05 —i1.0894
—0.288 09 —i0.087 57
0.000 02 —i0.000 03

—0.439 71 + i0.469 63
—0.000 41 + i0.000 02
0.015 554 + i0.002 27
0.000 08 —i0.000 02

—0.004 10 + i0.000 36
0.000 05 —i0.000 03
—5.3497 —i0.11292
0.000 00 + i0.000 00
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FIG. 12. As in Fi . 1g. 1 but for imaginary potentials.~ ~
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FIG. 13. Present work J = 0 phase parameters.

to be diferent. The J = 3, 4 phases, not plotted here,
show very little model dependence and are almost elastic
for Tj~b ( 200 MeV. The absorption for the coupled Ds
phases appears, however, above 50 MeV and can be as
important as for the uncoupled D phases.

K Lotto ene~ paremetere

In order to study the very low-energy behavior of the
phases, @re performed, for 0.01 & Ti b & 10 MeV, a least

squares fit of the S and P phases without Coulomb force,
using the efFective range formula [Eq. (A22) of the Ap-
pendix]. In Table IV we give the results, for the scat-
tering length ar„ the efFective range rer„and the param-
eters PI, and QL, . We have checked that the scattering
lengths are very close to the values obtained by solving
the Schrodinger equation at zero energy. As the low en-
ergy behavior of the S and P phases is difFerent from
those of our previous models [1,30], the low energy pa-
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FIGG. 14. Present work uncoupled J = 1 phase parameters.
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FIG. 15. Present work uncoupled J = 2 phase parameters.

rameters are diferent except for the 3Pp and Py waves.
The large values of the @pl. parameters for the Sp, S~,

Pq, and Pq waves comes from the strong energy de-
pendence of these particular phases. The large value for
aL, (~sPo) is due to the presence of the threshold resonance
in this wave, as we shall see next.

The scattering wave functions of our optical poten-
tials have also been calculated and can be used to take
into account initial state interaction in processes such as
strangeness production &om pp, or pp annihilation into
two pions [47].

F. Resonances and bound states

Following the method of Ref. [48] we have calculated
the spectrum of the NN resonances of the present model.
Let us recall that, in potential scattering, for a given
partial wave, the S matrix can be written in terms of the
Jost function F(k) as

S(k) =
F(k)

axis, i.e., —m & Imk & 0, where m is the pion mass.
These resonances correspond to the zeros of F(k) in the
domain Imk & 0, Rek & 0. As explained in the Appendix
of Ref. [48], an analytic continuation is needed for the cal-
culation of the Jost function in the region Imk & —m /2.
If the imaginary part of the potential is set to 0 many res-
onances are found, as expected &om the very attractive
nature of the real potential. With the complete potential
these states become wide and many of them now have
Imk( —m .

Table V gives a list of the complex rnomenta of the
poles with ~imk~ & m together with the mass and width
of the corresponding resonances. In comparison with Ta-
bles I and IV of Ref. [48] we can see the following. (i)
Fewer resonances are found here, four instead of six pre-
viously, and they are in general narrower. Three of them
occur in the same states: Pp, D2, and I"~. The
previous Pq, (F-II)4, and ssG4 stats are absent but
a new one in the ss(D-G)s state appears. This is a con-
sequence of a weaker T = 1 imaginary triplet potential
at low energy. (ii) All resonances occur in the triplet
isotriplet states except for the Pp. If the imaginary po-
tential is zero, there are as many resonant triplet states in

with

k =m =mE,Tlab

2
(3.2)

where m is the nucleon mass and E the c.m. relative
energy.

We have searched for poles of the S matrix in the com-
plex momentum plane lying reasonably close to the real

2T+1 2S+1LJ
Rek (fm ')
Imk (fm ')
Mass (MeV)

Width (MeV)

13'
0.24

—0.26
1876
10.4

33D

0.70
—0.17
1896
19.9

33+
1.39

—0.22
1953
50.8

TABLE V. Resonances of the present model.

(D-G)3
1.03

—0.28
1917
47.8
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TABLE VI. Binding energy in MeV of the possible + + Lz bound states of the present
model.

13'0
—238 —i48

13' Sayed 13(g D)
—67 —i66 —29 —i4.7 —151 —i45

"(8-D)g

—114 —i0.4
1$(g p)

—320 —i3.2
83(g g)
—70 —i4.2

both isospins. Switching it on, the isosinglet states pick
up a large width because of the large T = 0 component
at low energy [Fig. 12(b)]. As was shown in Ref. [48] one
does not expect a loop in the Argand diagram; however
a sharp rise of the phase can be seen in the Argand plots
for the Pp, D&, and E3 states in Figs. 18—20.

The absorptive part of our optical potential has a lin-
ear energy dependence [see Eq. (A15)]. This is not
suitable for the search for bound state far from thresh-
old. For this purpose we account for the energy depen-
dence of W~~(r, 2E) by an exponentia1 exp(o, E),a being
6tted to reproduce the linear dependence in the range
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FIG. 16. Present work. coupled J = 1 phase parameters.
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0 & E & 300 MeV. Bound states have Rek ( 0 and
Imk ) 0. If the imaginary part is set to 0, there are
many bound states, again all in triplet states. If the
imaginary potential is turned on, some of these states
acquire a large width or have Rek & 0. Table VI gives
the list of the remaining bound states. It is interesting
to note that, if the AX(1565) is to be interpreted as a

13(P —F)2 bound state of the NN system as advocated
in Ref. [49], we predict such a bound state at the right
energy.

IV. SUMMARY AND CONCLUSIONS

In this work, we pursue further our investigation pro-
gram on the NN interaction initiated in 1982. We con-
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FIG. 17. As in Fig. 16 but for the coupled J = 2 phase parameters.
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FIG. 18. Comparison of the present work Pp Argand di-

agram, continuous solid line, to those of our earlier models.
The 1982 amplitude of Ref. [1] is represented by a dotted line
and that of 1991, Ref. [30], by a dashed line.
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template the possibility of combining well established
theoretical inputs (i.e. , the LR+MR parts of the interac-
tion as derived from meson exchanges) with the wealth
of existing experimental data in order to get an accurate
phenomenological representation of the SR part of the in-
teraction. The underlying ides is similar to that followed

FIG. 20. As in Fig. 2 but for the F3 amplitude.

in the construction of the Paris NN potential; however,
with more degrees of &eedom here because of the pres-
ence of annihilation. We start with a parametrization
of the SR potential, for the real as well as the imagi-
nary parts, which contains 15 parameters for each isospin
state. From a superficial overlook, this number might
appear too large, but having in mind that, from general
principles, the description of the NN interaction requires
the knowledge of ten real functions with two variables
(nonlocal potentials), for each isospin state, we consider
this parametrization as minimal. On the other hand, as
discussed in the text, our fitting procedure permits us to
distinguish the important parameters describing the bulk
properties from those allowing just a fine tuning of the
fit.

From the total existing data set (3800 data), some
(168) are clearly inconsistent with others. We performed
the determination of the parameters on the remaining
set (3632 data). A quantitative measure of the quality
of the fit can be provided by the value of y2/data. The
fit gives 3.87. If some further less clearly inconsistent
data (337) are dropped, the calculated g /data is 2.46.
We did not try to perform a best fit to this latter re-
stricted set of data which would give lower y2/data. Of
course, because of the presence of inconsistent data the
calculated y2/data for the total set data is large, 4.8.
The figures show clearly the improvement of the model
between 1982 and 1994 due to the constraints provided
by the data of new observables like elastic polarization
and charge-exchange cross sections and analyzing power.
Paradoxically, the recent measurements on elastic cross
sections are not so constraining. Perhaps the present ver-
sion of our model is not definite, and could be improved
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with further experimental data.
It should be stressed that the improvement is obtained

by modifying only the short-range part of the interac-
tion, essentially for r & 0.7 fm. This means that the
hope of pinning down the SR part &om experimental
observables once reliable LR+MR parts are given is not
illusory. Since the validity of the LR+MR parts of our
model is well founded on theoretical grounds and well

supported by experimental data, the properties of our
SR part can provide valuable hints in the elaboration of
a deeper theoretical model for the short-range part of the
NN interaction.

ACKNOWLEDGMENTS

We thank B. Moussallam for helpful discussions and
for providing us his numerical code to calculate the res-
onances and bound states of the present optical NN
potential. Division de Physique Theorique is Unite de
Recherche des Universites Paris 11 et Paris 6 Associee
au CNRS.

1 fm range.
For r & r„ the phenomenological potentials are ex-

panded in powers of r:

U(r) = asr + a2r + axr + ap

for Uo and U&, and

(A4)

U(r) = b2r + bxr + bp (A5)

for Uo, x, ULs, UT, and Uso2 ~

The parameters a;(i = 0, 1, 2, 3) and b;(i = 0, 1, 2) are
determined by the following: (i) Matching to the theoret-
ical potential at ro ——r, and rz ——r, + Ar, 6 = 0.15 fm.
For all isospin-0 potentials, r, = 1 fm. For all isospin-1
components, r, = 0.84 fm except for Uo where r, = 1 fm.
(ii) Choosing a phenomenological height at r2 ——0.60 fm,
and also at r3 ——0.20 fm for Uo z.

The values of the difFerent potential at r2 and r3, de-
termined by the 6t to the data, are given in Table II.

In solving the Schrodinger equation, we have regular-
ized the tensor potential UT (r), at small r, with

APPENDIX

1. The real potential
and p=10 fm

(A6)

For completeness, we give here the full expression of
the real potential. For the two isospin values T = 1 and
T = 0, the potential is expressed in terms of the usual
nonrelativistic invariants:

Uxv~(r, Tx b) = Up(r, Txab)Op + Ux(r, Tx~b)Ox

+Ux,s(r) Ax,s + UT (r)OT

+Usoz (r)Aso2 (A1)

2. The imaginary potential

As stated in the text, the imaginary part O'N~ of the
optical potential can be obtained from the unitarity con-
dition applied to the NN amplitude (n2p2]A]nxpx) (see
Fig. 21). This reads

dflo(n2p2l& lab)(ab]&lnxpx), (A7)+
16vr2 s

where

Qp = (1 —ox o2)/4,
Ax ——(3+ pVx o2)/4

nLS =L, . S
0'y . TC72 T

OT' —3 —CTy ' 0'2)
r2

~SO2 2 (ox Lo2 ' L + o2 Lo'x ' L).

(A2)

lal' = [s —(~-+ V )']b[ s(~- —
S b)']/4s, (A8)

with p b the xnasses of the bosons a, band s = (px+nx) .
In the approximation where one retains only the nu-

cleon pole in the axnplitude (abler]pxnx), Eq. (A7) be-
comes

where c is the c.m. system three-momentum of the two
intermediate bosons,

Here the nonlocality of the central component is ac-
counted for by an energy dependence which is taken to
be linear. It replaces the p2 dependence used in [1]. Ex-
plicitly, the central singlet, Uo, and central triplet, Uz,
potentials are given by

U(r, Tx b) = U (r) + Tx bU (r). (A3)

For r ) r, the potential is given by the G-parity trans-
forxn of the theoretical NN Paris potential [50,51]. As
in Ref. [51], for the ur exchange (m = 782.7 MeV), we

use g /4' = 11.75. For the shorter range Ax exchange

(m~, = 1100 MeV), we take g& /4n = 10.4; this gives a
more attractive isospin-0 central singlet potential in the

7l z

FIG. 21. NN annihilation diagram into two mesons.
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(ng —a) + M
ImA = dO u(pg)r, , r, u(ng)

16m2 8 ng —a)2 —M2

(n2 —a) + M bxn(n2)r2, „,r2~(p2),
2 a)2 M2 (A9)

where u and v represents Dirac spinors for particle and
antiparticle, pq 2 are Dirac matrices, and M is the nu-

cleon mass. The coupling operators rz'z will have dif-
ferent expressions according to the aature of the bo-
son a or b. For instance, if the boson a is scalar,
rz ——r2 = g (coupling constant), and if it is pseu-
doscalar, rz &

——g~pz 2, and so on.
Expanding the Dirac spinors and matrices in terms of

the Pauli matrices, one can show that

ImA. (A14)

W~~(r, Tl~b) = gc(l + fcTb,b)

+gSS (1 + f SS Tlab) 4 1 ' 0'2

gl, s 1 d Kp(2mr)
+gT~T + IS4m~ r dr r

By Fourier transforming WN~(s, t) one would get, in con-
figuration space, a nonlocal potential. However, as the
energy dependence of R'~~ is rather weak, we keep it
fixed in the Fourier transform. In this case we obtain for
each isospin state (T = 0, 1)

ImA = ) I (a, t)A;, (A10)
(A15)

1
Ip(s, t) = dQ

[(n~ a) 2 M2] [(n2 @)2 M2]
'

(A11)

The latter can be evaluated as

2m + Ck'
Ip(s, t) =

4 ~ gt'(t' —4mz) (t' —t)
(A12)

where 0; are the invariants of Eq. (A2), but written in
momentum space, and the coefficients 1,(s, t) are inte-
grals which can be expressed [16] in terms of

where the modified Bessel fuaction Kp(2mr) comes from
the Fourier transform of Io, i.e.,

oo ~g~~

Ip(r) = — dt' = Kp(2mr). (A16)
4 gt'(t' —4m2)

In Eq. (A16) m is takea to be very close to the nucleon
mass, viz. , m = 940 MeV. The values of the parameters
g; and f; determined by the fitting procedure are given
in Table III.

Here again, in solving the Schrodinger equation, to
avoid the singular behavior at r = 0, we have regular-
ized the central and spin-spin potentials of Eq. (A15)
with

where t is the momentum transfer t = (nq —n2), and
&(r) = (1 —e ' ")' (A17)

2 2
4m' =4M'+" "' (A13)

aad the spin-orbit and tensor potentials with

H(r) = (1 —e ") . (AIS)

The presence of the nucleon and antinucleon propa-
gators in Eq. (A9) shows clearly that ImA contains the
baryon-antibaryon exchange in the crossed channel, and
one can anticipate that the annihilation diagrams are ef-
fective only for t large and positive (which correspond to
small distances in coordinate space) as explicitly shown
by Eq. (A12). Moreover, ImA is energy dependent; actu-
ally, for the energy domain of interest in this work, the en-
ergy dependence of ImA is very weak for all spin compo-
nents and moderate for the central ones. In other words,
the coefficients I; in Eq. (A10) are functions of t only,
except for i = C and SS, where the energy dependence
can be taken to be linear. The I s can be calculated ex-
plicitly in terms of masses and coupling constants. How-
ever, as mentioned above, ImA is of "short range, " and
as we have adopted to describe the short-range part of
the real potential phenomenologically, there is no need
to retain the exact expressions for the I s. We approxi-
mate them by efFective phenomenological couplings (with
a linear energy dependence for the central and spin-spin
components).

The imaginary part W~N of the optical potential, in
momentum space, can be derived in the same way as in
Ref. [50], giving

8. S matrix in terms of phase shiSs and efFective
range formula

SJ(Tj b) = gJe * ' (A19)

and for coupled states

(T ) ~, -( -) J-,J+( )
~( SJ+1,J—1(TbLb) SJ+1,J+1(Tlab) )

(A20)

with

SJ—~ J—~ (Tf~b) = VJ & cos(2e J)e
SJ y J+y(T]~b) = 1 sin(26J)e

SJ+1,J—1(Tlab) SJ—1,J+1(Tlab) &

SJ+1,J+1(Tlab ) —rlJ+1 cos(2&J)e

(A21)

Following the Livermore parametrization [46] to ex-
press the S-matrix elements in terms of phase shifts we
write, for uncoupled states,
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The phase parameters gL„bL„eJ, and Q.g are all Tj~b de-
pendent.

The effective range formula used to calculate the low
energy parameters is

k cot
~

hL, ——lnriL, [

2L,+i
)

+ ro-L, k —Pl, rol k + Ql, rol, k (A22)
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